
16.410/413
Principles of Autonomy and Decision Making

Lecture 16: Mathematical Programming I

Emilio Frazzoli

Aeronautics and Astronautics

Massachusetts Institute of Technology

November 8, 2010

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 1 / 23

Assignments

Readings

Lecture notes

[IOR] Chapters 2, 3, 9.1-3.

[PA] Chapter 6.1-2

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 2 / 23

Shortest Path Problems on Graphs

Input: �V , E , w , s, G �:
V : set of vertices (finite, or in some cases countably infinite).
E ⊆ V × V : set of edges.
w : E → R+, e �→ w(e): a function that associates to each edge a strictly
positive weight (cost, length, time, fuel, prob. of detection).
S , G ⊆ V : respectively, start and end sets. Either S or G , or both,
contain only one element. For a point-to-point problem, both S and G
contain only one element.

Output: �T , W �
T is a weighted tree (graph with no cycles) containing one
minimum-weight path for each pair of start-goal vertices (s, g) ∈ S × G .
W : S × G → R+ is a function that returns, for each pair of start-goal
vertices (s, g) ∈ S × G , the weight W (s, g) of the minimum-weight path
from s to g . The weight of a path is the sum of the weights of its edges.

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 3 / 23

Example: point-to-point shortest path

Find the minimum-weight path from s to g in the graph below:

Solution: a simple path P = �s, a, d , g� (P = �s, b, d , g� would be
acceptable, too), and its weight W (s, g) = 8.

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 4 / 23

Another look at shortest path problems

Cost formulation

The cost of a path P is the sum of the cost of the edges on the path.
Can we express this as a simple mathematical formula?

Label all the edges in the graph with consecutive integers, e.g.,
E = {e1, e2, . . . , enE }.
Define wi = w(ei), for all i ∈ 1, . . . , nE .
Associate with each edge a variable xi , such that:

xi =

�
1 if ei ∈ P,
0 otherwise.

Then, the cost of a path can be written as:

Cost(P) =
nE�

i=1

wi xi .

Notice that the cost is a linear function of the unknowns {xi }

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 5 / 23

Another look at shortest path problems (2)

Constraints formulation

Clearly, if we just wanted to minimize the cost, we would choose
xi = 0, for all i = 1, . . . , nE : this would not be a path connecting the
start and goal vertices (in fact, it is the empty path).
Add these constraints:

There must be an edge in P that goes out of the start vertex.
There must be an edge in P that goes into the goal vertex.
Every (non start/goal) node with an incoming edge must have an
outgoing edge

A neater formulation is obtained by adding a “virtual” edge e0 from
the goal to the start vertex:

x0 = 1, i.e., the virtual edge is always chosen.
Every node with an incoming edge must have an outgoing edge

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 6 / 23

Another look at shortest path problems (3)

Summarizing, what we want to do is:

minimize
nE�

i=1

wi xi

subject to:
�

ei ∈In(s)

xi −
�

ej ∈Out(s)

xj = 0, ∀s ∈ V ;

xi ≥ 0, i = 1, . . . , nE ;

x0 = 1.

It turns out that the solution of this problem yields the shortest path.
(Interestingly, we do not have to set that xi ∈ {0, 1}, this will be
automatically satisfied by the optimal solution!)

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 7 / 23

Another look at shortest path problems (4)

Consider again the following shortest path problem:

min 2x1 + 5x2 + 4x3 + 2x4 + x5 + 5x6 + 3x7 + 2x8

s.t.: x0 − x1 − x2 = 0, (node s);

x1 − x3 − x4 = 0, (node a);

x2 − x5 − x6 = 0, (node b);

x4 − x7 = 0, (node c);

x3 + x5 + x7 − x8 = 0, (node c);

x2 + x5 − x0 = 0, (node g);

xi ≥ 0, i = 1, . . . , 8;

x0 = 1.

Notice: cost function and constraints are affine (“linear”) functions of the
unknowns (x1, . . . , x8).

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 8 / 23

A fire-fighting problem: formulation

Three fires

Fire 1 needs 1000 units of water;

Fire 2 needs 2000 units of water;

Fire 3 needs 3000 units of water.

Two fire-fighting autonomous aircraft

Aircraft A can deliver 1 unit of water
per unit time;

Aircraft B can deliver 2 units of water
per unit time.

Objective

It is desired to extinguish all the fires in
minimum time.

Image by MIT OpenCourseWare.

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 9 / 23

A fire-fighting problem: formulation (2)

Let tA1, tA2, tA3 the the time vehicle A devotes to fire 1, 2, 3,

respectively.

Definte tB1, tB2, tB3 in a similar way, for vehicle B.

Let T be the total time needed to extinguish all three fires.

Optimal value (and optimal strategy) found solving the following

problem:

min T

s.t.: tA1 + 2tB1 = 1000,

tA2 + 2tB2 = 2000,

tA3 + 2tB3 = 3000,

tA1 + tA2 + tA3 ≤ T ,

tB1 + tB2 + tB3 ≤ T ,

tA1, tA2, tA3, tB1, tB2, tB3, T ≥ 0.

(if you are curious about the solution, the optimal T is 2000 time
units)

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 10 / 23

Outline

1

2

3

Mathematical Programming

Linear Programming

Geometric Interpretation

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 11 / 23

Mathematical Programming

Many (most, maybe all?) problems in engineering can be defined as:
A set of constraints defining all candidate (“feasible”) solutions, e.g.,
g(x) ≤ 0.
A cost function defining the “quality” of a solution, e.g., f (x).

The formalization of a problem in these terms is called a
Mathematical Program, or Optimization Problem.
(Notice this has nothing to do with “computer programs!”)

The two problems we just discussed are examples of mathematical
program. Furthermore, both of them are such that both f and g are
affine functions of x . Such problems are called Linear Programs.

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 12 / 23

Outline

1

2

3

Mathematical Programming

Linear Programming
Historical notes
Geometric Interpretation
Reduction to standard form

Geometric Interpretation

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 13 / 23

Linear Programs

The Standard Form of a linear program is an optimization problem
of the form

max	 z = c1x1 + c2x2 + . . . , cnxn,

s.t.:	 a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,

. . .

am1x1 + am2x2 + . . . + amnxn = bm,

x1, x2, . . . , xn ≥ 0.

In a more compact form, the above can be rewritten as:

min z = c T x ,

s.t.: Ax = b,

x ≥ 0.

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 14 / 23

So important for world economy that any new algorithmic development
on LPs is likely to make the front page of major newspapers (e.g. NY
times, Wall Street Journal). Example: 1979 L. Khachyans adaptation of
ellipsoid algorithm, N. Karmarkars new interior-point algorithm.
A remarkably practical and theoretical framework: LPs eat a large chunk
of total scientific computational power expended today. It is crucial for
economic success of most distribution/transport industries and to
manufacturing.
Now becomes suitable for real-time applications, often as the
fundamental tool to solve or approximate much more complex
optimization problem.

Historical Notes

Historical contributor: G. Dantzig (1914-2005), in the late 1940s. (He
was at Stanford University.) Realize many real-world design problems
can be formulated as linear programs and solved efficiently. Finds
algorithm, the Simplex method, to solve LPs. As of 1997, still best
algorithm for most applications.

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 15 / 23

A remarkably practical and theoretical framework: LPs eat a large chunk
of total scientific computational power expended today. It is crucial for
economic success of most distribution/transport industries and to
manufacturing.
Now becomes suitable for real-time applications, often as the
fundamental tool to solve or approximate much more complex
optimization problem.

Historical Notes

Historical contributor: G. Dantzig (1914-2005), in the late 1940s. (He
was at Stanford University.) Realize many real-world design problems
can be formulated as linear programs and solved efficiently. Finds
algorithm, the Simplex method, to solve LPs. As of 1997, still best
algorithm for most applications.
So important for world economy that any new algorithmic development
on LPs is likely to make the front page of major newspapers (e.g. NY
times, Wall Street Journal). Example: 1979 L. Khachyans adaptation of
ellipsoid algorithm, N. Karmarkars new interior-point algorithm.

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 15 / 23

Now becomes suitable for real-time applications, often as the
fundamental tool to solve or approximate much more complex
optimization problem.

Historical Notes

Historical contributor: G. Dantzig (1914-2005), in the late 1940s. (He
was at Stanford University.) Realize many real-world design problems
can be formulated as linear programs and solved efficiently. Finds
algorithm, the Simplex method, to solve LPs. As of 1997, still best
algorithm for most applications.
So important for world economy that any new algorithmic development
on LPs is likely to make the front page of major newspapers (e.g. NY
times, Wall Street Journal). Example: 1979 L. Khachyans adaptation of
ellipsoid algorithm, N. Karmarkars new interior-point algorithm.
A remarkably practical and theoretical framework: LPs eat a large chunk
of total scientific computational power expended today. It is crucial for
economic success of most distribution/transport industries and to
manufacturing.

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 15 / 23

Historical Notes

Historical contributor: G. Dantzig (1914-2005), in the late 1940s. (He
was at Stanford University.) Realize many real-world design problems
can be formulated as linear programs and solved efficiently. Finds
algorithm, the Simplex method, to solve LPs. As of 1997, still best
algorithm for most applications.
So important for world economy that any new algorithmic development
on LPs is likely to make the front page of major newspapers (e.g. NY
times, Wall Street Journal). Example: 1979 L. Khachyans adaptation of
ellipsoid algorithm, N. Karmarkars new interior-point algorithm.
A remarkably practical and theoretical framework: LPs eat a large chunk
of total scientific computational power expended today. It is crucial for
economic success of most distribution/transport industries and to
manufacturing.
Now becomes suitable for real-time applications, often as the

fundamental tool to solve or approximate much more complex

optimization problem.

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 15 / 23

Geometric Interpretation

Consider the following simple LP:

max z = x1 + 2x2 = (1, 2) · (x1, x2),
s.t.: x1 ≤ 3,

x1 + x2 ≤ 5,

x1, x2 ≥ 0.

Each inequality constraint defines a
hyperplane, and a feasible half-space.

The intersection of all feasible half

x1

x2

c

spaces is called the feasible region.

The feasible region is a (possibly unbounded) polyhedron.

The feasible region could be the empty set: in such case the problem
is said unfeasible.

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 16 / 23

Geometric Interpretation (2)

Consider the following simple LP:

max z = x1 + 2x2 = (1, 2) (x1, x2),·

s.t.: x1 ≤ 3,

x1 + x2 ≤ 5,

x1, x2 ≥ 0.

The “c” vector defines the gradient of

the cost.

Constant-cost loci are planes normal to c .

x1

x2

c

Most often, the optimal point is located at a vertex (corner) of the
feasible region.

If there is a single optimum, it must be a corner of the feasible region.
If there are more than one, two of them must be adjacent corners.
If a corner does not have any adjacent corner that provides a better
solution, then that corner is in fact the optimum.

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 17 / 23

� �

� �

Converting a LP into standard form

Convert to maximization problem by flipping the sign of c .
Turn all “technological” inequality constraints into equalities:

less than constraints: introduce slack variables.

n n

aij xj ≤ bi ⇒ aij xj + si = bi , si ≥ 0.
j=1 j=1

greater than constraints: introduce excess variables.

n n

aij xj ≥ bi ⇒ aij xj − ei = bi , ei ≥ 0.
j=1 j=1

Flip the sign of non-positive variables: xi ≤ 0 ⇒ xi
� = −xi ≥ 0.

If a variable does not have sign constraints, use the following trick:

xi ⇒ xi
� − xi

��, xi
�, xi

�� ≥ 0.

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 18 / 23

Outline

1

2

3

Mathematical Programming

Linear Programming

Geometric Interpretation
Geometric Interpretation

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 19 / 23

Geometric Interpretation

Consider the following simple LP:

max z = x1 + 2x2 = (1, 2) · (x1, x2),
s.t.: x1 ≤ 3,

x1 + x2 ≤ 5,

x1, x2 ≥ 0.

Each inequality constraint defines a
hyperplane, and a feasible half-space.

The intersection of all feasible half

x1

x2

c

spaces is called the feasible region.

The feasible region is a (possibly unbounded) polyhedron.

The feasible region could be the empty set: in such case the problem
is said unfeasible.

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 20 / 23

Geometric Interpretation (2)

Consider the following simple LP:

max z = x1 + 2x2 = (1, 2) (x1, x2),·

s.t.: x1 ≤ 3,

x1 + x2 ≤ 5,

x1, x2 ≥ 0.

The “c” vector defines the gradient of

the cost.

Constant-cost loci are planes normal to c .

x1

x2

c

Most often, the optimal point is located at a vertex (corner) of the
feasible region.

If there is a single optimum, it must be a corner of the feasible region.
If there are more than one, two of them must be adjacent corners.
If a corner does not have any adjacent corner that provides a better
solution, then that corner is in fact the optimum.

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 21 / 23

⎛⎝or, really:
min z = cTy y + cTs s
s.t.: Ayy + Is = b,

y , s ≥ 0.

⎞⎠

This amounts to:

picking ny inequality constraints, (notice that n = ny + ns = ny +m).
making them active (or binding),
finding the (unique) point where all these hyperplanes meet.
If all the variables are non-negative, this point is in fact a vertex of the
feasible region.

A näıve algorithm (1)

Recall the standard form:

Tmin z = c x
s.t.: Ax = b,

x ≥ 0.

Corners of the feasible regions (also called basic feasible solutions)
are solutions of Ax = b (m equations in n unknowns, n > m),
obtained setting n − m variables to zero, and solving for the others
(basic variables), ensuring that all variables are non-negative.

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 22 / 23

A näıve algorithm (1)

Recall the standard form: ⎛ ⎞
min z = cT x min z = cy

T y + cs
T s

s.t.: Ax = b, ⎝or, really: s.t.: Ay y + Is = b, ⎠

x ≥ 0. y , s ≥ 0.

Corners of the feasible regions (also called basic feasible solutions)
are solutions of Ax = b (m equations in n unknowns, n > m),
obtained setting n − m variables to zero, and solving for the others
(basic variables), ensuring that all variables are non-negative.
This amounts to:

picking ny inequality constraints, (notice that n = ny + ns = ny + m).
making them active (or binding),
finding the (unique) point where all these hyperplanes meet.
If all the variables are non-negative, this point is in fact a vertex of the
feasible region.

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 22 / 23

� �

A näıve algorithm (2)

One could possibly generate all basic feasible solutions, and then

check the value of the cost function, finding the optimum by

enumeration.

Problem: how many candidates?

n n!
= .

n − m m!(n − m)!

for a “small” problem with n = 10, m = 3, we get 120 candidates.
this number grows very quickly, the typical size of realistic LPs is such
that n,m are often in the range of several hundreds, or even thousands.

Much more clever algorithms exist: stay tuned.

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 23 / 23

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .

http://ocw.mit.edu/terms
http://ocw.mit.edu

	Assignments
	Shortest Path Problems on Graphs
	Resource allocation problem

	Mathematical Programming
	Linear Programming
	Historical notes
	Geometric Interpretation
	Reduction to standard form

	Geometric Interpretation
	Geometric Interpretation

