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Markov Chains

Definition (Markov Chain)

A Markov chain is a sequence of random variables X1, X2, X3, . . . , Xt ,
. . . , such that the probability distribution of Xt+1 depends only on t and
xt (Markov property), in other words:

Pr [Xt+1 = x |Xt = xt ,Xt−1 = xt−1, . . . ,X1 = x1] = Pr [Xt+1 = x |Xt = xt ]

If each of the random variables {Xt : t ∈ N} can take values in a finite
set X = {x1, x2, . . . , xN}, then—for each time step t—one can define
a matrix of transition probabilities T t (transition matrix), such that

T t
ij = Pr [Xt+1 = xj |Xt = xi ]

If the probability distribution of Xt+1 depends only on the preceding
state xt (and not on the time step t), then the Markov chain is
stationary, and we can describe it with a single transition matrix T .
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Graph models of Markov Chains

The transition matrix has the following properties:

Tij ≥ 0, for all i , j ∈ {1, . . . ,N}.∑N
j=1 Tij = 1, for all i ∈ {1, . . . ,N}

(the transition matrix is stochastic).

A finite-state, stationary Markov Chain can be represented as a
weighted graph G = (V ,E ,w), such that

V = X

E = {(i , j) : Tij > 0}

w((i , j)) = Tij .
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Whack-THE-mole

A mole has burrowed a network of underground tunnels, with N openings
at ground level. We are interested in modeling the sequence of openings at
which the mole will poke its head out of the ground. The probability
distribution of the “next” opening only depends on the present location of
the mole.

Three holes:
X = {x1, x2, x3}.
Transition probabilities:

T =

0.1 0.4 0.5
0.4 0 0.6
0 0.6 0.4

 x1

x2

x30.1

0.4

0.5

0.4

0.6

0.4

0.6
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Whack-the-mole 2/3

Let us assume that we know, e.g., with certainty, that the mole was at
hole x1 at time step 1 (i.e., Pr [X1 = x1] = 1). It takes d time units to go
get the mallet. Where should I wait for the mole if I want to maximize the
probability of whacking it the next time it surfaces?

Let the vector pt = (pt
1, p

t
2, p

t
3) give the probability distribution for

the location of the mole at time step t, i.e., Pr [Xt = xi ] = pt
i .

Clearly, p1 = π = (1, 0, 0), and
∑N

i=1 pt
i = 1, for all t ∈ N.

We have pt+1 = T ′pt = T ′2pt−1 = . . . = T ′tπ. 1

1To avoid confusion with too many “T”’s, I will use the Matlab notation M ′ to
indicate the transpose of a matrix M.
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Whack-the-mole 3/3

Doing the calculations:
p1 = (1, 0, 0);

p2 = T ′p1 = (0.1, 0.4, 0.5);

p3 = T ′p2 = (0.17, 0.34, 0.49);

p4 = T ′p3 = (0.153, 0.362, 0.485);
. . .
p∞ = limt→∞ T ′tp1

= (0.1579, 0.3553, 0.4868).

x1

1

x2

0

x3

0
0.1

0.4

0.5

0.4

0.6

0.4

0.6

Under some technical conditions, the state distribution of a Markov
chain converge to a stationary distribution p∞, such that

p∞ = T ′p∞.

The stationary distribution can be computed as the eigenvector of the
matrix T ′ associated with the unit eigenvalue (how do we know that
T has a unit eigenvalue?), normalized so that the sum of its
components is equal to one.
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Hidden Markov Model

In a Markov chain, we reason directly in terms of the sequence of
states.

In many applications, the state is not known, but can be (possibly
partially) observed, e.g., with sensors.

These sensors are typically noisy, i.e., the observations are random
variables, whose distribution depends on the actual (unknown) state.

Definition (Hidden Markov Model)

A Hidden Markov Model (HMM) is a sequence of random variables,
Z1,Z2, . . . ,Zt , . . . such that the distribution of Zt depends only on the
(hidden) state xt of an associated Markov chain.

x1

z1

x2

z2

. . .

. . .

xt

zt
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HMM with finite observations

Definition (Hidden Markov Model)

A Hidden Markov Model (HMM) is composed of the following:

X : a finite set of states.
Z: a finite set of observations.
T : X × X → R+, i.e., transition probabilities
M : X × Z → R+, i.e., observation probabilities
π : X → R+, i.e., prior probability distribution on the initial state.

If the random variables {Zt : t ∈ N} take value in a finite set, we can represent
a HMM using a matrix notation. For simplicity, also map X and Z to
consecutive integers, starting at 1.

T is the transition matrix.
M is the observation (measurement) matrix: Mik = Pr [Zt = zk |Xt = xi ].
π is a vector.

Clearly, T , M, and π have non-negative entries, and must satisfy some
normalization constraint (

∑
j Tij =

∑
k Mik =

∑
l πl = 1).
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Problem 1: Evaluation

The evaluation problem

Given a HMM λ, and observation history Z = (z1, z2, . . . , zt), compute
Pr [Z |λ].

That is, given a certain HMM λ, how well does it match the
observation sequence Z ?

Key difficulty is the fact that we do not know the state history
X = (x1, x2, . . . , xt).
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The näıve approach

In principle, we can write:

Pr [Z |λ] =
∑
allX

Pr [Z |X , λ]Pr [X |λ]

where

Pr [Z |X , λ] =
∏t

i=1 Pr [Zi = zi |Xi = xi ] = Mx1z1Mx2z2 . . .Mxtzt

Pr [X |λ] = Pr [X1 = x1] ·
∏t

i=2 Pr [Xi = xi |Xi−1 = xi−1]
= πx1Tx1x2Tx2x3 . . .Txt−1xt

For each possible state history X , 2t multiplications are needed.

Since there are card(X )t possible state histories, such approach
would require time proportional to t · card(X )t , i.e., exponential time.
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The forward algorithm

The näıve approach makes many redundant calculations. A more
efficient approach exploits the Markov property of HMMs.

Let αk(s) = Pr [Z1:k ,Xk = s|λ], where Z1:k is the partial sequence of
observations, up to time step k .

We can compute the vectors αk iteratively, as follows:
1 Initialize α1(s) = πsMs,z1 (for all s ∈ X )
2 Repeat, for k = 1 to k = t − 1, and for all s,

αk+1(s) = Ms,zk+1

∑
q∈X

αk(q)Tq,s

3 Summarize the results as

Pr [Z |λ] =
∑
s∈X

αt(s)

This procedure requires time proportional to t · card(X )2.
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The backward algorithm

The forward algorithm is enough to solve the evaluation problem.

However, a similar approach working backward in time is useful for
other problems.

Let βk(s) = Pr
[
Z(k+1):t |Xk = s, λ

]
, where Z(k+1):t is a partial

observation sequence, from time step k + 1 to the final time step t.

We can compute the vectors βk iteratively, as follows:
1 Initialize βt(s) = 1 (for all s ∈ X )
2 Repeat, for k = t − 1 to k = 1, and for all s,

βk(s) =
∑
q∈X

βk+1(q)Ts,qMq,zk+1

3 Summarize the results as

Pr [Z |λ] =
∑
s∈X

β1(s)π(s) Ms,z1

This procedure requires time proportional to t · card(X )2.
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Problem 2: Explanation

The explanation problem

Given a HMM λ, and an observation history Z = (z1, z2, . . . , zt), find a
sequence of states that best explains the observations.

We will consider slightly different versions of this problem:

Filtering: given measurements up to time k , compute the
distribution of Xk .

Smoothing: given measurements up to time k , compute the
distribution of Xj , j < k .

Prediction: given measurements up to time k , compute the
distribution of Xj , j > k .

Decoding: Find the most likely state history X given the observation
history Z .
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Filtering

We need to compute, for each s ∈ X , Pr [Xk = s|Z1:k ].

We have that

Pr [Xk = s|Z1:k , λ] =
Pr [Xk = s,Z1:k |λ]

Pr [Z1:k |λ]
= η αk(s)

where η = 1/Pr [Z1:k |λ] is a normalization factor that can be
computed as

η =

(∑
s∈X

αk(s)

)−1
.
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Smoothing

We need to compute, for each s ∈ X , Pr [Xk = s|Z , λ] (k < t)
(i.e., we use the whole observation history from time 1 to time t to
update the probability distribution at time k < t.)

We have that

Pr [Xk = s|Z , λ] =
Pr [Xk = s,Z |λ]

Pr [Z |λ]

=
Pr
[
Xk = s,Z1:k ,Z(k+1):t |λ

]
Pr [Z |λ]

=
Pr
[
Z(k+1):t |Xk = s,Z1:k , λ

]
· Pr [Xk = s,Z1:k |λ]

Pr [Z |λ]

=
Pr
[
Z(k+1):t |Xk = s, λ

]
· Pr [Xk = s,Z1:k |λ]

Pr [Z |λ]

=
βk(s)αk(s)

Pr [Z |λ]
.
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Whack-the-mole example

Let us assume that that every time the mole surfaces, we can hear it,
but not see it (it’s dark outside)

our hearing is not very precise, and has the following measurement
probabilities:

M =

0.6 0.2 0.2
0.2 0.6 0.2
0.2 0.2 0.6


Let us assume that over three times the mole surfaces, we make the
following measurements: (1, 3, 3)

Compute the distribution of the states of the mole, as well as its most
likely state trajectory.
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Whack-the-mole example

Forward-backward

α1 = (0.6, 0, 0) β1 = (0.1512, 0.1616, 0.1392)

α2 = (0.012, 0.048, 0.18) β2 = (0.4, 0.44, 0.36).

α3 = (0.0041, 0.0226, 0.0641) β3 = (1, 1, 1).

Filtering/smoothing

πf
1 = (1, 0, 0), πs

1 = (1, 0, 0)

πf
2 = (0.05, 0.2, 0.75), πs

2 = (0.0529, 0.2328, 0.7143)

πf
3 = (0.0450, 0.2487, 0.7063), πs

3 = (0.0450, 0.2487, 0.7063).
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Prediction

We need to compute, for each s ∈ X , Pr [Xk = s|Z , λ] (k > t)

Since for all times > t we have no measurements, we can only
propagate in the future “blindly,” without applying measurements.

Use filtering to compute π = Pr [Xt = s|Z , λ].

Use π as an initial condition for a Markov Chain (no measurements),
propagate for k − t steps.

E. Frazzoli (MIT) Lecture 20: HMMs November 22, 2010 23 / 32



Decoding

Filtering and smoothing produce distributions of states at each time
step.

Maximum likelihood estimation chooses the state with the highest
probability at the “best” estimate at each time step.

However, these are pointwise best estimate: the sequence of
maximum likelihood estimates is not necessarily a good (or feasible)
trajectory for the HMM!

How do we find the most likely state history, or state trajectory?
(As opposed to the sequence of point-wise most likely states?)
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Example: filtering/smoothing vs. decoding 1/4

Three states:
X = {x1, x2, x3}.
Three possible observations:
Z = {2, 3}.
Initial distribution:
π = (1, 0, 0).

Transition probabilities:

T =

0 0.5 0.5
0 0.9 0.1
0 0.1 0.9


Observation probabilities:

M =

0.5 0.5
0.9 0.1
0.1 0.9



x1

x2 x3

0.5

0.5

0.9

0.1

1

Observation sequence:

Z = (2, 3, 3, 2, 2, 2, 3, 2, 3).
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Example: filtering/smoothing vs. decoding 2/4

Using filtering:

t x1 x2 x3

1 1.0000 0 0
2 0 0.1000 0.9000
3 0 0.0109 0.9891
4 0 0.0817 0.9183
5 0 0.4165 0.5835
6 0 0.8437 0.1563
7 0 0.2595 0.7405
8 0 0.7328 0.2672
9 0 0.1771 0.8229

The sequence of point-wise most likely states is:

(1, 3, 3, 3, 3, 2, 3, 2, 3).

The above sequence is not feasible for the HMM model!
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Example: filtering vs. smoothing vs. decoding 3/4

Using smoothing:

t x1 x2 x3

1 1.0000 0 0
2 0 0.6297 0.3703
3 0 0.6255 0.3745
4 0 0.6251 0.3749
5 0 0.6218 0.3782
6 0 0.5948 0.4052
7 0 0.3761 0.6239
8 0 0.3543 0.6457
9 0 0.1771 0.8229

The sequence of point-wise most likely states is:

(1, 2, 2, 2, 2, 2, 3, 3, 3).
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Viterbi’s algorithm

As before, let us use the Markov property of the HMM.

Define
δk(s) = max

X1:(k−1)

Pr
[
X1:k = (X1:(k−1), s),Z1:k |λ

]
(i.e., δk(s) is the joint probability of the most likely path that ends at
state s at time k , generating observations Z1:k .)

Clearly,
δk+1(s) = max

q
(δk(q)Tq,s) Ms,zk+1

This can be iterated to find the probability of the most likely path
that ends at each possible state s at the final time. Among these, the
highest probability path is the desired solution.

We need to keep track of the path...
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Viterbi’s algorithm 2/3

Initialization, for all s ∈ X :

δ1(s) = πsMs,z1

Pre1(s) = null.

Repeat, for k = 1, . . . , t − 1, and for all s ∈ X :

δk+1(s) = maxq (δk(q)Tq,s) Ms,zk+1

Prek+1(s) = arg maxq (δk(q)Tq,s)

Select most likely terminal state: s∗t = arg maxs δt(s)

Backtrack to find most likely path. For k = t − 1, . . . , 1

q∗k = Prek+1(q∗k+1)

The joint probability of the most likely path + observations is found
as p∗ = δt(s∗t ).
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Whack-the-mole example

Viterbi’s algorithm

δ1 = (0.6, 0, 0) Pre1 = (null, null, null)

δ2 = (0.012, 0.048, 0.18) Pre2 = (1, 1, 1).

δ3 = (0.0038, 0.0216, 0.0432) Pre3 = (2, 3, 3).

Joint probability of the most likely path + observations: 0.0432

End state of the most likely path: 3

Most likely path: 3← 3← 1.
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Example: filtering vs. smoothing vs. decoding 4/4

Using Viterbi’s algorithm:

t x1 x2 x3

1 0.5/0 0 0
2 0/1 0.025/1 0.225/1
3 0/1 0.00225/2 0.2025/3
4 0/1 0.0018225/2 0.02025/3
5 0/1 0.0014762/2 0.002025/3
6 0/1 0.0011957/2 0.0002025/3
7 0/1 0.00010762/2 0.00018225/3
8 0/1 8.717e-05/2 1.8225e-05/3
9 0/1 7.8453e-06/2 1.6403e-05/3

The most likely sequence is:

(1, 3, 3, 3, 3, 3, 3, 3, 3).

Note: Based on the first 8 observations, the most likely sequence
would have been

(1, 2, 2, 2, 2, 2, 2, 2)!
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Viterbi’s algorithm 3/3

Viterbi’s algorithm is similar to the forward algorithm, with the
difference that the summation over the states at time step k becomes
a maximization.

The time complexity is, as for the forward algorithm, linear in t (and
quadratic in card(X )).

The space complexity is also linear in t (unlike the forward
algorithm), since we need to keep track of the “pointers” Prek .

Viterbi’s algorithm is used in most communication devices (e.g., cell
phones, wireless network cards, etc.) to decode messages in noisy
channels; it also has widespread applications in speech recognition.
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