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Notation 

  St+1  set of hidden variables in the t+1 time slice 
  st+1   set of values for those hidden variables at t+1 
  ot+1   set of observations at time t+1 
  o1:t   set of observations from all times from 1 to t 
  α   normalization constant  
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Image credit: NASA.
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Multiple Faults Occur 

•  three shorts, tank-line and 
pressure jacket burst, panel 
flies off. 

Lecture 12: Framed as CSP. 

•  How do we compare the space of 
alternative diagnoses? 

•  How do we prefer diagnoses that 
explain failure? 
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APOLLO 13	

Image source: NASA.

Due to the unknown mode, there tends to be  
an exponential number of diagnoses. 
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1.   Introduce fault models. 
•   More constraining, hence more easy to rule out. 
•   Increases size of candidate space. 

2.   Enumerate most likely diagnoses Xi based on probability. 
        Prefix (k) ( Sort {Xi} by decreasing P(Xi | O) ) 

•  Most of the probability mass is covered by a few diagnoses. 
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Model-based Diagnosis  

Input: 

•  Finite Domain Variables 
–  <X,Y>

•  X mode variables 

•  Y model variables 

–  O observable variables O ⊆ Y. 

•  Φ(X, Y) model constraints 

•  o observations oi:n ∈ DO

•  P(Xi) a prior probability of modes

Output: 

•  {x ∈DX | ∃y∈DY s.t. x ∧ o ∧ Φ(x,y) is consistent} Consistency-based 

⇒  P(X | oi:n) Probabilistic,  
Sequential Observations 
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Xor(i): 
�  G(i):  

  Out(i) = In1(i) xor In2(i) 
�  Stuck_0(i): 

  Out(i) = 0 
�  U(i): 

Assumptions: 

•  Modes are static 

•  uniform dist on logical models. 

•  Xi⊥ Xj for i ≠ j (apriori) 

•  Oi⊥ Oj | X  for i ≠ j

~ GDE & Sherlock 

[de Kleer & Williams, 87, 89]
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Compute Conditional Probability via Bayes Rule 

(Method 6) 

P(X |o) = P(o | X)P(X)
P(o)

= P(o | X)P(X)
P(o | x)P(x)

x∈X

∑

= P(o | X)P(X)
P(o,x)

x∈X

∑

=αP(o | X)P(X)
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Candidate Prior Probabilities 

P(X) = P(Xi)
X i ∈X

∏

P(A =G,B =G,C =G) = .97

P(A = S1,B =G,C =G) = .008

P(A = S1,B =G,C = S0) = .00006

P(A = S1,B = S1,C = S0) = .0000005
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Assume Xi ⊥ Xj for i ≠ j:

Chain ruleP(X) = P(Xi | X1:i−1)
i

∏

X� Y�A� B� C�0�

Leading diagnoses before output observed 

in out 
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Estimate probability by assuming a uniform 

distribution (Method 7) 

P(X |o) =αP(o | X)P(X)
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Given theory Φ, sentence Q ….  

M(Q) M(Φ)

… is inconsistent.  

M(Q) 

M(Φ)

  … must be true.  … could be true.  

 M(Q) M(Φ)

P(Q | Φ)= 0 1

Problem: Logic doesn’t specify P(si) for models of consistent sentences. 

How do we compute P(o | X), from logical formulae Φ(X,Y)? 

Estimate probability by assuming a uniform 

distribution (Method 7) 
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Problem: Logic doesn’t specify P(si) for models of consistent sentences. 

⇒ Assume all models are equally likely → count models.

Model-based Diagnosis using model counting: 

P(o | x) =
P(o,x)

P(x)
=
M(o∧ x ∧Φ(x,Y ))

M(x ∧Φ(x,Y ))
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Simplify P(O | M) using the  

Naïve Bayes Assumption (Method 7) 

P(o | X) = P(o1 | X)P(o2 | X)…P(on | X)

P(X |o) =αP(o | X)P(X)
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Problem: P(o | X) can be hard to determine for large |o|. 

Assume: observations o are independent given mode X. 

o1 ⊥ o2 … ⊥ on | X 

by Naïve Bayes 

Diagnosis with Sequential Observations

and the Naïve Bayes Assumption

P(X |o1:n ) =
P(on | X,o1:n−1)P(X |o1:n−1)

P(on |o1:n−1)

=
P(on | X,o1:n−1)P(X |o1:n−1)

P(on | x ,o1:n−1)P(x | o1:n−1)
x∈X

∑

=
P(on | X,o1:n−1)P(X |o1:n−1)

P(on,x | o1:n−1)
x∈X

∑

=αP(on | X,o1:n−1)P(X |o1:n−1)
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=
P(on | X)P(X |o1:n−1)

P(on | x)P(x | o1:n−1)
x∈X

∑

Assume: observations o are independent given mode X. 

o1 ⊥ o2 … ⊥ on | X 
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Estimating the Observation 
Probability P(oi | M, o1:n-1) in GDE

GDE used naïve Bayes AND assumed consistent observations
for candidate m are equally likely. 

P(on | x, o1:n-1) is estimated using model Φ(x,Y) according to:

�  If o1:n-1 ∧ x ∧ Φ(x,Y) entails on
Then P(on | x, o1:n-1) = 1 

�  If o1 : ni-1 ∧ x ∧ Φ(x,Y) entails On ≠ on
Then P(on | m, o1:n-1) = 0 

�  Otherwise, Assume all consistent assignments to On are equally likely: 
 let DCn ≡ {oc∈ DOn | o1:n-1 ∧ x ∧ Φ(x,Y) is consistent with On = oc }
Then P(on | x, o1:n-1) = 1 / |DCn|
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Observe out = 1: 
�  x = <A=G, B=G, C=G> 
�  Prior: P(x) = .97 
�  P(out = 0 | x) = 1 
�  P(x | out = 0 ) = α x 1 x .97 = .97 

P(X |o1:n ) =αP(on | X)P(X |o 1:n−1 )

X� Y�A� B� C�0�
in in out 

 1�
out 
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Observe out = 0: 
�  x = <A=G, B=G, C=G> 
�  Prior: P(x)     = .97 
�  P(out = 0 | x) = 0 
�  P(x | out = 0 ) = 0 x .97 x α = 0 

P(X |o1:n ) =αP(on | X)P(X |o 1:n−1 )

X� Y�A� B� C�0�
in in out 

 0�
out 

Priors for Single Fault Diagnoses: 

X� Y�A� B� C�0�
in in out 
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X� Y�A� B� C�0�

Leading diagnoses before output observed 

in out 
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X� Y�A� B� C�0� 0�

Top 6 of 64 = 98.6% of P�

Leading diagnoses after output observed 

in out 
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Due to the unknown mode, there tends to be  

an exponential number of diagnoses. 

U�
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Most of the density space may be approximated by 

enumerating the few most likely diagnoses. 

But “unknown” diagnoses represent a small fraction  

of the probability density space. 

U
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Diagnosing Dynamic Systems: Probabilistic 

Constraint Automata
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Closed 

Open Stuck 
open 

Stuck 
closed 

Open 
Close Cost    5 

Prob  .9 

•  Devices modes �
• Probabilistic transitions between modes�
•  State constraints for each mode�
•  One automata per component�

Vlv = closed => �
Outflow = 0;�

vlv=open => �
Outflow = Mz

+(inflow);�

vlv=stuck open => �
 Outflow = Mz

+(inflow);�

vlv=stuck closed=> �
Outflow = 0;�Unknown 
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Estimating Dynamic Systems 

Given sequence of commands and observations: 
•  Infer current distribution of (most likely) states. 
•  Infer most likely trajectories. 
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