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A step back

We have seen how we can discretize collision-free trajectories into a
finite graph.
Searching for a collision-free path can be converted into a graph search.
Hence, we can solve such problems using the graph search algorithms
discussed in Lectures 2 and 3 (Breadth-First Search, Depth-First Search,
etc.).

However, roadmaps are not just “generic” graphs.

Some paths are much more preferable with respect to others
(e.g., shorter, faster, less costly in terms of fuel/tolls/fees, more stealthy,
etc.).
Distances have a physical meaning.
Good guesses for distances can be made, even without knowing optimal
paths.

Can we utilize this information to find efficient paths, efficiently?
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Shortest Path Problems on Graphs

Input: 〈V ,E ,w , start, goal〉:
V : (finite) set of vertices.

E ⊆ V × V : (finite) set of edges.

w : E → R>0, e 7→ w(e): a function that associates to each edge a
strictly positive weight (cost, length, time, fuel, prob. of detection).

start, goal ∈ V : respectively, start and end vertices.

Output: 〈P〉
P is a path (starting in start and ending in goal, such that its
weight w(P) is minimal among all such paths.

The weight of a path is the sum of the weights of its edges.
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Example: point-to-point shortest path

Find the minimum-weight path from s to g in the graph below:

Solution: a simple path P = 〈g , d , a, s〉 (P = 〈g , d , b, s〉 would be
acceptable, too), with weight w(P) = 8.
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Uniform-Cost Search

Q ← 〈start〉 ; // Initialize the queue with the starting node

while Q is not empty do
Pick (and remove) the path P with lowest cost g = w(P) from the queue Q ;
if head(P) = goal then return P ; // Reached the goal

foreach vertex v such that (head(P), v) ∈ E, do //for all neighbors
add 〈v ,P〉 to the queue Q ; // Add expanded paths

return FAILURE ; // Nothing left to consider.

Note: no visited list!
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Example of Uniform-Cost Search: Step 1

Q:
path cost

〈s〉 0
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Example of Uniform-Cost Search: Step 2

Q:

path cost

〈a, s〉 2

〈b, s〉 5

sstart
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Example of Uniform-Cost Search: Step 3

Q:

state cost

〈c , a, s〉 4

〈b, s〉 5

〈d , a, s〉 6

sstart

a
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d g
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Example of Uniform-Cost Search: Step 4

Q:

state cost

〈b, s〉 5

〈d , a, s〉 6

〈d , c , a, s〉 7

sstart
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Example of Uniform-Cost Search: Step 5

Q:

state cost

〈d , a, s〉 6

〈d , c , a, s〉 7

〈g , b, s〉 10
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Example of Uniform-Cost Search: Step 6

Q:

state cost

〈d , c , a, s〉 7

〈g , d , a, s〉 8

〈g , b, s〉 10
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Example of Uniform-Cost Search: Step 7

Q:

state cost

〈g , d , a, s〉 8

〈g , d , c , a, s〉 9

〈g , b, s〉 10

sstart
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b
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d g
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Remarks on UCS

UCS is an extension of BFS to the weighted-graph case
(UCS = BFS if all edges have the same cost).

UCS is complete and optimal
(assuming costs bounded away from zero).

UCS is guided by path cost rather than path depth, so it may get in
trouble if some edge costs are very small.

Worst-case time and space complexity O
(
bW

∗/ε
)
, where W ∗ is the

optimal cost, and ε is such that all edge weights are no smaller than ε.

E. Frazzoli (MIT) L05: Informed Search November 1, 2010 14 / 46



Greedy (Best-First) Search

UCS explores paths in all directions, with no bias towards the goal
state.

What if we try to get “closer” to the goal?

We need a measure of distance to the goal. It would be ideal to use
the length of the shortest path... but this is exactly what we are
trying to compute!

We can estimate the distance to the goal through a “heuristic
function,” h : V → R≥0. In motion planning, we can use, e.g., the
Euclidean distance to the goal (as the crow flies).

A reasonable strategy is to always try to move in such a way to
minimize the estimated distance to the goal: this is the basic idea of
the greedy (best-first) search.
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Greedy (Best-First) Search

Q ← 〈start〉; // Initialize the queue with the starting node

while Q is not empty do
Pick the path P with minimum heuristic cost h(head(P)) from the queue Q;
if head(P) = goal then return P ; // We have reached the goal

foreach vertex v such that (head(P), v) ∈ E, do
add 〈v ,P〉 to the queue Q;

return FAILURE ; // Nothing left to consider.
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Example of Greedy (Best-First) Search: Step 1

Q:
path cost h

〈s〉 0 10

s
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Example of Greedy (Best-First) Search: Step 2

Q:

path cost h

〈a, s〉 2 2

〈b, s〉 5 3

s
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Example of Greedy (Best-First) Search: Step 3

Q:

path cost h

〈c , a, s〉 4 1

〈b, s〉 5 3

〈d , a, s〉 6 4

s
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Example of Greedy (Best-First) Search: Step 4

Q:

path cost h

〈b, s〉 5 3

〈d , a, s〉 6 4

〈d , c , a, s〉 7 4

s
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Example of Greedy (Best-First) Search: step 5

Q:

path cost h

〈g , b, s〉 10 0

〈d , a, s〉 6 4

〈d , c , a, s〉 7 4

s
10start
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Remarks on Greedy (Best-First) Search

Greedy (Best-First) search is similar in spirit to Depth-First Search: it
keeps exploring until it has to back up due to a dead end.

Greedy search is not complete and not optimal, but is often fast and
efficient, depending on the heuristic function h.

Worst-case time and space complexity O(bm).
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Outline

1 Informed search methods: Introduction

2 Optimal search
A search

3 Dynamic Programming
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The A search algorithm

The problems

Uniform-Cost search is optimal, but may wander around a lot before finding
the goal.
Greedy search is not optimal, but in some cases it is efficient, as it is heavily
biased towards moving towards the goal. The non-optimality comes from
neglecting “the past.”

The idea

Keep track both of the cost of the partial path to get to a vertex, say g(v),
and of the heuristic function estimating the cost to reach the goal from a
vertex, h(v).
In other words, choose as a “ranking” function the sum of the two costs:

f (v) = g(v) + h(v)

g(v): cost-to-come (from the start to v).
h(v): cost-to-go estimate (from v to the goal).
f (v): estimated cost of the path (from the start to v and then to the goal).
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A Search

Q ← 〈start〉; // Initialize the queue with the starting node

while Q is not empty do
Pick the path P with minimum estimated cost f (P) = g(P) + h(head(P))
from the queue Q;
if head(P) = goal then return P ; // We have reached the goal

foreach vertex v such that (head(P), v) ∈ E, do
add 〈v ,P〉 to the queue Q;

return FAILURE ; // Nothing left to consider.
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Example of A Search: Step 1

Q:
path g h f

〈s〉 0 10 10
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Example of A Search: step 2

Q:

path g h f

〈a, s〉 2 2 4

〈b, s〉 5 3 8
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Example of A Search: step 3

Q:

path g h f

〈c, a, s〉 4 1 5

〈b, s〉 5 3 8

〈d , a, s〉 6 5 11
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Example of A Search: step 4

Q:

path g h f

〈b, s〉 5 3 8

〈d , a, s〉 6 5 11

〈d , c , a, s〉 7 5 12

s
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Example of A Search: step 5

Q:

path g h f

〈g , b, s〉 10 0 10

〈d , a, s〉 6 5 11

〈d , c , a, s〉 7 5 12

s
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Remarks on the A search algorithm

A search is similar to UCS, with a bias induced by the heuristic h. If
h = 0, A = UCS.

The A search is complete, but is not optimal. What is wrong?
(Recall that if h = 0 then A = UCS, and hence optimal...)

A∗ Search

Choose an admissible heuristic, i.e., such that h(v) ≤ h∗(v).
(The star means “optimal.”)

The A search with an admissible heuristic is called A∗, which is
guaranteed to be optimal.
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Example of A∗ Search: step 1

Q:
path g h f

〈s〉 0 10 10
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Example of A∗ Search: step 2

Q:

path g h f

〈a, s〉 2 2 4

〈b, s〉 5 3 8
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Example of A∗ Search: step 3

Q:

path g h f

〈c , a, s〉 4 1 5

〈d , a, s〉 6 1 7

〈b, s〉 5 3 8

s
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Example of A∗ Search: Step 4

Q:

path g h f

〈d , a, s〉 6 1 7

〈b, s〉 5 3 8

〈d , c, a, s〉 7 1 8
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Example of A∗ Search: step 5

Q:

path g h f

〈g , d , a, s〉 8 0 8

〈b, s〉 5 3 8

〈d , c, a, s〉 7 1 8

s
6start

a
2

b
3

c
1

d
1

g
0

2

2
3

4

5

5

2

E. Frazzoli (MIT) L05: Informed Search November 1, 2010 36 / 46



Proof (sketch) of A∗ optimality

By contradiction

Assume that A∗ returns P, but w(P) > w∗

(w∗ is the optimal path weight/cost).

Find the first unexpanded node on the optimal path P∗, call it n.

f (n) > w(P), otherwise we would have expanded n.

f (n) = g(n) + h(n) by definition

= g∗(n) + h(n) because n is on the optimal path.

≤ g∗(n) + h∗(n) because h is admissible

= f ∗(n) = W ∗ because h is admissible

Hence W ∗ ≥ f (n) >W , which is a contradiction.
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Admissible heuristics

How to find an admissible heuristic? i.e., a heuristic that never
overestimates the cost-to-go.

Examples of admissible heuristics

h(v) = 0: this always works! However, it is not very useful, and in
this case A∗ = UCS .

h(v) = distance(v , g) when the vertices of the graphs are physical
locations.

h(v) = ‖v − g‖p, when the vertices of the graph are points in a
normed vector space.

A general method

Choose h as the optimal cost-to-go function for a relaxed problem, that is
easy to compute.
(Relaxed problem: ignore some of the constraints in the original problem)

E. Frazzoli (MIT) L05: Informed Search November 1, 2010 38 / 46



Admissible heuristics

How to find an admissible heuristic? i.e., a heuristic that never
overestimates the cost-to-go.

Examples of admissible heuristics

h(v) = 0: this always works! However, it is not very useful, and in
this case A∗ = UCS .

h(v) = distance(v , g) when the vertices of the graphs are physical
locations.

h(v) = ‖v − g‖p, when the vertices of the graph are points in a
normed vector space.

A general method

Choose h as the optimal cost-to-go function for a relaxed problem, that is
easy to compute.
(Relaxed problem: ignore some of the constraints in the original problem)

E. Frazzoli (MIT) L05: Informed Search November 1, 2010 38 / 46



Admissible heuristics

How to find an admissible heuristic? i.e., a heuristic that never
overestimates the cost-to-go.

Examples of admissible heuristics

h(v) = 0: this always works! However, it is not very useful, and in
this case A∗ = UCS .

h(v) = distance(v , g) when the vertices of the graphs are physical
locations.

h(v) = ‖v − g‖p, when the vertices of the graph are points in a
normed vector space.

A general method

Choose h as the optimal cost-to-go function for a relaxed problem, that is
easy to compute.
(Relaxed problem: ignore some of the constraints in the original problem)

E. Frazzoli (MIT) L05: Informed Search November 1, 2010 38 / 46



Admissible heuristics for the 8-puzzle

Initial state:

1 5

2 6 3

7 4 8

Goal state:

1 2 3

4 5 6

7 8

Which of the following are admissible heuristics?

h = 0

h = 1

h = number of tiles in the wrong positon

h = sum of (Manhattan) distance between tiles and their goal
position.
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Goal state:

1 2 3

4 5 6

7 8

Which of the following are admissible heuristics?

h = 0 YES, always good

h = 1 NO, not valid in goal state

h = number of tiles in the wrong positon YES, “teleport” each tile
to the goal in one move
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position.
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Admissible heuristics for the 8-puzzle

Initial state:

1 5

2 6 3

7 4 8

Goal state:

1 2 3

4 5 6

7 8

Which of the following are admissible heuristics?

h = 0 YES, always good

h = 1 NO, not valid in goal state

h = number of tiles in the wrong positon YES, “teleport” each tile
to the goal in one move

h = sum of (Manhattan) distance between tiles and their goal
position. YES, move each tile to the goal ignoring other tiles.
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A partial order of heuristic functions

Some heuristics are better than others

h = 0 is an admissible heuristic, but is not very useful.

h = h∗ is also an admissible heuristic, and it the “best” possible one
(it give us the optimal path directly, no searches/backtracking)

Partial order

We say that h1 dominates h2 if h1(v) ≥ h2(v) for all vertices v .

Clearly, h∗ dominates all admissible heuristics, and 0 is dominated by
all admissible heuristics.

Choosing the right heuristic

In general, we want a heuristic that is as close to h∗ as possible. However,
such a heuristic may be too complicated to compute. There is a tradeoff
between complexity of computing h and the complexity of the search.
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Consistent heuristics

An additional useful property for A∗ heuristics is called consistency

A heuristic h : X → R≥0 is said consistent if

h(u) ≤ w (e = (u, v)) + h(v), ∀(u, v) ∈ E .

In other words, a consistent heuristics satisfies a triangle inequality.

If h is a consistent heuristics, then f = g + h is non-decreasing along
paths:

f (v) = g(v) + h(v) = g(u) + w(u, v) + h(v) ≥ f (u).

Hence, the values of f on the sequence of nodes expanded by A∗ is
non-decreasing: the first path found to a node is also the optimal
path ⇒ no need to compare costs!
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Outline

1 Informed search methods: Introduction

2 Optimal search

3 Dynamic Programming
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Dynamic Programming

The optimality principle

Let P = (s, . . . , v , . . . g) be an optimal path (from s to g). Then, for any
v ∈ P, the sub-path S = (v , . . . , g) is itself an optimal path (from v to g).

Using the optimality principle

Essentially, optimal paths are made of optimal paths. Hence, we can
construct long complex optimal paths by putting together short
optimal paths, which can be easily computed.

Fundamental formula in dynamic programming:

h∗(u) = min
(u,v)∈E

[w( (u, v) ) + h∗(v)] .

Typically, it is convenient to build optimal paths working backwards
from the goal.
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A special case of dynamic programming

Dijkstra’s algorithm

Q ← V {All states get in the queue}.
for all v ∈ V , h̄(v) = (∞ if v ∈ VG, 0 otherwise)
while Q 6= ∅ do

u ← arg minv∈Q h̄(v) {Pick minimum-cost vertex in Q}
for all e = (v , u) ∈ E do
h̄(v)← min{h̄(v), h̄(u) + w(e)} {Relax costs}

Recovering optimal paths

The output of Dijkstra’s algorithm is in fact the optimal cost-to-go
function, h∗.

From any vertex, we can compute the optimal outgoing edge via the
dynamic programming equation.
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Dijkstra’s algorithm: example

Inf Inf

Inf
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6 2
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5 2

4

0

4

6

5

21

Dynamic programming requires the computation of all optimal
sub-paths, from all possible initial states (curse of dimensionality).

On-line computation is easy via state feedback: convert an open-loop
problem into a feedback problem. This can be useful in real-world
applications, where the state is subject to errors.
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Concluding remarks

A∗ optimal and very effective in many situations. However, in some
applications, it requires too much memory. Some possible approaches
to address this problem include

Branch and bound

Conflict-directed A∗

Anytime A∗

Other search algorithms

D∗ and D∗-lite: versions of A∗ for uncertain graphs.

Hill search: move to the neighboring state with the lowest cost.

Hill search with backup: move to the neighboring state with the lowest
cost, keep track of unexplored states.

Beam algorithms: keep the best k partial paths in the queue.
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