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Assignment

» Homework:

* Problem Set #8: Linear Programming,
due today, Wednesday, November 16,

* Problem Set #9: Probabilistic Reasoning,
out today, due Wednesday, November 24,

* Readings:
* Today: Review of Probabilities and Probabilistic Reasoning.

* AIMA Chapter 13.
* AIMA Chapter 14, Sections. 1-5.

* Monday: HMMs, localization & mapping
* AIMA Chapter 15, Sections. 1-3.
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-
Notation
S,QR,P Logical sentences
O] Background theory (a sentence).

not, and (A), or (v), implies (—), “if and only if “ (iff, =).
Standard logical connectives where iff = “if and only if”.
M(S), entails, L Models of sentence S, entails, false.

A B, C Sets.
U, ¢ Universe of all elements, empty set.

U, N, ~,- Set union, intersection, inverse and difference.
= Equivalent to.

V: Variable or vector of variables.

Vi The ith variable of vector V.

V, v A particular assignment to V; short form for V=v, V, = v,.
Ve V at time t.

Vi A sequence of V from time i to time j.
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Notation

S: States or state vector.

O: Observables or observation vector.
X: Mode or mode vector.

S0, S1 Stuck at 0/1 mode.

Prefix (k) L Returns the first k elements of list L.

Sort L by R Sorts list L in increasing order based on relation R.

S, ith sample in sample space U.
P(X) The probability of X occurring.
P(X|Y) The probability of X, conditioned on Y occurring.

A L C|B) Ais conditionally independent of C given B.
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Outline

Motivation

Set Theoretic View of Propositional Logic

From Propositional Logic to Probabilities

Probabilistic Inference

— General Queries and Inference Methods

— Bayes Net Inference

— Model-based Diagnosis (Optional)

11/17/10 copyright Brian Williams, 2005-10 5

Multiple Faults Occur

* three shorts, tank-line and

pressure jacket burst, panel
flies off.

Lecture 16: Framed as CSP.

* How do we compare the space of
alternative diagnoses?

* How do we explain the cause of
failure?

* How do we prefer diagnoses that
explain failure?

| / S RS E-62-0004
Image source: NASA. APOLLO 13
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Due to the unknown mode, there tends to be
an exponential number of diagnoses.

Candidates with Candidates with
UNKNOWN failure KNOWN failure
modes modes

1. Introduce fault models.
*  More constraining, hence more easy to rule out.
*  Increases size of candidate space.

2. Enumerate most likely diagnoses X; based on probability.
Prefix (k) ( Sort {X;} by decreasing P(X;| O) )

*  Most of the probability mass.is.cQvesed by a few diagnoses.
11/17/10

n
o x . v s

Idea: Include known fault modes (SO = “stuck at 0,” S1="stuck at 1,”)
as well as Unknown.

Diagnoses: (42 of 64 candidates)

Fully Explained Failures: Partially Explained:
= [A=G, B=G, C=S0] = [A=G, B=U, C=S0]
= [A=G, B=S1, C=S0] = [A=U, B=S1, C=G]

- [A=S0, B=G, C=G] - [A=S0, B=U, C=G]

Faults Isolated, No Explanation:
= [A=G, B=G, C=U]
= [A=G, B=U, C=G]
= [A=U, B=G, C=G]
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Estimate Dynamically with a Bayes Filter

—

An action
1s taken

Posterior belief

A /\\ after an action

State Space

P t bel
Initial belief osterior belief

after sensing

P(S!| o“):

Image by MIT OpenCourseWare.

Localizing a Robot within a Topological Map

Xy: p(xylxp,8)= .9
X3! p(x5]x,,2)=.05
X4: p(x4/%,,2)=.05

Observations can

be features such

as corridor features,
junction features, etc.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see http://ocw.mit.edu/fairuse.

3/6/00


http://ocw.mit.edu/fairuse

Outline

Motivation

Set Theoretic View of Propositional Logic

From Propositional Logic to Probabilities

Probabilistic Inference
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Propositional Logic
Set Theoretic Semantics

Given sentence S:

N\

Universe of all interpretations (U)

11/17/10 copyright Brian Williams, 2005-10 12

3/6/00



Set Theoretic Semantics:
S =True

M(True) = Universe U
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Set Theoretic Semantics:
S=notQ

M(not Q)

M(not Q) = U - M(Q)

11/17/10 copyright Brian Williams, 2005-10 14

3/6/00



Set Theoretic Semantics:
S=Qand R

M(Q and R) = M(Q) N M(R)
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Set Theoretic Semantics:
False
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Set Theoretic Semantics:
QorR

M(Q or R) = M(Q) U M(R)
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Set Theoretic Semantics:
Q implies R

M(R)

“Q implies R” is True iff Q entails R
M(Q implies R) = M(Q) € M(R)
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Set Theoretic Semantics:
P implies Q

“Q implies R” is True iff “Q and not R” is inconsistent
“Q implies R” is True iff M(Q and not R) = ¢
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Axioms of Sets over Universe U

. AUB=BUA Commutativity
2. AUBUC)=AUBUCOC) Associativity
3. ANBUC)=ANBUANC Distributivity
4, ~(~A)=A ~ Elimination
5. ~(ANB)=(~A)U (~B) De Morgan’s
6. ANCFA)=¢

7. ANU=A Identity

= propositional logic axioms follow from these axioms.
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Outline

Motivation

Set Theoretic View of Propositional Logic

From Propositional Logic to Probabilities
— Degrees of Belief
— Discrete Random Variables

Probabilistic Inference
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Why Do We Need Degrees of Belief?

“Given theory @, sentence Q ....”

“...1s never true.” “... could be true.” “... must be true.”

/ Q = “All of the components

Q =“One of the valves to in the propulsion system

Engine A is stuck closed.” are broken in a way never

seen before.”

unsatisfiable satisfiable entailment
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Degrees of Belief

Probability P: Events — [0,1]
1s a measure of the likelihood that an Event is true.

Events:

Sample Space U = {s;}:
» like propositions.

* like interpretations.

» mutually exclusive,

* collectively exhaustive,
* finest grained events.

* P defined over s; € U.

0,Q,®AQ

P(@®)= 3 P(s) PU)= N Ps)=1  PQ)= 3 Pls)
5; EO s, €U 5, €0
P@rQ)= 3 P(s,)

5;€PNQ0
Like counting weighted models in logic.
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Axioms of Probability

P: Events — Reals

1. For any event A, P(A) = 0.
P(U) = 1.
3. IfANB=¢,then P(A UB)=P(A)+ P(B).

= All conventional probability theory follows.
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Conditional Probability: P(Q | @)

Is Q true given ©? =) What is P(*“Q given ®”)?

P(s; | @) = P(s)) / P(D) ifs,€EP
0 otherwise
= B(ﬁl.t@
P(D)
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Conditional Probability: P(Q | @)

Is Q true given ©? =) What is P(*Q given ©”)?

i o PG, ®)  P(O,D)
POID)= 3 P61 D=3 o)~ p@)
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Degree of Belief

“Given theory @, sentence Q ....”

13

... 1s inconsistent.” “... could be true.”

... must be true.”

PQ | D)= 0
P(D)
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(o) @9 @
P(Q, D)

27

Representing Sample Space
Using Discrete Random Variables

Discrete Random Variable X :

* Domain Dy = {x,, X, ... X}
» mutually exclusive, collectively exhaustive.

* P(X): Dy — [0, 1]

* 2P(x) =1
Joint Distribution over X, ... X: Y € (cloudy,
* Domain IT Dy
sunny}

«P(X,, ... X,): I Dy, — [0, 1]
® Notation: P(x;, ... X)) =P(X, =x; " ... " X, =X)

11/17/10 copyright Brian Williams, 2005-10

Z € {raining, dry}

28
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Outline

Motivation

Set Theoretic View of Propositional Logic

From Propositional Logic to Probabilities

Probabilistic Inference

— General Queries and Inference Methods

— Bayes Net Inference

— Model-based Diagnosis (Optional)

11/17/10 copyright Brian Williams, 2005-10 29

Types of Probabilistic Queries

Let X =<8§; O>
* Belief Assessment
— b(S) =P(S;]0)
* Most Probable Explanation (MPE)
— s"=arg max P(s | o) for all s € Dy
* Maximum Aposteriori Hypothesis (MAP)

— Given AC S
a"=arg max P(a|o) forallaED,

« Maximum Expected Utility (MEU)

— Given decision variables D
*=argmax ), u(x)P(x|d) forallde D,

11/17/10 copyright Brian Williams, 2005-10 30
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Common Inference Methods and Approximations used
to Answer Queries

1. Product (chain) rule.

2. Product rule + conditional independence.
3. Eliminate variables by marginalizing.

4. Exploiting distribution during elimination.
5. Conditional probability via elimination.

6. Conditional probability via Bayes Rule.
Approximations:

1. Uniform Likelihood Assumption
2. Naive Bayes Assumption
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Outline

Motivation

Set Theoretic View of Propositional Logic

From Propositional Logic to Probabilities

Probabilistic Inference

— General Queries and Inference Methods

— Bayes Net Inference

— Model-based Diagnosis (Optional)
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Bayesian Network

oy

—PM[A,N)

Input: Directed acyclic graph:

* Nodes denote random variables.

» Arcs tails denote parents P of child C.
* Conditional probability P(C | P) for each node.

Output: Answers to queries given earlier.

11/17/10 copyright Brian Williams, 2005-10

Conditional Independence
for a Bayesian Network

g gt

TS~MLB,ET,J|N A

A variable is conditionally independent of
its non-descendants, given its parents.
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PIM|N,A,B,E, T,J))=P(M | N, A)
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Computing Joint Distributions P(X) for
Bayesian Networks

! Joint Distribution:

*Assigns probabilities to
every interpretation.

* Queries computed from joint.

How do we compute joint distribution P(J,M,T,A,N,B,E)?
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Product (Chain) Rule (Method 1)

C (Cancer) € {none, benig, malig}
P (C» S ) =P (C | S )P (S ) S (Smoking) €{no, light, heavy}
P(C|S):

S ing= { no light heavy P(S) :

(P(C=none) ) 0.96 0.88 0.60 P(S=no) 0.80
(b .96 TN D)
P(C=benign) | 0.03 0.08 0.30 P(S=light) 0.15
P(C=malig) | 0.01 0.04 0.10 P(S=heavy) 0.05

,=0.96 x 0.80
Smoking(n?ne > benign malig
P(C9 S) / Cancer
L
no ) (o768 ) o024 0.008
light 0.132 0.012 0.006
heavy 0.03 0.015 0.005
11/17/10 copyright Brias 1 Williams, 2005-10 36
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Product Rule + Conditional Independence (Method 2)

If A 1s conditionally independent of C given B
(i.e., AL C|B), then:

P(A|B,C)=P(A4|B)

Suppose AL B,C|Eand B L C|E, find P(A, B, C | E):
P(4,B,C|E)=P(4| b.¢.E)P(B|{',E)P(C | E)

Product rule
P(A,B,C|E)=P(A|E)P(B|E)P(C|E)

Independence
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Product Rule for Bayes Nets

X, is independent of its
ancestors, given its parents:

oy

P(X)= [ [ P(X, | Parents(X,))

Product rule
P(J,M,T,A,N,B,E)
=P(J|M.T, AN, B, E)P(M|],A,N,B,)..P(B| E)P(E)

=P(J|T,A)P(M | A,N)P(A|B,E)P(T)P(N)P(B)P(E)
Independence

copyright Brian Williams, 2005-10 38
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Computing Probabilistic Queries

Let X =<S; O>
Belief Assessment:
- b(S)=P(S;|e)

Most Probable Explanation (MPE):
—  s"=argmax P(s| o) for all s € Dy

Maximum Aposteriori Hypothesis (MAP):

- GivenACS
a"=arg max P(s | o) forallaE D,

Solution: Some combination of

1. Start with joint distribution.

2 Eliminate some variables (marginalize).
3. Condition on observations.

4 Find assignment maximizing probability.
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Eliminate Variables by Marginalizing (Method 3)

Given P(A, B) P(A) = 2 P(A4,b,)
find P(A) : EB

P(A, B)
B € {raining, dry}
{cloudy,
sunny}

P(A)

_ P()

11/17/10 copyright Brian Williams, 2005-10 40
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Exploit Distribution During Elimination (Method 4)

» Bayes Net Chain Rule: X; is independent
of its ancestors, given its parents.
P(X)= LLP(X,. | Parents(X,))

Issue: Size of P(X) is exponential in |X|
Soln: Move sums inside product.

P(J,M,B,E) = AZ P(J |T,A)P(M | A,N)P(4| B,E)P(N)P(B)P(E)P(T)

= P(B)P(E)Z P(A4|B, E)Z P(J|T, A)P(T)Z P(M | A,N)P(N)
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Compute Conditional Probability via
Elimination (Method 5)

P(4,B)  P(A4,B)
P(B) Y P(B.a)

Note: The denominator is constant for all a; in A

P(A|B) = =aP(4,B)

. 9
Example. P(A| B)- B € {raining, dry} P(A B)

P(A|B)
ST e

11/17/10 copyright Brian Williams, 2005-10

{cloudy
sunny }
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Computing Probabilistic Queries

Let X =<8§, O>
Belief Assessment: S =<S,, Y> E P(S;,y,0)
YEDy
- b(S)=P(S;|o) =
P(s;,y,0)
SIEDS,-E’)EDY

Most Probable Explanation (MPE):

—  s'=argmax P(s | o) for all s € Dy = arg né%X P(S, 0)

Maximum Aposteriori Hypothesis (MAP): S = <A, Y>

— GivenACS
a"=argmax P(a|o) forallaED, = arg max 2 P(a,y,0)
«€D
1€ y
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Outline
* Motivation

Set Theoretic View of Propositional Logic

From Propositional Logic to Probabilities

Probabilistic Inference

— General Queries and Inference Methods

— Bayes Net Inference

— Model-based Diagnosis (Optional)
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Estimating States of Dynamic Systems
(next week)

Given sequence of commands and observations:
* Infer current distribution of (most likely) states.
* Infer most likely trajectories.
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