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Brian C. Williams 
16.410/16.413 
November 17th, 2010 

Brian C. Williams, copyright 2000-09 

Introduction to  
Probabilistic Reasoning 

Assignment 

•  Homework: 
•  Problem Set #8: Linear Programming,  

due today, Wednesday, November 16th. 
•  Problem Set #9: Probabilistic Reasoning,  

out today, due Wednesday, November 24th. 

•  Readings: 
•  Today: Review of Probabilities and Probabilistic Reasoning. 

•  AIMA Chapter 13. 
•  AIMA Chapter 14, Sections. 1-5. 

•  Monday: HMMs, localization & mapping  
•  AIMA Chapter 15, Sections. 1-3. 
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Notation 
  S, Q, R, P   Logical sentences 
  Φ    Background theory (a sentence). 

  not, and (∧), or (v), implies (→), “if and only if “ (iff, ≡). 
    Standard logical connectives where iff ≡ “if and only if”. 

  M(S), entails, ⊥  Models of sentence S, entails, false. 

  A, B, C   Sets. 
  U, φ    Universe of all elements, empty set. 

  ∪, ∩, ~, -   Set union, intersection, inverse and difference. 
  ≡    Equivalent to. 

  V:    Variable or vector of variables. 
  Vi:    The ith variable of vector V. 
  V, vi:     A particular assignment to V; short form for V= v, Vi = vi. 
  Vt:    V at time t. 
  Vi:j:    A sequence of V from time i to time j. 
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Notation 
  S:    States or state vector. 
  O:    Observables or observation vector. 
  X:    Mode or mode vector. 
  S0, S1   Stuck at 0/1 mode. 
  Prefix (k) L  Returns the first k elements of list L. 
  Sort L by R  Sorts list L in increasing order based on relation R. 

  si    ith sample in sample space U. 
  P(X)   The probability of X occurring. 
  P(X|Y)   The probability of X, conditioned on Y occurring. 
  A ⊥ C | B)  A is conditionally independent of C given B. 
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Outline 

•  Motivation 
•  Set Theoretic View of Propositional Logic 
•  From Propositional Logic to Probabilities 
•  Probabilistic Inference 

– General Queries and Inference Methods  
– Bayes Net Inference 
– Model-based Diagnosis   (Optional) 
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Multiple Faults Occur 
•  three shorts, tank-line and 

pressure jacket burst, panel 
flies off. 

Lecture 16: Framed as CSP. 

•  How do we compare the space of 
alternative diagnoses? 

•  How do we explain the cause of 
failure? 

•  How do we prefer diagnoses that 
explain failure? 
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Due to the unknown mode, there tends to be  
an exponential number of diagnoses. 

U	
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1.   Introduce fault models. 
•   More constraining, hence more easy to rule out. 
•   Increases size of candidate space. 

2.   Enumerate most likely diagnoses Xi based on probability. 
        Prefix (k) ( Sort {Xi} by decreasing P(Xi | O) ) 

•  Most of the probability mass is covered by a few diagnoses. copyright Brian Williams, 2005-10 
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Idea: Include known fault modes (S0 = “stuck at 0,” S1=“stuck at 1,”)  
as well as Unknown. 

Diagnoses: (42 of 64 candidates) 

Fully Explained Failures: 
  [A=G, B=G, C=S0] 
  [A=G, B=S1, C=S0] 
  [A=S0, B=G, C=G] 

          . . . 

Faults Isolated, No Explanation:  
  [A=G, B=G, C=U] 
  [A=G, B=U, C=G] 
  [A=U, B=G, C=G] 

Partially Explained: 
  [A=G, B=U, C=S0] 
  [A=U, B=S1, C=G] 
  [A=S0, B=U, C=G] 

         . . . 

X	

 Y	
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 C	
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in in out 
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Estimate Dynamically with a Bayes Filter 

Localizing a Robot within a Topological Map 

x1

x2: p(x2|x1,a)= .9 

x3: p(x3|x1,a)=.05 

x4: p(x4|x1,a)=.05 

Observations can 

be features such 

as corridor features, 

junction features, etc.

© Source unknown.  All rights reserved. This content is excluded from our Creative Commons 

license. For more information, see http://ocw.mit.edu/fairuse

license. For more information, see http://ocw.mit.edu/fairuse.

An action
is taken

Posterior belief
after an action 

Posterior belief
after sensing  

State Space 
Initial belief 

P(St | o1:t): 
Image by MIT OpenCourseWare.

http://ocw.mit.edu/fairuse
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Outline 

•  Motivation 
•  Set Theoretic View of Propositional Logic 
•  From Propositional Logic to Probabilities 
•  Probabilistic Inference 

11/17/10 copyright Brian Williams, 2005-10 11 

Propositional Logic  
Set Theoretic Semantics 
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Universe of all interpretations (U)      

M(S) 

models of S 
Given sentence S:      
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Set Theoretic Semantics: 
 S ≡ True 

11/17/10 copyright Brian Williams, 2005-10 13 

M(True) ≡ Universe U 

U 

Set Theoretic Semantics: 
 S ≡ not Q 

11/17/10 copyright Brian Williams, 2005-10 14 

M(not Q)                               M(Q) 

M(not Q) ≡ U – M(Q) 

U 
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Set Theoretic Semantics: 
 S ≡ Q and R 
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                    M(R) M(Q)                             M(Q and R) 

M(Q and R) ≡ M(Q) ∩ M(R) 

U 

Set Theoretic Semantics: 
 False 

11/17/10 copyright Brian Williams, 2005-10 16 

M(False) ≡ φ 

U 
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Set Theoretic Semantics: 
 Q or R 
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                        M(R) M(Q)                         M(Q or R) 

M(Q or R) ≡ M(Q) ∪ M(R) 

U 

Set Theoretic Semantics: 
 Q implies R 
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M(R) 

M(Q) 

“Q implies R” is True iff  Q entails R 

U 

M(Q implies R) ≡ M(Q) ⊆ M(R) 
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Set Theoretic Semantics: 
 P implies Q 
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M(not R)                                       

M(R) 

M(Q) 

“Q implies R” is True iff  “Q and not R” is inconsistent 

U 

“Q implies R” is True iff  M(Q and not R) ≡ φ 

Axioms of Sets over Universe U 

1.  A ∪ B ≡ B ∪ A    Commutativity 
2.  A ∪ (B ∪ C) ≡ A ∪ (B ∪ C)  Associativity 
3.  A ∩ (B ∪ C) ≡ A ∩ B ∪ A ∩ C  Distributivity 
4.  ~ (~A) ≡ A     ~ Elimination 
5.  ~ (A ∩ B) ≡ (~ A) ∪ (~ B)   De Morgan’s 
6.  A ∩ (~A) ≡ φ      
7.  A ∩ U ≡ A     Identity 

11/17/10 copyright Brian Williams, 2005-10 20 

⇒  propositional logic axioms follow from these axioms. 
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Outline 

•  Motivation 
•  Set Theoretic View of Propositional Logic 
•  From Propositional Logic to Probabilities 

– Degrees of Belief 
– Discrete Random Variables 

•  Probabilistic Inference 
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Why Do We Need Degrees of Belief? 

11/17/10 copyright Brian Williams, 2005-10 22 

“Given theory Φ, sentence Q ….”  

M(Q) M(Φ) 

“… is never true.”  

M(Q) 

M(Φ) 

“… must be true.”  

entailment unsatisfiable satisfiable 

“… could be true.”  

 M(Q) M(Φ) 

 M(Q) M(Φ) 

Q = “One of the valves to  
Engine A is stuck closed.” 

Q = “All of the components 
in the propulsion system 
are broken in a way never 
seen before.” 
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Degrees of Belief 

€ 

P(Φ) = P(si)
si ∈Φ
∑

11/17/10 copyright Brian Williams, 2005-10 23 

Probability P: Events → [0,1]  
is a measure of the likelihood that an Event is true. 

Sample Space U ≡ {si}: 
•  like interpretations. 
•  mutually exclusive, 
•  collectively exhaustive, 
•  finest grained events. 
•  P defined over si ∈ U. 

Events: 
•  like propositions. 

   Φ, Q, Φ ∧ Q      Q      Φ                           Q ∧ Φ 

U

Like counting weighted models in logic. 

Axioms of Probability 

P: Events → Reals 

1.  For any event A, P(A) ≥ 0. 
2.  P(U) = 1. 
3.  If A ∩ B = φ, then P(A ∪ B) = P(A) + P(B). 

  All conventional probability theory follows. 

11/17/10 copyright Brian Williams, 2005-10 24 
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Conditional Probability:  P(Q | Φ) 

11/17/10 copyright Brian Williams, 2005-10 25 

P(sj | Φ) = P(sj) / P(Φ)   if sj ∈ Φ 
      0    otherwise 

     =   P(sj, Φ) 
                     P(Φ) 

Is Q true given Φ? What is P(“Q given Φ”)? 

     Q      Φ                           Q ∧ Φ 

U

Conditional Probability:  P(Q | Φ) 

11/17/10 copyright Brian Williams, 2005-10 26 

Is Q true given Φ? What is P(“Q given Φ”)? 

     Q      Φ                           Q ∧ Φ 

U
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Degree of Belief 
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“Given theory Φ, sentence Q ….”  

M(Q) M(Φ)

“… is inconsistent.”  

M(Q) 

M(Φ)

“… must be true.”  “… could be true.”  

 M(Q) M(Φ)

P(Q | Φ)= 0 1P(Q, Φ)

P(Φ)

Representing Sample Space  

Using Discrete Random Variables 

11/17/10 copyright Brian Williams, 2005-10 28 

Discrete Random Variable X : 

•  Domain DX  = {x1, x2, … xn}

• mutually exclusive, collectively exhaustive. 

•  P(X):  DX → [0, 1] 

• ∑P(xi) = 1 

Y ∈ {cloudy, 

         sunny} 

.197

.003

Joint Distribution over X1, … Xn :

•  Domain          Π DXi

•  P(X1, … Xn): Π DXi → [0, 1] 

• Notation: P(x1, … xn) ≡ P(X1 = x1 ^ …. ^ Xn = xn)

Z ∈ {raining, dry} 

.20

.60
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Outline 

•  Motivation 
•  Set Theoretic View of Propositional Logic 
•  From Propositional Logic to Probabilities 
•  Probabilistic Inference 

– General Queries and Inference Methods  
– Bayes Net Inference 
– Model-based Diagnosis   (Optional) 
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Types of Probabilistic Queries 

Let X = <S; O> 
•  Belief Assessment 

–  b(Si) = P( Si | o) 

•  Most Probable Explanation (MPE) 
–  s* = arg max P(s | o) for all s ∈ DS 

•  Maximum Aposteriori Hypothesis (MAP) 
–  Given A ⊆ S 

   a* = arg max P(a | o) for all a ∈ DA 

•  Maximum Expected Utility (MEU) 
–  Given decision variables D 

   d* = arg max ∑x u(x)P(x | d ) for all d ∈ DD 
11/17/10 copyright Brian Williams, 2005-10 30 
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Common Inference Methods and Approximations used 
to Answer Queries 

1.  Product (chain) rule. 
2.  Product rule + conditional independence. 
3.  Eliminate variables by marginalizing. 
4.  Exploiting distribution during elimination. 
5.  Conditional probability via elimination. 
6.  Conditional probability via Bayes Rule. 

Approximations: 
1.  Uniform Likelihood Assumption 
2.  Naïve Bayes Assumption 

11/17/10 copyright Brian Williams, 2005-10 31 

Outline 

•  Motivation 
•  Set Theoretic View of Propositional Logic 
•  From Propositional Logic to Probabilities 
•  Probabilistic Inference 

– General Queries and Inference Methods  
– Bayes Net Inference 
– Model-based Diagnosis   (Optional) 

11/17/10 copyright Brian Williams, 2005-10 32 
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Bayesian Network  

Input: Directed acyclic graph: 

•  Nodes denote random variables. 

•  Arcs tails denote parents P of child C. 

•  Conditional probability P(C | P) for each node. 

Output: Answers to queries given earlier. 
11/17/10 copyright Brian Williams, 2005-10 33 

Earthquake Burglary 

Alarm 

JohnCall 

Nap TV 

MaryCall 
 P(M | A, N) 

Conditional Independence  

for a Bayesian Network  

11/17/10 copyright Brian Williams, 2005-10 34 

Earthquake Burglary 

Alarm 

JohnCall 

Nap TV 

MaryCall 
M ⊥ B, E, T, J | N, A 

A variable is conditionally independent of

  its non-descendants, given its parents.

Answer 
P(M | N, A, B, E, T, J) = P(M | N, A)



3/6/00�

18�

Computing Joint Distributions P(X) for 

Bayesian Networks 

11/17/10 copyright Brian Williams, 2005-10 35 

Earthquake Burglary 

Alarm 

JohnCall 

Nap TV 

MaryCall 

Answer 

How do we compute joint distribution P(J,M,T,A,N,B,E)? 

Joint Distribution:   

• Assigns probabilities to  

  every interpretation. 

•  Queries computed from joint. 

Product (Chain) Rule (Method 1) 

P(S=no) 0.80

P(S=light) 0.15

P(S=heavy) 0.05

 Smoking =  no light heavy 
P(C=none) 0.96 0.88 0.60

P(C=benign) 0.03 0.08 0.30

P(C=malig) 0.01 0.04 0.10

      Smoking 
/ Cancer 

none benign malig 

no 0.768 0.024 0.008

light 0.132 0.012 0.006

heavy 0.03 0.015 0.005
11/17/10 copyright Brian Williams, 2005-10 36 

P(C| S) : 
P(S) : 

P(C, S): 

= 0.96 x 0.80 

C (Cancer) ∈ {none, benig, malig} 

S (Smoking) ∈{no, light, heavy} 
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Product Rule + Conditional Independence (Method 2) 

11/17/10 copyright Brian Williams, 2005-10 37 

If A is conditionally independent of C given B  

(i.e., A ⊥ C | B), then: 

Suppose A ⊥ B, C | E and B ⊥ C | E, find P(A, B, C | E): 

Product rule 

Independence 

Product Rule for Bayes Nets  

•  Xi is independent of its 
ancestors, given its parents: 

11/17/10 copyright Brian Williams, 2005-10 38 

Earthquake Burglary 

Alarm 

JohnCall 

Nap TV 

MaryCall 

Product rule 

Independence 
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Computing Probabilistic Queries 

Let X = <S; O> 

Belief Assessment: 

–  b(Si) = P(Si  | e) 

Most Probable Explanation (MPE): 

–  s* = arg max P(s | o) for all s ∈ DS

Maximum Aposteriori Hypothesis (MAP): 

–  Given A ⊆ S 
   a* = arg max P(s | o) for all a ∈ DA

Solution: Some combination of 

1.  Start with joint distribution. 

2.  Eliminate some variables (marginalize).
3.  Condition on observations. 

4.  Find assignment maximizing probability. 

11/17/10 copyright Brian Williams, 2005-10 39 

Eliminate Variables by Marginalizing (Method 3) 

11/17/10 copyright Brian Williams, 2005-10 40 

B ∈ {raining, dry} 

A∈
{cloudy,  

sunny} 

.197

.003

.20

.60

P(A, B) 

.2 .8 P(B) 

.397

.603

P(A) 

Given P(A, B)  

        find P(A) : 
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Exploit Distribution During Elimination (Method 4) 

•  Bayes Net Chain Rule: Xi is independent 
of its ancestors, given its parents. 
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Earthquake Burglary 

Alarm 

JohnCall 

Nap TV 

MaryCall 
Issue: Size of P(X) is exponential in |X| 

Soln:  Move sums inside product. 

Compute Conditional Probability via 

Elimination (Method 5) 
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B ∈ {raining, dry} 

B ∈
{cloudy,  

sunny} 

.197

.003

.20

.60

P(A,B) 

.2 .8 P(B) 

P(A | B) 

.197/.2 

.003/.2 

.20/.8 

.60/.8 

Note: The denominator is constant for all ai in A 

Example: P(A | B)? 
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Computing Probabilistic Queries 

Let X = <S, O> 

Belief Assessment: S = <Si, Y> 
–  b(Si) = P(Si | o)  

Most Probable Explanation (MPE): 
–  s* = arg max P(s | o) for all s ∈ DS 

Maximum Aposteriori Hypothesis (MAP): S = <A, Y> 
–  Given A ⊆ S 

   a* = arg max P(a | o) for all a ∈ DA 
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Outline 

•  Motivation 
•  Set Theoretic View of Propositional Logic 
•  From Propositional Logic to Probabilities 
•  Probabilistic Inference 

– General Queries and Inference Methods  
– Bayes Net Inference 
– Model-based Diagnosis   (Optional) 
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Estimating States of Dynamic Systems  
(next week) 

Given sequence of commands and observations: 
•  Infer current distribution of (most likely) states. 
•  Infer most likely trajectories. 

11/17/10 copyright Brian Williams, 2005-10 45 
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