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Geometric Interpretation

Consider the following simple LP:

max z = x1 + 2x2 = (1, 2) · (x1, x2),

s.t.: x1 ≤ 3,

x1 + x2 ≤ 5,

x1, x2 ≥ 0.

Each inequality constraint defines a
hyperplane, and a feasible half-space.

The intersection of all feasible half
spaces is called the feasible region.

x1

x2

c

The feasible region is a (possibly unbounded) polyhedron.

The feasible region could be the empty set: in such case the problem
is said unfeasible.
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Geometric Interpretation (2)

Consider the following simple LP:

max z = x1 + 2x2 = (1, 2) · (x1, x2),

s.t.: x1 ≤ 3,

x1 + x2 ≤ 5,

x1, x2 ≥ 0.

The “c” vector defines the gradient of
the cost.
Constant-cost loci are planes normal to c .

x1

x2

c

Most often, the optimal point is located at a vertex (corner) of the
feasible region.

If there is a single optimum, it must be a corner of the feasible region.
If there are more than one, two of them must be adjacent corners.
If a corner does not have any adjacent corner that provides a better
solution, then that corner is in fact the optimum.
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A näıve algorithm (1)

Recall the standard form:

min z = cT x
s.t.: Ax = b,

x ≥ 0.

or, really:
min z = cT

y y + cT
s s

s.t.: Ayy + Is = b,
y , s ≥ 0.



Corners of the feasible regions (also called basic feasible solutions)
are solutions of Ax = b (m equations in n unknowns, n > m),
obtained setting n −m variables to zero, and solving for the others
(basic variables), ensuring that all variables are non-negative.

This amounts to:

picking ny inequality constraints, (notice that n = ny + ns = ny + m).
making them active (or binding),
finding the (unique) point where all these hyperplanes meet.
If all the variables are non-negative, this point is in fact a vertex of the
feasible region.
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A näıve algorithm (2)

One could possibly generate all basic feasible solutions, and then
check the value of the cost function, finding the optimum by
enumeration.

Problem: how many candidates?(
n

n −m

)
=

n!

m!(n −m)!
.

for a “small” problem with n = 10, m = 3, we get 120 candidates.
this number grows very quickly, the typical size of realistic LPs is such
that n,m are often in the range of several hundreds, or even thousands.
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Duality polyhedra—graphs

Each vertex has at least n neighbors.

One can draw a graph of neighboring vertices.

Ideally, one could search this graph for the vertex that maximizes the
objective.

Remember that if a corner does not have any adjacent corner that
provides a better solution, then that corner is in fact the optimum.

Use an informed (“greedy”) algorithm to search for the max.
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Idea of the Simplex algorithm

Start at a corner of the feasible region, e.g., the origin.

While there is an adjacent corner that is a better solution, move to
that corner.

For “most” instances, the algorithm terminates (in a finite number of
steps) at an optimal solution.

x1

x2

c
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Finding adjacent vertices

A vertex is identified by n −m variables set to zero. The other
variables can be computed uniquely; these are called basic variables.

Non-basic variables correspond to the ny inequality constraints chosen
to be active.

Two vertices are adjacent if they share all their (non-)basic variables,
except one.

Two vertices are adjacent if they activate the same constraints,
except one.

So: in order to find neighbors to a vertex, remove one of the
(non-)basic variables and add another one.

Make one of the active constraints inactive, and activate a formerly
inactive one.
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A simple example

Consider the usual simple LP, in standard form:

max z = x1 + 2x2 = (1, 2) · (x1, x2),

s.t.: x1 + x3 = 3,

x1 + x2 + x4 = 5,

x1, x2, x3, x4 ≥ 0. x1

x2

c

Choose the origin as the initial corner/vertex. The basic variables coincide with the slack
variables:

x1 = x2 = 0⇒ x3 = 3, x4 = 5⇒ z = 0.

We have two choose a neighbor:

Shall we make x1 or x2 basic?
The cost depends more heavily on x2, so let’s choose this one.
Shall we make x3 or x4 non-basic?
If we increase x2, x4 will get to zero first (in fact, x3 will not change at all), so choose x4.

x1 = x4 = 0⇒ x2 = 5, x3 = 3⇒ z = 10.
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The simplex method: tableau

Consider the LP

max z = 3x1 + 5x2

s.t.: x1 ≤ 4

2x2 ≤ 12

3x1 + 2x2 ≤ 18

x1, x2 ≥ 0.

In standard form:

max z , z − 3x1 − 5x2 = 0

s.t.: x1 + x3 = 4

2x2 + x4 = 12

3x1 + 2x2 + x5 = 18

x1, x2, x3, x4, x5 ≥ 0.

In tableau form:

x1 x2 x3 x4 x5 b

z -3 -5 0
r1 1 1 4
r2 2 1 12
r3 3 2 1 18
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Simplex method by example

As a first corner, lets choose the origin for the original variables, and
compute the corresponding values for the slack variables.

We get easily that x3 = 4, x4 = 12, and x5 = 18.

What is the “best next corner”?
(we need to set to zero one of the non-zero—or basic—variables, and
release one of the variables previously set to zero)

In order to figure out which variable should enter the basis:

Look at the objective function: max z , z − 3x1 − 5x2 = 0.
Increasing x2 is likely to increase z faster... let’s go with that.

To figure out which variable should leave the basis:

Release the constraints that limits the increase in x2 the most.
Constraint 2 limits x2 to 12/2=6, constraint 3 limits x2 to 18/2=9:
eliminate Constraint 2 (i.e., the slack variable x4)
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Simplex method by example

Recalling the tableau form:

choose the column with the
“most negative” entry in row
zero (z).
choose the row that limits the
most the increase in the
corresponding variable.
(smallest positive ratio test.)

Then PIVOT on the
intersection, that is, clear
everything in the yellow-shaded
column, leaving only a 1 in the
orange-shaded cell, by
manipulating the matrix
(without changing the solution
of the equation!)

x1 x2 x3 x4 x5 b

z -3 -5 0

r1 1 1 4

r2 2 1 12

r3 3 2 1 18

x1 x2 x3 x4 x5 b

z -3 0 5/2 30

r1 1 1 4

r2 1 1/2 6

r3 3 0 -1 1 6
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Simplex method by example (2)

Now pick the x1 column, and
the r3 row, and pivot...

Note that now we cannot
further increase z , since x4 and
x5 must be non-negative. We
have the optimal solution: just
read it off the tableau
(remember x4 = x5 = 0), we
get: x1 = 2, x2 = 6, and x3 = 2.

The positive slack x3 indicates
that the first constraint is not
active.

x1 x2 x3 x4 x5 b

z -3 0 5/2 30

r1 1 1 4

r2 1 1/2 6

r3 3 0 -1 1 6

x1 x2 x3 x4 x5 b

z 0 0 3/2 1 36

r1 0 1 1/3 -1/3 2

r2 1 1/2 6

r3 1 0 -1/3 1/3 2

Frazzoli (MIT) Lecture 17: The Simplex Method November 10, 2010 16 / 32



Simplex method: degeneracy

Question: Do the above
steps always result in a
finite termination?

Answer: Almost always yes,
and terminate at the
optimal solution.

In some cases, (very rare in
practice), the simplex
algorithm as stated may
result in infinite cycling.
(two or more neighboring
corners have the same cost)

x1 x2 x3 x4 x5 b

z -8 20

r1 1 2/3 1/3 4

r2 1 -1 0

r3 1 0 -1/3 1/3 2

m

x1 x2 x3 x4 x5 b

z -8 20

r1 -2/3 1 0 1/3 4

r2 -1 1 0

r3 1 -1/3 0 1/3 2

Degeneracy elimination methods

Charnes method: perturb the b vector b → b + [ε, ε2, . . .]T .
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Simplex method: finding a feasible initial solution

The simplex method as presented previously assumed that the origin
is a feasible solution (i.e., it satisfies all constraints).

What if the origin is not feasible? We need to find a feasible solution.

One possible (“big M”) approach is to

Introduce new artificial “constraint violation” variables to the
constraints that are not satisfied at the origin.

Assign a very large penalty to such artificial variables.

Initialize the tableau to make the artificial variable basic (non-zero).

Solve the problem as usual.
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Example: finding an initial feasible solution

Consider the following LP:

min z = 3x1 + 5x2

s.t.: x1 ≤ 4

2x2 ≤ 12

3x1 + 2x2 ≥ 1

x1, x2 ≥ 0.

In standard/tableau form:

max z , z + 3x1 + 5x2 = 0

s.t.: x1 + x3 = 4

2x2 + x4 = 12

3x1 + 2x2 − x5 = 1

x1, x2, x3, x4, x5 ≥ 0.

x1 x2 x3 x4 x5 b

z 3 5 0

r1 1 1 4

r2 2 1 12

r3 3 2 -1 1
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Example, cont’d

Clearly, (x1, x2) = (0, 0) is not a feasible solution (x5 would be −1).
So, modify the problem in this way (M stands for “very large number”):

min z = 3x1 + 5x2 + Mx6

s.t.: x1 ≤ 4

2x2 ≤ 12

3x1 + 2x2 + x6 ≥ 1

x1, x2 ≥ 0.

In standard/tableau form:

max z , z + 3x1 + 5x2 + Mx6 = 0

s.t.: x1 + x3 = 4

2x2 + x4 = 12

3x1 + 2x2 − x5 + x6 = 1

x1, x2, x3, x4, x5, x6 ≥ 0.

x1 x2 x3 x4 x5 x6 b

z 3 5 M 0

r1 1 1 4

r2 2 1 12

r3 3 2 -1 1 1
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Example, cont’d

Since we want the artificial variable(s) to be non-zero—to ensure
feasibility—we initialize the tableau to get 0’s in the artificial variable
columns in the objective function:

x1 x2 x3 x4 x5 x6 b

z 3 -3M 5-2M M -M

r1 1 1 4

r2 2 1 12

r3 3 2 -1 1 1
Now proceed in the usual way—remembering that M stands for “very
large number”

x1 x2 x3 x4 x5 x6 b

z 3 -3M 5-2M M -M

r1 1 1 4

r2 2 1 12

r3 3 2 -1 1 1
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Example, cont’d

Proceeding...
x1 x2 x3 x4 x5 x6 b

z 0 3 1 -1+M -1

r1 0 -2/3 1 1/3 -1/3 4

r2 2 1 12

r3 1 2/3 -1/3 1/3 1/3

We now have all positive elements in the objective row, and can read
the solution:

x1 = 1/3, x2 = 0, x3 = 4, x4 = 12, x5 = 0, x6 = 0

The objective value is z = −1 (which corresponds to z = 1 in the
original minimization problem).
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Simplex method: summary

Convert to standard form
Pivot

choose most negative reduced cost (identifies new basic variable)
choose lowest positive ratio in ratio test
eliminate new basic variable from objective and all rows except lowest
positive ratio in ratio test row

Stop if optimal and read solution. Otherwise, pivot again.
In some (degenerate) cases, the pivot step may not result in a strictly
better solution, even though the solution is not optimal. In such cases
(almost never occurring in practice) the simplex algorithm may not
terminate.
There are methods to avoid infinite cycles.
In the worst case, the simplex method might require visiting all feasible
corners (exponential in n). In practice however, the method works very
well.
Recent advances (interior point methods) can solve LPs in polynomial
time.
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Simplex algorithm: analysis

If there are no degenerate bases (true in random instances of LP),
then it is impossible to return to a basis that has already been visited,
because the objective function must decrease at every step.

If there are degenerate bases, it is possible to cycle, which would
mean that the same series of bases repeats as you pivot, so one could
pivot forever.

Smart rules about disambiguating ties in the lowest cost coefficient
test and minimum positive ratio test can rule out possibility of infinite
cycling

Number of pivot steps ≤ Number of corner point solutions
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Simplex algorithm: analysis

With n variables, each bounded in [0, 1], there are 2n corner point
feasible solutions

Pathological examples force examination of all of these

Each pivot (Gaussian elimination) takes O(mn) time

Simplex algorithm is exponential in worst-case analysis, yet is
remarkably successful in practice

In fact, linear programming can be solved in polynomial time by
interior point methods.

Recently these have become competitive in practice with simplex.
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Introduction to Interior Point methods

Interior point methods solve convex problems of the form

min f0(x)

s.t.: fi (x) ≤ 0, i = 1, . . . ,m

Ax = b,

where the scalar functions f0, f1, . . . , fm are convex and twice
differentiable.

A scalar function f : R→ R is convex if the line between any two
points on the graph of the function lies above (or on) the graph, or
more formally if

λf (x1) + (1− λ)f (x2) ≥ f (λx1 + (1− λ)x2)

for any x1, x2 ∈ R, and λ ∈ [0, 1].
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The barrier interior-point method: main idea

Convert the problem into an minimization with equality constraints by
adding barrier functions in the following way:

min f0(x)− 1

t

m∑
i=1

log(−fi (x))

s.t.: Ax = b,

(?)

Notice that the objective is only defined within the feasible set
defined by the (strict) inequalities fi (x) < 0.

As t → +∞, the objective function is very close to f0, but diverges
very steeply at the boundary of the feasible set.

Idea: solve the problem iteratively, for t = µkt0, with t0 > 0, µ > 1.
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The barrier interior-point method: physical interpretation

Assume for simplicity that there are no equality constraints
(or, alternatively, work directly in the subspace such that Ax = b).

Imagine that each constraints generate an electrical field with
potential − log(−fi (x));

A unit charge at position x will be subject to the (repulsive) forces

Fi (x) =
1

fi (x)
∇fi (x), i = 1, . . . ,m

In addition to the repulsive forces from the constraints, the unit
charge is “pushed” by an additional force

F0(x) = −t∇f0(x)

For each t, the charge will come to rest at some point in the feasible
region.

As t → +∞, the charge will be pushed toward the optimal point.
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The barrier interior-point method

Input: x strictly feasible (i.e., fi (x) < 0, i = 1, . . . ,m); t > 0; µ > 1;
ε > 0.

repeat
t ← µt;
Let x∗ be the solution of (?), computed using x as initial guess;
// e.g., use a gradient descent or Newton method)

x ← x∗;
until t > m/ε ;

The sequence of intermediate optimal solutions (i.e., the x∗’s) forms
what is known as the central path, which is always contained in the
interior of the feasible set.

This algorithm terminates within O(
√

m) time, yielding a solution
that is at most ε-suboptimal.
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The barrier interior-point method: example

x1

x 2

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

2

3

4

5

6

t = 1/8
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The barrier interior-point method: example

x1

x 2
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The barrier interior-point method: example

x1

x 2
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The barrier interior-point method: example
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The barrier interior-point method: example
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The barrier interior-point method: example

x1
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The barrier interior-point method: example

x1
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Frazzoli (MIT) Lecture 17: The Simplex Method November 10, 2010 31 / 32



Summary

Interior point methods are widely applicable to convex optimization
problems
(linear programs are just an example)

(Well-implemented) interior point methods converge in polynomial
time
(in the number of constraints m, and in the tolerance ε)

Convex problems are in general very easy to solve numerically

Open-source software for convex optimization:

SeDuMi: Primal-dual interior-point method
http://sedumi.ie.lehigh.edu/

Yalmip: User-friendly MATLAB interface
http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php

Non-convex optimization is a different story... stay tuned.
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