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Shortest Path Problems on Graphs


Input: �V , E , w , s, G �: 
V : set of vertices (finite, or in some cases countably infinite). 
E ⊆ V × V : set of edges. 
w : E → R+, e �→ w(e): a function that associates to each edge a strictly 
positive weight (cost, length, time, fuel, prob. of detection). 
S , G ⊆ V : respectively, start and end sets. Either S or G , or both, 
contain only one element. For a point-to-point problem, both S and G 
contain only one element. 

Output: �T , W � 
T is a weighted tree (graph with no cycles) containing one 
minimum-weight path for each pair of start-goal vertices (s, g) ∈ S × G . 
W : S × G → R+ is a function that returns, for each pair of start-goal 
vertices (s, g) ∈ S × G , the weight W (s, g ) of the minimum-weight path 
from s to g . The weight of a path is the sum of the weights of its edges. 
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Example: point-to-point shortest path


Find the minimum-weight path from s to g in the graph below: 

Solution: a simple path P = �s, a, d , g� (P = �s, b, d , g� would be 
acceptable, too), and its weight W (s, g) = 8. 

E. Frazzoli (MIT) L07: Mathematical Programming I November 8, 2010 4 / 23 



Another look at shortest path problems


Cost formulation 

The cost of a path P is the sum of the cost of the edges on the path. 
Can we express this as a simple mathematical formula? 

Label all the edges in the graph with consecutive integers, e.g., 
E = {e1, e2, . . . , enE }. 
Define wi = w(ei ), for all i ∈ 1, . . . , nE . 
Associate with each edge a variable xi , such that: 

xi = 

� 
1 if ei ∈ P, 
0 otherwise. 

Then, the cost of a path can be written as: 

Cost(P) = 
nE� 

i=1 

wi xi . 

Notice that the cost is a linear function of the unknowns {xi } 
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Another look at shortest path problems (2)


Constraints formulation 

Clearly, if we just wanted to minimize the cost, we would choose 
xi = 0, for all i = 1, . . . , nE : this would not be a path connecting the 
start and goal vertices (in fact, it is the empty path). 
Add these constraints: 

There must be an edge in P that goes out of the start vertex. 
There must be an edge in P that goes into the goal vertex. 
Every (non start/goal) node with an incoming edge must have an 
outgoing edge 

A neater formulation is obtained by adding a “virtual” edge e0 from 
the goal to the start vertex: 

x0 = 1, i.e., the virtual edge is always chosen. 
Every node with an incoming edge must have an outgoing edge 
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Another look at shortest path problems (3)


Summarizing, what we want to do is: 

minimize 
nE� 

i=1 

wi xi 

subject to: 
� 

ei ∈In(s) 

xi − 
� 

ej ∈Out(s) 

xj = 0, ∀s ∈ V ; 

xi ≥ 0, i = 1, . . . , nE ; 

x0 = 1. 

It turns out that the solution of this problem yields the shortest path. 
(Interestingly, we do not have to set that xi ∈ {0, 1}, this will be 
automatically satisfied by the optimal solution!) 
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Another look at shortest path problems (4)       

Consider again the following shortest path problem: 

min 2x1 + 5x2 + 4x3 + 2x4 + x5 + 5x6 + 3x7 + 2x8 

s.t.: x0 − x1 − x2 = 0, (node s); 

x1 − x3 − x4 = 0, (node a); 

x2 − x5 − x6 = 0, (node b); 

x4 − x7 = 0, (node c); 

x3 + x5 + x7 − x8 = 0, (node c); 

x2 + x5 − x0 = 0, (node g); 

xi ≥ 0, i = 1, . . . , 8; 

x0 = 1. 

Notice: cost function and constraints are affine (“linear”) functions of the 
unknowns (x1, . . . , x8). 
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A fire-fighting problem: formulation   


Three fires 

Fire 1 needs 1000 units of water; 

Fire 2 needs 2000 units of water; 

Fire 3 needs 3000 units of water. 

Two fire-fighting autonomous aircraft 

Aircraft A can deliver 1 unit of water 
per unit time; 

Aircraft B can deliver 2 units of water 
per unit time. 

Objective 

It is desired to extinguish all the fires in 
minimum time. 

Image by MIT OpenCourseWare. 
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A fire-fighting problem: formulation (2) 

Let tA1, tA2, tA3 the the time vehicle A devotes to fire 1, 2, 3,

respectively.

Definte tB1, tB2, tB3 in a similar way, for vehicle B.

Let T be the total time needed to extinguish all three fires.

Optimal value (and optimal strategy) found solving the following

problem:


min T 

s.t.: tA1 + 2tB1 = 1000, 

tA2 + 2tB2 = 2000, 

tA3 + 2tB3 = 3000, 

tA1 + tA2 + tA3 ≤ T , 

tB1 + tB2 + tB3 ≤ T , 

tA1, tA2, tA3, tB1, tB2, tB3, T ≥ 0. 

(if you are curious about the solution, the optimal T is 2000 time 
units) 
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Mathematical Programming


Many (most, maybe all?) problems in engineering can be defined as: 
A set of constraints defining all candidate (“feasible”) solutions, e.g., 
g(x) ≤ 0. 
A cost function defining the “quality” of a solution, e.g., f (x). 

The formalization of a problem in these terms is called a 
Mathematical Program, or Optimization Problem. 
(Notice this has nothing to do with “computer programs!”) 

The two problems we just discussed are examples of mathematical 
program. Furthermore, both of them are such that both f and g are 
affine functions of x . Such problems are called Linear Programs. 
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Linear Programs


The Standard Form of a linear program is an optimization problem 
of the form 

max	 z = c1x1 + c2x2 + . . . , cnxn, 

s.t.:	 a11x1 + a12x2 + . . . + a1nxn = b1, 

a21x1 + a22x2 + . . . + a2nxn = b2, 

. . . 

am1x1 + am2x2 + . . . + amnxn = bm, 

x1, x2, . . . , xn ≥ 0. 

In a more compact form, the above can be rewritten as: 

min z = c T x , 

s.t.: Ax = b, 

x ≥ 0. 
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So important for world economy that any new algorithmic development
on LPs is likely to make the front page of major newspapers (e.g. NY
times, Wall Street Journal). Example: 1979 L. Khachyans adaptation of
ellipsoid algorithm, N. Karmarkars new interior-point algorithm.
A remarkably practical and theoretical framework: LPs eat a large chunk
of total scientific computational power expended today. It is crucial for
economic success of most distribution/transport industries and to
manufacturing.
Now becomes suitable for real-time applications, often as the
fundamental tool to solve or approximate much more complex
optimization problem.

Historical Notes


Historical contributor: G. Dantzig (1914-2005), in the late 1940s. (He 
was at Stanford University.) Realize many real-world design problems 
can be formulated as linear programs and solved efficiently. Finds 
algorithm, the Simplex method, to solve LPs. As of 1997, still best 
algorithm for most applications. 
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Geometric Interpretation


Consider the following simple LP:


max z = x1 + 2x2 = (1, 2) · (x1, x2), 
s.t.: x1 ≤ 3, 

x1 + x2 ≤ 5, 

x1, x2 ≥ 0. 

Each inequality constraint defines a 
hyperplane, and a feasible half-space. 

The intersection of all feasible half 

x1

x2

c

spaces is called the feasible region. 

The feasible region is a (possibly unbounded) polyhedron. 

The feasible region could be the empty set: in such case the problem 
is said unfeasible. 
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Geometric Interpretation (2)  


Consider the following simple LP: 

max z = x1 + 2x2 = (1, 2) (x1, x2),·

s.t.: x1 ≤ 3,


x1 + x2 ≤ 5, 

x1, x2 ≥ 0. 

The “c” vector defines the gradient of

the cost.

Constant-cost loci are planes normal to c . 

x1

x2

c

Most often, the optimal point is located at a vertex (corner) of the 
feasible region. 

If there is a single optimum, it must be a corner of the feasible region. 
If there are more than one, two of them must be adjacent corners. 
If a corner does not have any adjacent corner that provides a better 
solution, then that corner is in fact the optimum. 
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� � 

� � 

Converting a LP into standard form 

Convert to maximization problem by flipping the sign of c . 
Turn all “technological” inequality constraints into equalities: 

less than constraints: introduce slack variables. 

n n

aij xj ≤ bi ⇒ aij xj + si = bi , si ≥ 0. 
j=1 j=1 

greater than constraints: introduce excess variables. 

n n

aij xj ≥ bi ⇒ aij xj − ei = bi , ei ≥ 0. 
j=1 j=1 

Flip the sign of non-positive variables: xi ≤ 0 ⇒ xi
� = −xi ≥ 0. 

If a variable does not have sign constraints, use the following trick: 

xi ⇒ xi
� − xi

��, xi
�, xi

�� ≥ 0. 
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Geometric Interpretation (2)
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⎛⎝or, really:
min z = cTy y + cTs s
s.t.: Ayy + Is = b,

y , s ≥ 0.

⎞⎠

This amounts to:

picking ny inequality constraints, (notice that n = ny + ns = ny +m).
making them active (or binding),
finding the (unique) point where all these hyperplanes meet.
If all the variables are non-negative, this point is in fact a vertex of the
feasible region.

A näıve algorithm (1) 

Recall the standard form: 

Tmin z = c x 
s.t.: Ax = b, 

x ≥ 0. 

Corners of the feasible regions (also called basic feasible solutions) 
are solutions of Ax = b (m equations in n unknowns, n > m), 
obtained setting n − m variables to zero, and solving for the others 
(basic variables), ensuring that all variables are non-negative. 
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� � 

A näıve algorithm (2)


One could possibly generate all basic feasible solutions, and then

check the value of the cost function, finding the optimum by

enumeration.


Problem: how many candidates? 

n n! 
= . 

n − m m!(n − m)! 

for a “small” problem with n = 10, m = 3, we get 120 candidates. 
this number grows very quickly, the typical size of realistic LPs is such 
that n,m are often in the range of several hundreds, or even thousands. 

Much more clever algorithms exist: stay tuned. 
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