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Notation

= Sttt set of hidden variables in the t+1 time slice

» gt set of values for those hidden variables at t+1

= ot set of observations at time t+1

= ol set of observations from all times from 1to t
= qa normalization constant
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Multiple Faults Occur

* three shorts, tank-line and

pressure jacket burst, panel
flies off.

Lecture 12: Framed as CSP.

* How do we compare the space of
alternative diagnoses?

* How do we prefer diagnoses that
explain failure?

y
S

Imesorce: NASA. APOL 3
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Due to the unknown mode, there tends to be
an exponential number of diagnoses.

u Fn
Candidates with
U

UNKNOWN failure

Candidates with
KNOWN failure
modes modes

1. Introduce fault models.
*  More constraining, hence more easy to rule out.
*  Increases size of candidate space.

2. Enumerate most likely diagnoses X; based on probability.
Prefix (k) ( Sort {X;} by decreasing P(X; | O))

*  Most of the probability mass is covered by a few diagnoses. .
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Model-based Diagnosis

Xor(i): ; .
= G(i): ) 0
Out(i) = In1(i) xor In2(i) b
= Stuck_0(i): ! b 1
Out(i) = 0 0
= U(i): 1 B “ _ GDE & Sherlock
[de Kleer & Williams, 87, 89]
Input:
Finite Domain Variables Assumptions:
- <XY>
- X mode variables * Modes are static
Y model variables
tDEX (;) Obs‘;rvlab‘e Vi“a.blfs ocy. « uniform dist on logical models.
. s model constraints
0 observations o;,, € D, * XL X; fori=| (apriori
P(X;) a prior probability of modes L
* O, L0 X fori=j
Output:
{x EDy| IyEDy s.t. x A 0 A D(X,y) is consistent} Consistency-based
= P(X|o;,) Probabilistic,
Sequential Observations
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Compute Conditional Probability via Bayes Rule
(Method 6)

P(X 10)= 20 'P)g;’ (X) — aP(01 X)P(X)

_POIX)P(X)
EP(O,X)

_ P(oIX)P(X)
Ep(o | x)P(x)

xeX
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Candidate Prior Probabilities

Px)=][P(X,1X,..) Chain rule

Assume X; 1 X; fori=j:

Px)= [ ]Px)
X, ex
A B C
P(G) 99 99 .99
P(S1) .008 .008 .001
P(S0) .001 .001 .008
P(U) .001 .001 .001

10/26/10

P(A=G,B=G,C=G)=.97
P(A=51,B=G,C=G)=.008

P(A =51,B=G,C=50)=.00006
P(A =S1,B = 51,C = 50) = .0000005

7

out
—Po——Ppo—t—Ppo—
1-2 7
1 =
o-a 7
0-6 b
0-4 7
0.2 .
o = T T T T T 1
o* ST 8 & @ @
\J
N4
Leading diagnoses before output observed %
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Estimate probability by assuming a uniform
distribution (Method 7)

P(X1o)=aP(ol X)P(X)
How do we compute P(o | X), from logical formulae ®(X,Y)?

Given theory @, sentence Q ....

... 1s inconsistent. ... could be true. ... must be true.

M(Q)
@ ) D

P(s.
Py ™
P@) Y P(s)

PQ[®)= 0

Problem: Logic doesn’t specify P(s;) for models of consistent sentences.
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Estimate probability by assuming a uniform
distribution (Method 7)

Problem: Logic doesn’t specify P(s;) for models of consistent sentences.
=> Assume all models are equally likely — count models.

P(s;)
P(Q, D) _ s€0Ne _ ‘M(Q A CI))‘
P@®) Y P(s)  [M(®)

PQ|®) =

Model-based Diagnosis using model counting:

_P(ox) _ [M(o A x AD(x,Y))

P(olx) P(x) = ‘M(x/\cl)(x,Y))‘
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Simplify P(O | M) using the
Naive Bayes Assumption (Method 7)

P(X 10)=aP(o| X)P(X)
Problem: P(o | X) can be hard to determine for large |o|.

Assume: observations o are independent given mode X.

o,lo,... Lo, | X

P(o1X)=P(o, 1 X)P(0,1X)...P(0, 1 X)

by Naive Bayes
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Diagnosis with Sequential Observations
and the Naive Bayes Assumption

P(X lo,,) =L@ X 0 )PX0y)  ~ aP(o, 1X 0, )P(X lo,,,)
i P(On |01:n—l) ‘ ‘
_ P(o,1X,0,, )P Xlo,,_,)

EP(on W X10,,1)

xEX
_ P(On IX’OI:n—l)P(X |Olzn—l)
EP(On Ix’Ol:n—l)P(x ! Ol:n—l)

xeX

Assume: observations o are independent given mode X.
o,Lo,... Lo, | X
_ P, IX)P(Xlo,,_)
Y P(o, 10)P(x10,,.,)

xEX
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Estimating the Observation
Probability P(o;| M, o,.,.4) in GDE

GDE used naive Bayes AND assumed consistent observations
for candidate m are equally likely.

P(o, | X, 04.,.1) is estimated using model ®(x,Y) according to:

If 04,4 A X A D(x,Y) entails o,
Then P(o, | X, 04.,.4) = 1

If 0.1 A X A ®(X,Y) entails O, # 0,
Then (On | m, 01:n-1) =0

Otherwise, Assume all consistent assignments to O, are equally likely:
let D¢, = {0.€ Dgp | 0401 A X A D(X,Y) is consistent with O, = 0.}
Then P(On | X, O1:n—1) =1/ |DCn|

out

n
ODAXDBYDC_"l

P(Xlo,)=aP(o, | X)P(X 1o, )

Observe out = 1:
X = <A=G, B=G, C=G>

Prior: P(x) =.97
P(out =0 | x) =1
P(x|out=0) =ax1x.97=.97
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out

n
ODAX{>BY{>C_00

P(Xlo,)=aP(o, 1 X)P(Xlo, )

Observe out = 0:
X = <A=G, B=G, C=G>

Prior: P(x) = .97
P(out =0 | x) =0
P(x |out=0) =0x.97xa=0

in out
O'AI X»B.Y 'CI ( ¢mm

Priors for Single Fault Diagnoses:

A B c
P(S1) —o606— |.008 | —66+—
P(S0) 001 | —ee+— | .008
P(U) .001 .001 .001
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Due to the unknown mode, there tends to be
an exponential number of diagnoses.

Candidates with
UNKNOWN failure
modes

Candidates with
KNOWN failure
modes

But “unknown” diagnoses represent a small fraction

of the probability density space.

enumerating the few most likely diagnoses.
10/26/10

Most of the density space may be approximated by

vlv=open =>
Outflow = M, (inflow);

10/28/07

Diagnosing Dynamic Systems: Probabilistic
Constraint Automata

Probabilistic transitions between modes

vlv=stuck open =>
Outflow = M, *(inflow);

Open ) Stuck
open
Open
Cost 5 Close
Prob 9 St k
uc
Closed (54 >A) closed
Vlv = closed => N vlv=stuck closed=>
Outflow = 0; Unknown Outflow = 0;

20
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Estimating Dynamic Systems

Given sequence of commands and observations:
* Infer current distribution of (most likely) states.
* Infer most likely trajectories.
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