10/27/10

Optimal Satisfiability and
Conflict-directed A*

Brian C. Williams
16.410/16.413
October 271, 2010

Image credit: NASA.

Assignment

* Remember:
* Problem Set #6 Propositional Logic, due Today.
* 16:413 Project Part 1: Sat-based Activity Planner,
due Wednesday, November 3,

* Problem Set #7 Diagnosis, Conflict-directed A* and RRTs,
due Wednesday, November 10,

» Reading
- Today: Brian C. Williams, and Robert Ragno, "Conflict-directed A* and its
Role in Model-based Embedded Systems," Special Issue on Theory and
Applications of Satisfiability Testing, Journal of Discrete Applied Math,
January 2003.

11/02/09 copyright Brian Williams, 2000-10 2

Model-based Diagnosis as
Conflict-directed Best First Search

When you have eliminated the impossible,
whatever remains, however improbable,
must be the truth.

- Sherlock Holmes. The Sign of the Four.

. Generate most likely Hypothesis.
. Test Hypothesis.
. If Inconsistent, learn reason for inconsistency

(a Conflict).

. Use conflicts to leap over similarly infeasible options

to next best hypothesis.

Flow, =

Compare Most Likely Hypothesis
to Observations

L=

) Gamlat
H-IHOI.
=]

Helium tank

Oxidizer tank ‘ Fuel tank
zero <—— Pressure,= nominal

\Pressure, = nominal
Main
Engines

Acceleration = zero

It is most likely that all components are okay.

10/27/10

Isolate Conflicting Information

mige ()

Helium tank

Flow ;= zero
Main
Engines

The red component modes conflict with the model and observations.

Leap to the Next Most Likely Hypothesis
that Resolves the Conflict

|
]
Oxidizer tank ‘ Fuel tank

Helium tank
Flow ;= zero
Main
Engines

The next hypothesis must remove the conflict.

10/27/10

New Hypothesis Exposes Additional Conflicts

DX

Helium tank

Fuel tank
<« Pressure,= nominal

Oxidizer tank
Pressure; = nominal

Main

. Engines
Acceleration = zero &

Another conflict, try removing both.

Final Hypothesis Resolves all Conflicts

DX

Helium tank

Oxidizer tank Fuel tank
Pressure; = nominal — «—— Pressure,= nominal
Flow, = zero ‘ Flow, = positive
=
Main

. Engines
Acceleration = zero &

Implementation: Conflict-directed A* search.

10/27/10

Outline

Model-based Diagnosis
Optimal CSPs
Informed Search
Conflict-directed A*

Constraint Satisfaction Problem

CSP = <X, D,,C>
— variables X with domain Dy,.
— Constraint C(X): Dy — {True, False}.

Problem: Find X in Dy s.t. C(X) is True.

10/27/10 10

10/27/10

Optimal CSP

OCSP= <Y, g, CSP>
— Decision variables Y with domain D.
— Utility function g(Y): Dy — R.
— CSP over variables <X;Y>.

Find leading arg max g(Y)
Y €D,

s.t. 3 X & Dy s.t. C(X,Y) is True.

=> g: multi-attribute utility with preferential independence,
value constraint, ...

= CSP: propositional state logic, simple temporal problem,

mixed logic-linear program, ...
10/27/10 11

CSPs Are Frequently Encoded in
Propositional State Logic

(mode(E1) = ok implies
(thrust(E1) = on if and only if flow(V1) = on and flow(V2) = on)) and
(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

A\ V2

E1l

10/27/10 12

10/27/10

Multi Attribute Utility Functions

a(Y) = G(9:(y41), 92(v2), - - -)

where
G(uy, u, ...u,) = G(u,G(u, ... u,)
G(uq) = G(u, Ig)

Example: Diagnosis
gi(y=mode;) = P(y; = mode;)
G(uq,uz) = Uy X Uy
lg =1

10/27/10 13

Mutual Preferential Independence (MPI)

Assignment 0, is preferred over 62
if 9(04) < 9(3,).

For any set of decision variables W C Y,
our preference between two assignments to
W is independent of the assignment to the
remaining variables W - Y.

10/27/10 14

10/27/10

MPI Example: Diagnosis

If A1 = G is more likely than A1 = U,

then
{A1=G,A2=G,A3=U, X1 =G, X2 =G}

is preferred to
{Am1=U,A2=G,A3=U, X1=0G, X2 =G}

10/27/10 15

Outline

Model-based Diagnosis
Optimal CSPs
Informed Search

— A*

— Branch and Bound
Conflict-directed A*

10/27/10

Informed Search

Extend search tree nodes
to include path length g
A

]

s
a2 s

69{%)4 6 (b (& 10

1O @8 (D (s

Problem:
- Given graph <V,E> with weight function w: E —3, and vertices S, GinV,
* Find a path S —P G with the shortest path length 6(S,G) where

* w(p) =X W(V;p,Vy).

* o(u,v) =min {w(p) : u —>Pv}

Brian Williams, Fall 05 17

Best-first Search with
Uniform Cost spreads
evenly from the start.

-

Brian Williams, Fall 05 18

10/27/10

Best-first Search with
Uniform Cost spreads
evenly from the start.

Greedy goes for the
goal, but forgets its
(™
®
)z //
A B goal

sta

A* finds an optimal solution
if h never over estimates.

Then h is called “admissible”

Brian Williams, Fall 05

A* biases uniform cost
towards the goal by using h.

«f=g+h
+ g = distance from start.

* h = estimated distance
to goal. 19

A*

« Best-first Search with Q ordered by admissible f=g + h.

Heuristic Value h in Red
Edge cost in Green

Brian Williams, Fall 05 20

10/27/10

10

A* Search: State of Search

Problem: State Space Search Problem.

- 0 Initial State.

* Expand(node) Children of Search Node = adjacent states.
* Goal-Test(node) True if search node at a goal-state.

* Nodes Search Nodes to be expanded.

* Expanded Search Nodes already expanded.

¢ [|nitialize Search starts at ©, with no expanded nodes.
g(state) Cost to state

h(state) Admissible Heuristic - Optimistic cost to go.
Search Node: Node in the search tree.

» State State the search is at.

« Parent Parent in search tree.

Nodes[Problem]:

* Enqueue(node, f) Adds node to those to be expanded.
* Remove-Best(f) Removes best cost queued node according to f.
10127/10 2

A* Search

Function A*(problem, h)
returns the best solution or failure. Problem pre-initialized.
f(x) < g[problem](x) + h(x)
loop do Expand
Best-first
node < Remove-Best(Nodes[problem], f)

new-nodes < Expand(node, problem)
for each new-node in new-nodes

then Nodes[problem]< Enqueue(Nodes[problem], new-node, f)

end

10/27/10 22

10/27/10

11

A* Search

Function A*(problem, h)
returns the best solution or failure. Problem pre-initialized.
f(x) < g[problem](x) + h(x)
loop do Terminate
if Nodes[problem] is empty then return failure when. ..
node <— Remove-Best(Nodes[problem], f)

new-nodes < Expand(node, problem)
for each new-node in new-nodes

then Nodes[problem] <— Enqueue(Nodes[problem], new-node, f)
if Goal-Test[problem] applied to State(node) succeeds
then return node
end

10/27/10 23

Expand Vertices More Than Once

edge cost

path length —

+ The shortest path from S to G

is(GDAS).
+ Dis reached first using
path (D S).
Suppose we expanded only the
first path that visits each vertex X?
Brian Williams, Fall 05 24

10/27/10

12

Expand Vertices More Than Once

edge cost
path length — 0

o o N

2 5 2 ‘ © 1 @

3 2(S%
+ The shortest path from S to G

is(GDAS).

D is reached first using
path (D S).

. Thi ts path (DA S
Suppose we exp:cu.lded only the o ';zn‘;"eis:n dé ")
first path that visits each vertex X?

Brian Williams, Fall 05 25

Expand Vertices More Than Once

edge cost
path length — o

(A
3‘;=2!.€(A'.\\ﬂ:2§.'m ‘;’II.L()J ©

4

The shortest path from S to G
is(GDAS).

D is reached first using
path (D S).

. Thi ts path (DA S
Suppose we exp:cu.lded only the o ';zn‘;"eis:n dé ")
first path that visits each vertex X?

Brian Williams, Fall 05 26

10/27/10

13

Expand Vertices More Than Once

edge cost
path length — o

. 1
328(@\\10 1 ©

+ The shortest path from S to G
is(GDAS).

+ Disreached first using
path (D S).

+ This prevents path (DA S)
Suppose we exp:cu.lded only the ,,from being expanded.
first path that visits each vertex X? The suboptimal path (G D)
= Eliminate the Visited List. is returned.

= Return solution when taken off queue.
Brian Williams, Fall 05 27

Shortest Paths Contain
Only Shortest Paths

y
* Subpaths of shortest paths are shortest paths.

es PV =<s, X, U, V> Shortest, then
es—Pu =<, X, U> Shortest
es —PX =<s, x> Shortest
Brian Williams, Fall 05 28

10/27/10

14

Shortest Paths can be
Grown From Shortest Paths

The length of shortest path s »Pu — v
is 6(s,v) = &(s,u) + w(u,v) such that
Y <uyv>€E 6(s,v) <d(s,u) + w(u,v).

Dynamic Programming Principle:

» Given the shortest path to U, don’t extend other paths to U;
delete them (expanded list).

» When A* dequeues the first partial path with head node U,
this path is guaranteed to be the shortest path from S to U.

Brian Williams, Fall 05 29

A* Search

Function A*(problem, h)
returns the best solution or failure. Problem pre-initialized.
f(x) < g[problem](x) + h(x) Dynamic
loop do _ _ Programming
if Nodes[problem] is empty then return failure Principle . ..
node <— Remove-Best(Nodes[problem], f)
state < State(node)
remove any n from Nodes[problem] such that State(n) = state
Expanded[problem] < Expanded[problem] U {state}
new-nodes < Expand(node, problem)
for each new-node in new-nodes
unless State(new-node) is in Expanded[problem]
then Nodes[problem] <— Enqueue(Nodes[problem], new-node, f)
if Goal-Test[problem] applied to State(node) succeeds
then return node
end

10/27/10 30

10/27/10

15

Outline

Model-based Diagnosis
Optimal CSPs
Informed Search

— A*

— Branch and Bound
Conflict-directed A*

Branch and Bound

« Maintain the best solution found thus far (incumbent).

* Prune all subtrees worse than the incumbent.
/@\
4 2
B
5 7 7 10
O, <D,),
10 é é 8 1oé E 10

Incumbecnots:t U=, 8 Heuristic Value h in Red
path P =(),, (SADG) Edge cost in Green

Brian Williams, Fall 05 32

10/27/10

16

10/27/10

Branch and Bound

« Maintain the best solution found thus far (incumbent).
* Prune all subtrees worse than the incumbent.

* Any search order allowed (DFS, Reverse-DFS, BFS, Hill w BT...).
0 @\ 1
4 / 8
(A (B
5 7 7 10 0_2
<, CD, @O & O
10 é é 8 10 10

3
B
Incumbent: o .
cost U=, 10, 8 Heuristic Yalues of g in Red
pathP=0, (SBG) (SADG) Edge cost in Green

Brian Williams, Fall 05 33

Simple Optimal Search

Using Branch and Bound

Let <V,E> be a Graph Let Q be a list of simple partial paths in <V,E>
Let S be the start vertex in <V,E> and Let G be a Goal vertex in <V,E>.

Letf=g+h be an admissible heuristic function.

U and P are the cost and path of the best solution thus far (Incumbent).

1. Initialize Q with partial path (S); Incumbent U = o, P = ();

2. If Qis empty, return Incumbent U and P,
Else, remove a partial path N from Q;

3. Iff(N) >=U, Go to Step 2.
4. Ifhead(N)=G,thenU=f(N)andP=N (a better path to the goal)

5. (Else) Find all children of head(N) (its neighbors in <V,E>) and
create one-step extensions from N to each child.

6. Add extended paths to Q.
7. Go to Step 2.

Brian Williams, Fall 05 34

17

Outline

Model-based Diagnosis
Optimal CSPs
Informed Search
Conflict-directed A*

AN

Increasing
Cost

10/27/10

Infeasible

P Feasible

36

10/27/10

18

Conflict-directed A*

AN

Increasing

Cost
(o)
o
o

10/27/10

o

Infeasible
o
© Feasible

37

Conflict-directed A*

N

Increasing

nfeasible

@)

©)

10/27/10

@)

@)

@)

© Feasible

38

10/27/10

19

Conflict-directed A*
N

Increasing
nfeasible
© O O
o o |o

Feasible

10/27/10 39

Conflict-directed A*
N

Increasing
Cost

Feasible

10/27/10 40

10/27/10

20

Conflict-directed A*
N

Increasing
Cost

Feasible

10/27/10 41

Conflict-directed A*
N

Increasing
Cost

Conflict 1

Conflict 2

Feasible

€ 1o1guo)

10/27/10 2

10/27/10

21

Conflict-directed A*
N

Increasing
Cost

Conflict 1

Conflict 2

Feasible

€ JoIyu0)

10/27/10 43

Solving Optimal CSPs
Through Generate and Test

Leading Candidates

Conflict-directed A*
Based on Cost

Constraint Solver

No

10/27/10 44

10/27/10

22

Conflict-directed A*

Function Conflict-directed-A*(OCSP)
returns the leading minimal cost solutions.

Conflicts[OCSP] < {} Conflict-guided
OCSP < Initialize-Best-Kernels(OCSP) Expansion
Solutions[OCSP] < {}

loop do

——)> decision-state < Next-Best-State-Resolving-Conflicts(OCSP)

> new-conflicts < Extract-Conflicts(CSP[OCSP], decision-state)
— Conflicts[OCSP]
< Eliminate-Redundant-Conflicts(ConflictsfOCSP] U new-conflicts)
end

10/27/10 45

Conflict-directed A*

Function Conflict-directed-A*(OCSP)
returns the leading minimal cost solutions.
ConflictslOCSP] < {}
OCSP < Initialize-Best-Kernels(OCSP)
Solutions[OCSP] < {}
loop do
decision-state <— Next-Best-State-Resolving-Conflicts(OCSP)
— if no decision-state returned or
Terminate?(OCSP)
then return Solutions[OCSP]
> if Consistent?(CSP[OCSP], decision-state)
then add decision-state to Solutions[OCSP]
new-conflicts <— Extract-Conflicts(CSP[OCSP], decision-state)
Conflicts[OCSP]
< Eliminate-Redundant-Conflicts(ConflictsfOCSP] U new-conflicts)
end

10/27/10 46

10/27/10

23

Conflict-directed A*

» Each feasible subregion described by a kernel assignment.

\ = Approach: Use conflicts to search for kernel assignment
containing the best cost candidate.
Increasing

Cost Conflict 1

Conflict 2

Kernel 3 Kernel 1

€ JoIyu0)

Keirnel 2

Recall: Mapping Conflicts to Kernels

Conflict C;: A set of decision variable assignments that are
inconsistent with constraints ®.

C, A @ is inconsistent =2 dentails -C;

Constituent Kernel: An assignment a that resolves a conflict C,.

aentails = C;
Kernel: A minimal set of decision variable assignments
that resolves all known conflicts C.
A entails - C;for all C;in C
10/27/10 48

10/27/10

24

Extracting a kernel’s best state

* Select best utility value for unassigned variables (Why?).

{X1=U}

. B

A1=2 A A2=U A A3=2 A X1=2 A X2=2
. B

Al1=G A A2=U A A3=G A X1=G A X2=G

10/27/10 49

Next Best State Resolving
Conflicts

function Nnyf-Rpr-qup-annl\ling-(‘nnflir‘fc(ﬂ(‘QP)
—> | best-kernel <— Next-Best-Kernel(OCSP)
it best-kernel = failure
then return failure
—> else return kernel-Best-State[problem](best-kernel)
end

function Kernel-Best-State(kernel)
unassigned < all variables not assigned in kernel
return kernel U {Best-Assignment(v) | v € unassigned}
End

function Terminate?(OCSP)
return True iff Solutions[OCSP] is non-empty

Algorithm for only finding the first solution, multiple later.

10/27/10 50

10/27/10

25

Example: Diagnosis

A

1] —
Al X

L 2 e R
1B—-|_7 x| —
1C

- A2 Y
e a1z

Assume Independent Failures:
* PGmi) > Pugmi
* Psingle >> Pdouble

* Pyaz)™ Puan ™ Puns) > Puxny > Puxo

10/27/10 51

First Iteration

A
1] —
Al X

L F 0
1B—-|_7 xi|—
1C

- A2 Y
e Py

» Conflicts / Constituent Kernels
— none

* Best Kernel:
- {4

» Best Candidate:
- ?

10/27/10 52

10/27/10

26

Extracting the kernel’s best state

* Select best value for unassigned variables
{}

Al1=? A A2=? A A3=? A X1=2 A X2=?
i B
Al1=G A A2=G A A3=G A X1=G A 2=G

10/27/10

53

First Iteration

;A
115—{‘6‘1_‘)(_)(1—FO
1 Y Ta2 Yy
R e x2[—6G 1
lliAti—,Z_

» Conflicts / Constituent Kernels
— none

* Best Kernel:
- {
» Best Candidate:
— A1=G A A2=G A A3=G A X1=G 1 X2=G

102710

54

10/27/10

27

Test: AI=G A A2=G A A3=G A X1=G A X2=G

IA_AT X
1 B 7_| xal—"
1 Y Taz Y
o 2H — x2| —S 1
115_73—,z_

10/27/10

55

Test: AI=G A A2=G A A3=G A X1=G A X2=G

-

1 A_>A1 —|X1 Ay
1 B - X1 _ﬂri‘)O;
1 S Taz y? ’
o 21— x2[|—S 1
e

» Extract Conflict and Constituent Kernels:
= [A1=G A A2=G A X1=G]

. B
Al=U v A2=Uv XI=U

10/27/10

Symptom

56

10/27/10

28

Second Iteration

1
Pimi) > Pymi)
P

>> P 1

single double

Pyaz > Puan >
Pyaz) > Puxny > Puxe)

* Conflicts = Constituent Kernels
- A1=U v A2=U v X1=U

* Best Kernel:
- A2=U

» Best Candidate:
— A1=G A A2=U A A3=G A X1=G A X2=G

10/27/10

(why?)

57

Test: AI=G A A2=U A A3=G A X1=G A X2=G

1 A_A1 X

1 B——L _|_x1 —
. —1y

o 2T x2 [—S

, E__|A3 P

10/27/10

58

10/27/10

29

Test: AI=G A A2=U A A3=G A X1=G A X2=G

1 A 1
A1 X
B | F 0
_
1 X1
L N
= —Y /0\‘
0 D[. X2 1 /l
> I N
1 E A3 Z

* Extract Conflict:
= [A1=G A A3=G A X1=G A X2=G]
.
Al1=U v A3=U v X1=U v X2=U

10/27/10 59
Third Iteration
PG miy>> Pymi 1
Psingle >> Pdouble 1
Py > Pyan > 1
Pyaz) > Puxny > Puxe) 0

» Conflicts = Constituent Kernels
- A1=U v A2=U v X1=U
— A1=U v A3=U v X1=U v X2=U

» Best Kernel:
- A1=U

* Best Candidate:
— A1=U A A2=G A A3=G A X1=G A X2=G

10/27/10 60

10/27/10

30

10/27/10

Test: AI=U A A2=U A A3=G A X1=G A X2=G

1 A

N . F 0
1—-|_7 X1|—
1 YAz Y

OD_J— X2_G1
1E_A3—,Z_

10/27/10

61

Test: AI=U A A2=U A A3=G A X1=G A X2=G

A 0

1 I X F 0
1 B 0 X1
1 S a2 Y 1
0o 2 . szl
| E Al —17

¢ Consistent!

10/27/10

62

31

Outline

* Model-based Diagnosis
* Optimal CSPs

e Conflict-directed A*

— Generating the Best Kernel
— Performance Comparison

Generating The Best Kernel of The Known Conflicts

Constituent Kernels
? |

A2=U X1=U, A1=U,A2=U

X1=U, X2=U,
X1= A3=U A1=U,A3=U
X2=U \M1=U
()
X1=U Al=U Al1=U A X2=U A2=U A A3=U
Insight:

* Kernels found by minimal set covering
* Minimal set covering is an instance of breadth first search.

10/27/10

32

Expanding a Node to
Resolve a Conflict

Constituent kernels U

A2=U v A1=U v X1=U
X1=U

To Expand a Node:
¢ Select an unresolved Conflict.
* Each child adds a constituent kernel of Conflict.

* Prune any node that is
— Inconsistent, or
— A superset of a known kernel.

10/27/10 65

Generating The Best Kernel of The Known Conflicts

Constituent Kernels

g

X1=U, A1=U, A2=U

X1=U, X2=U,
A1=U,A3=U

Al=

Insight:

* Kernels found by minimal set covering

* Minimal set covering is an instance of breadth first search.
=> To find the best kernel, expand tree in best first order.

10/27/10

33

Admissible h(a): Cost of best state
that extends partial assignment o

f=¢ + h
A2=U A A1=2 A A3=2 A X1=2 A X2=?
. B
LOVERE | P X Ppsc X Py X Pxygg
* Select best value of unassigned variables.

10/27/10 67

Admissible Heuristic h

+ Letg=<G,g,Y> describe a multi-attribute utility fn

» Assume the preference for one attribute x; is independent of another x,
— Called Mutual Preferential Independence:
Forallu,veY
If gj(u) = g(v) then for all w
G(gi(u).gk(w)) 2 G(gi(v).gk(W))

An Admissible h:

— Given a partial assignment, to XCY
— h selects the best value of each unassigned variable Z =X -Y

h(Y) = G({9z_maxl ZEZ, max g,i(vy))})
V€D,

— A candidate always exists satisfying h(Y).

10/27/10 68

10/27/10

34

Terminate when all conflicts resolved

Function Goal-Test-Kernel (node, problem)
returns True IFF node is a complete decision state.
if forall K in Constituent-Kernels(Conflicts[problem]),
State[node] contains a kernel in K
then return True
else return False

10/27/10 69

Next Best Kernel of Known Conflicts

Function Next-Best-Kernel (OCSP)
returns the next best cost kernel of ConflictsfOCSP].
:’(X) <—d G[OCSP] (9g[OCSP(x), h[OCSPJ(x)) An instance
oop do
if Nodes[OCSP] is empty then return failure of A*
node <— Remove-Best(Nodes[OCSP], f)
add State[node] to Visited[OCSP]
new-nodes < Expand-Conflict(node, OCSP)
for each new-node € new-nodes
unless 3 n € Nodes[OCSP] such that State[new-node] = State[n]
OR State[new-node] € Visited[problem]
then Nodes[OCSP] < Enqueue(Nodes[OCSP], new-node, f)
if Goal-Test-Kernel[OCSP] applied to State[node] succeeds
Best-Kernels|OCSP]
< Add-To-Minimal-Sets(Best-Kernels[OCSP], best-kernel)
if best-kernel € Best-Kernels[OCSP]
then return State[node]
end

10/27/10 70

10/27/10

35

Outline

* Model-based Diagnosis
» Optimal CSPs
* Conflict-directed A*

— Generating the Best Kernel

— Performance Comparison

Performance:
With and Without Conflicts

Problem Constraint-based | Conflict-directed A* Mean CD-CB Ratio
Parameters A* (no conflicts)
Dom | Dec | Clau | Clau | Nodes Queue Nodes | Queue | Conflicts | Nodes Queue
Size | vars | -ses | -se Expande | Size Expand | Size used Expanded Size
Ingth | d
5| 10| 10| 5 683| 1,230 3.3| 6.3 1.2| 4.5% 5.6%
5|/ 10| 30| 5| 2,360| 3,490| 8.1| 17.9 32| 24% 3.5%
5| 10| 50| 5| 4,270| 6,260| 12.0| 41.3 26| 0.83% | 1.1%
10| 10| 10| 6] 3,790 13,400 5.7| 16.0 16| 2.0% 1.0%
10| 10| 30| 6] 1,430| 5,130| 9.7| 94.4 42| 4.6% 5.8%
10| 10| 50| 6 929| 4,060 6.0| 27.3 23| 3.5% 3.9%
5| 20| 10| 5 109 149| 42| 7.2 1.6(13.0% |13.0%
5| 20| 30| 5 333 434| 64| 9.2 22| 6.0% 5.4%
5 20| 50 5 149 197 54| 7.2 2.0{12.0% |11.0%

10/27/10

72

10/27/10

36

Multiple Fault Diagnosis of
Systems with Novel Failures

Consistency-based Diagnosis: Given symptoms,
find diagnoses that are consistent with symptoms.

Suspending Constraints: Make no presumption
about a component’s faulty behavior.

1 A v 1 X l,’1 \‘ Symptom
" g FiL o0,

1 —} — X1 N
c|L 0

1 = A2 Y 1

0 D_J— : X2 G 1

, E —_|A3 —,Z_

Model-based Diagnosis as
Conflict-directed Best First Search

When you have eliminated the impossible,
whatever remains, however improbable, must be
the truth.

- Sherlock Holmes. The Sign of the Four.

1. Generate most likely Hypothesis.
— 2. Test Hypothesis.
3. If Inconsistent, learn reason for inconsistency
(a Conflict).
4. Use conflicts to leap over similarly infeasible options
to next best hypothesis.

10/27/10

37

Outline

* Model-based Diagnosis
* Optimal CSPs

* Conflict-directed A*
— Generating the Best Kernel
— Performance Comparison

— Appendix:
¢ Intelligent Tree Expansion
» Extending to Multiple Solutions
* Review of A*

Expand Only Best Child & Sibling

Constituent kernels

A2=U v A1=U v X1=U
X1=U

>

Order constituents by
decreasing utility.

* Traditionally all children expanded.
* Only need child containing best candidate.
= Child with best estimated cost f = g+h.

10/27/10

10/27/10

38

Expand Only Best Child & Sibling

Constituent kernels i

A2=U v A1=U v X1=U
> A2=U

Order constituents by
decreasing utility

* Traditionally all children expanded.
* Only need child with best candidate.
= Child with best estimated cost f = g+h.

10/27/10 7

When Do We Expand
The Child’s Next Best Sibling?

U

Constituent kernels

A2=U v A1=U v X1=U

Al=Uv A3=Uv

X1=U v X2=U Al=

* When a best child has a subtree or leaf pruned,
it may have lost its best candidate.

* One of the child’s siblings might now contain the best candidate.
= Expand child’s next best sibling:

— when expanding children to resolve another conflict.

10/27/10 78

10/27/10

39

Expand Node to Resolve Conflict

function Expand-Conflict(node, OCSP)
return Expand-Conflict-Best-Child(node, OCSP) U
Expand-Next-Best-Sibling (node, OCSP)

function Expand-Conflict-Best-Child(node, OCSP)
if for all K, in Constituent-Kernels(I'[OCSP])
State[node] contains a kernel €K,
then return {}
else return Expand-Constituent-Kernel(node, OCSP)

function Expand-Constituent-Kernel(node, OCSP)
K, < = smallest uncovered set € Constituent-Kernels(F'[OCSP])
C < {yi=v;l{yi=vy}inK, y,=v;is consistent with State[node]}
Sort C such that for all i from 1 to |C| - 1,
Better-Kernel?(CI[i],C[i+1], OCSP) is True
Child-Assignments[node] < C
Yi =V < C[1], which is the best kernel in K, consistent with State[node]
return {Make-Node({y; = v}, node)}

10/27/10 7

Expand Node to Resolve Conflict

function Expand-Next-Best-Sibling(node, OCSP)
if Root?[node]
then return {}
else {y, = v;} < Assignment[node]
{y = v,i} < next best assignment in consistent
} child-assignments[Parent[node]] after {y; =
Vi
J if no next assignment {y, = v,;}
or Parent[node] already has a child with {y, = v,;}
then return {}
else return {Make-Node({y, = v,}, Parent[node])}

10/27/10 80

10/27/10

40

Outline

* Model-based Diagnosis
* Optimal CSPs

e Conflict-directed A*

— Generating the Best Kernel
— Performance Comparison
— Appendix:

* Intelligent Tree Expansion

» Extending to Multiple Solutions
* Review of A*

Multiple Solutions: Systematically Exploring Kernels

Constituent Kernels

g

X1=U,A1=U ,A2=U

X1=U, X2=U,
A3=U A1=U,A3=U
X1=U A1=U Al1=U A X2=U A2=U A A3=U

A A A A

10/27/10

41

Child Expansion For Finding
Multiple Solutions

Conflict
- (A2=G A A1=G A X1=G)

X2=G

If Unresolved Conflicts: If All Conflicts Resolved:

= Select unresolved conflict. = Select unassigned variable y;.

= Each child adds a = Each child adds an
constituent kernel. assignment from D,.
1027/10 83

Intelligent Expansion

Below a Kernel
it

Select Unassigned Variable.
Al1=U

A2=G v A2=U
A2=G A2=U

Order assignments by C&A:’:U
decreasing utility. AG

Expand best child. X1=(§&.XI=U
Continue expanding X2=(&2=U
best descendents. @

When leaf visited,,
expand all next
best ancestors. (why?)

v

10/27/10 84

10/27/10

42

Putting It Together:
Expansion Of Any Search Node

Constituent kernels

A2=U v Al1=U v X1=U

Al=Uv A3=Uv
X1=U v X2=U Al=
When a best child loses any candidate, Al= N’
expand child’s next best sibling: Al=
. . X1=G -
— If child has unresolved conflicts,
expand sibling when child expands its next conflict. A2=U
— If child resolves all conflicts, X2= 0

expand sibling when child expands a leaf.

10/27/10 85

Conflict-directed A*

When you have eliminated the impossible,
whatever remains, however improbable,
must be the truth.

- Sherlock Holmes. The Sign of the Four.

1. Generate most likely hypothesis.
— 2. Test hypothesis.
3. If inconsistent, learn reason for inconsistency
(a Conflict).
4. Use conflicts to leap over similarly infeasible options
to next best hypothesis.

10/27/10 86

10/27/10

43

Outline

» Using conflicts in backtrack search
— Dependency-directed backtracking
— Conflict learning
— Conflict-directed backjumping

11/02/09 copyright Brian Williams, 2000-10 87

Using Conflicts to Guide Search:

Dependency-directed Search
[Stallman & Sussman, 1978]

Input: Constraint satisfaction problem.
Output: Satisfying assignment.

Repeat while a next candidate assignment exists.
» Generate candidate assignment c.

» Check candidate ¢ against conflicts.

— If cis a superset of a conflict,
Then loop to the next candidate.

» Check consistency of c.
— If inconsistent,
— Then extract and record a conflict from c.
— Else return c as a solution.

= Like a Graphplan memo, but generalizes an inconsistent solution.

11/02/09 copyright Brian Williams, 2000-10 88

10/27/10

44

Procedure Dependency_directed Backtracking
(<X,D,C>)

Input: A constraint network R = <X, D, C>
Output: A solution, or notification that the network is inconsistent.

i 1; Ei’= {}; conflicts = {} Initialize variable counter, assignments,
D', « D;; Copy domain of first variable.
while 1<i<n N

instantiate x; — Select-DDB-Value(); Add to assignments a;

if x; is null No value was returned,
i— i-1; then backtrack
else
i— i+1; else step forward and
D', < D; copy domain of next variable
end while
ifi=0
return “inconsistent”
else -
return a;, the instantiated values of {x;, ..., x.}
end procedure
11/02/09 copyright Brian Williams, 2000-10 89

Procedure Select-DDB-Value()

Output: A value in D’, consistent with3, ,, or null, if none.

while D’; is not empty
select an arbitrary element a € D’; and remove a from D’;;
8 gi-wU {x;=a};
if for every c in conflicts, not (a, superset c)
if consistent(a, ,, x, = a)
return a;
else conflicts « conflicts U
minimal inconsistent subset of a, 4;
end while
return null

end procedure
11/02/09 copyright Brian Williams, 2000-10 920

10/27/10

45

MIT OpenCourseWare
http://ocw.mit.edu

16.410/ 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

