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A step back

@ We have seen how we can discretize collision-free trajectories into a
finite graph.

@ Searching for a collision-free path can be converted into a graph search.

@ Hence, we can solve such problems using the graph search algorithms
discussed in Lectures 2 and 3 (Breadth-First Search, Depth-First Search,
etc.).

E. Frazzoli (MIT) L05; Informed Search November 1, 2010 3 /46



A step back

@ We have seen how we can discretize collision-free trajectories into a
finite graph.

@ Searching for a collision-free path can be converted into a graph search.

@ Hence, we can solve such problems using the graph search algorithms
discussed in Lectures 2 and 3 (Breadth-First Search, Depth-First Search,
etc.).

@ However, roadmaps are not just “generic’ graphs.
e Some paths are much more preferable with respect to others
(e.g., shorter, faster, less costly in terms of fuel/tolls/fees, more stealthy,
etc.).
e Distances have a physical meaning.
o Good guesses for distances can be made, even without knowing optimal
paths.
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A step back

@ We have seen how we can discretize collision-free trajectories into a
finite graph.

@ Searching for a collision-free path can be converted into a graph search.

@ Hence, we can solve such problems using the graph search algorithms
discussed in Lectures 2 and 3 (Breadth-First Search, Depth-First Search,
etc.).

@ However, roadmaps are not just “generic’ graphs.
e Some paths are much more preferable with respect to others
(e.g., shorter, faster, less costly in terms of fuel/tolls/fees, more stealthy,
etc.).
e Distances have a physical meaning.
o Good guesses for distances can be made, even without knowing optimal
paths.

Can we utilize this information to find efficient paths, efficiently? )
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Shortest Path Problems on Graphs

Input: (V, E, w, start, goal):

e V: (finite) set of vertices.
e E C V x V: (finite) set of edges.

@ w:E — R.p,e— w(e): afunction that associates to each edge a
strictly positive weight (cost, length, time, fuel, prob. of detection).

start,goal € V: respectively, start and end vertices.

P is a path (starting in start and ending in goal, such that its
weight w(P) is minimal among all such paths.

The weight of a path is the sum of the weights of its edges.
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Example: point-to-point shortest path

Find the minimum-weight path from s to g in the graph below:

Solution: a simple path P = (g, d, a,s) (P = (g, d, b,s) would be
acceptable, too), with weight w(P) = 8.
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Uniform-Cost Search

Q < (start) ; // Initialize the queue with the starting node

while Q is not empty do
Pick (and remove) the path P with lowest cost g = w(P) from the queue Q ;

if head(P) = goal then return P ; // Reached the goal
foreach vertex v such that (head(P),v) € E, do //for all neighbors

L add (v, P) to the queue Q ; // Add expanded paths
return FAILURE ; // Nothing left to consider.

E. Frazzoli (MIT) L05; Informed Search November 1, 2010 6 / 46



Uniform-Cost Search

Q < (start) ; // Initialize the queue with the starting node

while Q is not empty do
Pick (and remove) the path P with lowest cost g = w(P) from the queue Q ;
if head(P) = goal then return P ; // Reached the goal
foreach vertex v such that (head(P),v) € E, do //for all neighbors
L add (v, P) to the queue Q ; // Add expanded paths

return FAILURE ; // Nothing left to consider.

Note: no visited list! J
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Example of Uniform-Cost Search: Step 1
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Example of Uniform-Cost Search: Step 2

Q:| (a,s) | 2
(b,s) | 5
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Example of Uniform-Cost Search: Step 3

| state | cost |

| (c,a,s) | 4
@: (b, s) 5
(d,a,s) | 6
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Example of Uniform-Cost Search: Step 4

[ state [ cost | 2 3
@ <c</l,3:>s> <55 <> : @L

(d,c,a,s) 7 2 >
start— >
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Example of Uniform-Cost Search: Step 5

[ state [ cost | 2 3
@ <c</fl;?;,s>s> ? <}> : @L

(g,b,s) | 10 2 y
start— >
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Example of Uniform-Cost Search: Step 6

[ state [ cost | 2 3
AT, g% 00

(g,b,s) | 10 2 y
start— >
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Example of Uniform-Cost Search: Step 7

| state [ cost | > 3
0. (g,d,a,s) 8 4 @_2,
[ (g, d,c,a,s) | 9

(g,bs) | 10 2 y
start— >
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Remarks on UCS

@ UCS is an extension of BFS to the weighted-graph case
(UCS = BFS if all edges have the same cost).

@ UCS is complete and optimal
(assuming costs bounded away from zero).

@ UCS is guided by path cost rather than path depth, so it may get in
trouble if some edge costs are very small.

o Worst-case time and space complexity O (b"V'/€), where W* is the
optimal cost, and ¢ is such that all edge weights are no smaller than e.
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Greedy (Best-First) Search

@ UCS explores paths in all directions, with no bias towards the goal
state.

@ What if we try to get “closer” to the goal?

@ We need a measure of distance to the goal. It would be ideal to use
the length of the shortest path... but this is exactly what we are
trying to compute!

@ We can estimate the distance to the goal through a “heuristic
function,” h: V — R>q. In motion planning, we can use, e.g., the
Euclidean distance to the goal (as the crow flies).

@ A reasonable strategy is to always try to move in such a way to
minimize the estimated distance to the goal: this is the basic idea of
the greedy (best-first) search.
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Greedy (Best-First) Search

Q < (start); // Initialize the queue with the starting node
while Q is not empty do
Pick the path P with minimum heuristic cost h(head(P)) from the queue Q;
if head(P) = goal then return P ; // We have reached the goal
foreach vertex v such that (head(P),v) € E, do
| add (v, P) to the queue Q;

return FAILURE ; // Nothing left to consider.
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Example of Greedy (Best-First) Search: Step 1

Q: a\ 4N 2 (e
[y [ 0 [10] N\
2
start @5@
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Example of Greedy (Best-First) Search: Step 2

’ path ‘ cost‘ h ‘

Q:| (a,s)
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Example of Greedy (Best-First) Search: Step 3
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Example of Greedy (Best-First) Search: Step 4

] path \ cost \ h ‘
. (b,s) 5 |3
@ (d,a,s) 6 |4
(d,c,a,s) 7 | 4
start
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Example of Greedy (Best-First) Search: step 5

] path \ cost \ h ‘
o: | (g.bis) [ 10 [0
| (d,a,s) 6 |4
(d,c,a,s) 7 | 4
start
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Remarks on Greedy (Best-First) Search

o Greedy (Best-First) search is similar in spirit to Depth-First Search: it
keeps exploring until it has to back up due to a dead end.

@ Greedy search is not complete and not optimal, but is often fast and
efficient, depending on the heuristic function h.

@ Worst-case time and space complexity O(b™).
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Outline

1 Informed search methods: Introduction

@ Optimal search
o A search

3 Dynamic Programming
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The A search algorithm

The problems

@ Uniform-Cost search is optimal, but may wander around a lot before finding
the goal.

@ Greedy search is not optimal, but in some cases it is efficient, as it is heavily
biased towards moving towards the goal. The non-optimality comes from
neglecting “the past.”
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The A search algorithm

The problems

@ Uniform-Cost search is optimal, but may wander around a lot before finding
the goal.

o Greedy search is not optimal, but in some cases it is efficient, as it is heavily
biased towards moving towards the goal. The non-optimality comes from
neglecting “the past.”

o Keep track both of the cost of the partial path to get to a vertex, say g(v),
and of the heuristic function estimating the cost to reach the goal from a
vertex, h(v).

@ In other words, choose as a “ranking” function the sum of the two costs:

f(v) = g(v) + h(v)

o g(v): cost-to-come (from the start to v).
o h(v): cost-to-go estimate (from v to the goal).
o f(v): estimated cost of the path (from the start to v and then to the goal).
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A Search

Q < (start); // Initialize the queue with the starting node
while Q is not empty do
Pick the path P with minimum estimated cost f(P) = g(P) + h(head(P))
from the queue Q;
if head(P) = goal then return P ; // We have reached the goal
foreach vertex v such that (head(P),v) € E, do
| add (v, P) to the queue Q;

return FAILURE ; // Nothing left to consider.
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Example of A Search: Step 1

Q: a\ 4N 2 (e
[ (s) [0[10]10] SN
2
start @5@
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Example of A Search: step 2

‘path‘g‘h‘f‘
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Example of A Search: step 3

‘ path ‘ g ‘ h
Q (c,a,s) |4|1] 5 . 2
(b,s) |53/ 8
(d,a,s) | 6|5 |11

o
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Example of A Search: step 4

’ path ‘g‘h
o (s [5]3]8 D 4@ 2 7
[ {d,a,s) 65|11 2 &, N
(d,c,a,s) | 7|5 12 2
start \\1}/ > @
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Example of A Search: step 5

h
Q (g,b,s) |10 010 a4 @ 2 (B
(d,a,s) | 6 |5]11 2/ Q/S o
(d,c,a,s) | 7 | 5] 12 2
5
start \\1}/ \é’/
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Remarks on the A search algorithm

@ A search is similar to UCS, with a bias induced by the heuristic h. If
h=0, A= UCS.

@ The A search is complete, but is not optimal. What is wrong?
(Recall that if h =0 then A = UCS, and hence optimal...)

@ Choose an admissible heuristic, i.e., such that h(v) < h*(v).
(The star means “optimal.”)

@ The A search with an admissible heuristic is called A*, which is
guaranteed to be optimal.
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Example of A* Search: step 1
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Example of A* Search: step 2

| path [g|h|f]
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Example of A* Search: step 3

‘ path ‘ g ‘ h ‘ f ‘ 2
Q <C,3,S> 41115 4 . 2
(d,a,s) | 6| 1|7 U
(b,s) | 5|38 2 /
(s 5
start v
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Example of A* Search: Step 4

2

’ path ‘ g ‘ h ‘ f ‘ A‘\
Q: (d,a,s) 6|17 a\ 4 A 2 e
| (bss) [5][3]8 @/ &\
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Example of A* Search: step 5

2

] path ‘g‘h‘f‘ A‘\

Q (g,d,a,s) | 8|08 N YD 2 @

(b,s) |5[3]8 oo @
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startﬂ > %
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Proof (sketch) of A* optimality

By contradiction

@ Assume that A* returns P, but w(P) > w*
(w* is the optimal path weight/cost).

Find the first unexpanded node on the optimal path P*, call it n.
f(n) > w(P), otherwise we would have expanded n.
f(n) = g(n) + h(n) by definition

= g*(n) + h(n) because n is on the optimal path.

< g*(n) + h*(n) because h is admissible

= *(n) = W* because h is admissible

Hence W* > f(n) > W, which is a contradiction.

e 6 6 6 o o o
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Admissible heuristics

How to find an admissible heuristic? i.e., a heuristic that never
overestimates the cost-to-go.
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Admissible heuristics

How to find an admissible heuristic? i.e., a heuristic that never
overestimates the cost-to-go.

Examples of admissible heuristics

@ h(v) = 0: this always works! However, it is not very useful, and in
this case A* = UCS.

e h(v) = distance(v, g) when the vertices of the graphs are physical
locations.

e h(v) =|v — gllp. when the vertices of the graph are points in a
normed vector space.
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Admissible heuristics

How to find an admissible heuristic? i.e., a heuristic that never
overestimates the cost-to-go.

v

Examples of admissible heuristics

@ h(v) = 0: this always works! However, it is not very useful, and in
this case A* = UCS.

e h(v) = distance(v, g) when the vertices of the graphs are physical
locations.

e h(v) =|v — gllp. when the vertices of the graph are points in a
normed vector space.

A general method

| A\

Choose h as the optimal cost-to-go function for a relaxed problem, that is
easy to compute.
(Relaxed problem: ignore some of the constraints in the original problem)

v
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Admissible heuristics for the 8-puzzle

Initial state:

Which of the following are admissible heuristics?

e h=20
e h=1

w

Goal state:

@ h = number of tiles in the wrong positon

@ h = sum of (Manhattan) distance between tiles and their goal

position.

(€5
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Admissible heuristics for the 8-puzzle

1 5
Initial state: 21613
71418

Which of the following are admissible heuristics?

e h=0 YES, always good
e h=1

Goal state:

@ h = number of tiles in the wrong positon

@ h = sum of (Manhattan) distance between tiles and their goal

position.

(€5
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Admissible heuristics for the 8-puzzle

1 5 11213
Initial state: 21613 Goal state: 41516
71418 718

Which of the following are admissible heuristics?

e h=0 YES, always good
@ h=1 NO, not valid in goal state

@ h = number of tiles in the wrong positon YES, “teleport” each tile
to the goal in one move

@ h = sum of (Manhattan) distance between tiles and their goal
position.
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Admissible heuristics for the 8-puzzle

1 5 11213
Initial state: 21613 Goal state: 41516
71418 718

Which of the following are admissible heuristics?

e h=0 YES, always good
@ h=1 NO, not valid in goal state

@ h = number of tiles in the wrong positon YES, “teleport” each tile
to the goal in one move

@ h = sum of (Manhattan) distance between tiles and their goal
position. YES, move each tile to the goal ignoring other tiles.
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A partial order of heuristic functions

Some heuristics are better than others

@ h =0 is an admissible heuristic, but is not very useful.

@ h = h* is also an admissible heuristic, and it the “best” possible one
(it give us the optimal path directly, no searches/backtracking)

Partial order

@ We say that h; dominates hy if hi(v) > ha(v) for all vertices v.

@ Clearly, h* dominates all admissible heuristics, and 0 is dominated by
all admissible heuristics.

| \

Choosing the right heuristic

In general, we want a heuristic that is as close to h* as possible. However,
such a heuristic may be too complicated to compute. There is a tradeoff
between complexity of computing h and the complexity of the search.

v
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Consistent heuristics

@ An additional useful property for A* heuristics is called consistency

@ A heuristic h: X — R>q is said consistent if

h(u) <w(e=(u,v))+ h(v), ¥Y(uv)e€E.

@ In other words, a consistent heuristics satisfies a triangle inequality.

o If his a consistent heuristics, then f = g + h is non-decreasing along
paths:

f(v) = g(v) + h(v) = g(u) + w(u, v) + h(v) > f(uv).

@ Hence, the values of f on the sequence of nodes expanded by A* is
non-decreasing: the first path found to a node is also the optimal
path = no need to compare costs!
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Outline

1 Informed search methods: Introduction
2 Optimal search

@ Dynamic Programming
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Dynamic Programming

The optimality principle

Let P=(s,...,v,...g) be an optimal path (from s to g). Then, for any
v € P, the sub-path S = (v, ..., g) is itself an optimal path (from v to g).

Using the optimality principle
o Essentially, optimal paths are made of optimal paths. Hence, we can

construct long complex optimal paths by putting together short
optimal paths, which can be easily computed.

@ Fundamental formula in dynamic programming:

()= min_lw( (u.v))+ 5 (1],

@ Typically, it is convenient to build optimal paths working backwards
from the goal.

v
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A special case of dynamic programming

Dijkstra’s algorithm

Q@ < V {All states get in the queue}.
for all v € V, h(v) = (cc if v € Vg, 0 otherwise)
while Q # () do
u < argmin,cq h(v) {Pick minimum-cost vertex in @}
forall e=(v,u) € E do
h(v) < min{h(v), h(u) + w(e)} {Relax costs}

Recovering optimal paths

@ The output of Dijkstra's algorithm is in fact the optimal cost-to-go
function, h*.

@ From any vertex, we can compute the optimal outgoing edge via the
dynamic programming equation.
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Dijkstra’'s algorithm: example

"3 S
OISO

I ¢

3K

K \ K

GF

AT

@ Dynamic programming requires the computation of all optimal
sub-paths, from all possible initial states (curse of dimensionality).

@ On-line computation is easy via state feedback: convert an open-loop
problem into a feedback problem. This can be useful in real-world
applications, where the state is subject to errors.
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Concluding remarks

@ A* optimal and very effective in many situations. However, in some
applications, it requires too much memory. Some possible approaches
to address this problem include

e Branch and bound
o Conflict-directed A*
o Anytime A*

@ Other search algorithms

e D* and D*-lite: versions of A* for uncertain graphs.

o Hill search: move to the neighboring state with the lowest cost.

Hill search with backup: move to the neighboring state with the lowest
cost, keep track of unexplored states.

o Beam algorithms: keep the best k partial paths in the queue.
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