
10/27/10

1

Optimal Satisfiability and
Conflict-directed A*

Brian C. Williams
16.410 / 16.413

October 27th, 2010
Brian C. Williams, copyright 2000

Assignment

•  Remember:
•  Problem Set #6 Propositional Logic, due Today.
•  16:413 Project Part 1: Sat-based Activity Planner,

due Wednesday, November 3rd.
•  Problem Set #7 Diagnosis, Conflict-directed A* and RRTs,

due Wednesday, November 10th.

•  Reading
–  Today: Brian C. Williams, and Robert Ragno, "Conflict-directed A* and its

Role in Model-based Embedded Systems," Special Issue on Theory and
Applications of Satisfiability Testing, Journal of Discrete Applied Math,
January 2003.

11/02/09 copyright Brian Williams, 2000-10 2

Image credit: NASA.

10/27/10

2

 When you have eliminated the impossible,
whatever remains, however improbable,
must be the truth.

- Sherlock Holmes. The Sign of the Four.

Model-based Diagnosis as 	

Conflict-directed Best First Search	

1.  Generate most likely Hypothesis.	

2.  Test Hypothesis.	

3.  If Inconsistent, learn reason for inconsistency ���

(a Conflict).	

4.  Use conflicts to leap over similarly infeasible options ���

to next best hypothesis.	

Compare Most Likely Hypothesis
to Observations

Helium tank	

Fuel tank	

Oxidizer tank	

Main	

Engines	

Flow1 = zero	

Pressure1 = nominal	

Pressure2= nominal	

Acceleration = zero	

It is most likely that all components are okay.	

10/27/10

3

Isolate Conflicting Information

Helium tank	

Fuel tank	

Oxidizer tank	

Main	

Engines	

Flow 1= zero	

The red component modes conflict with the model and observations.	

Helium tank	

Fuel tank	

Oxidizer tank	

Main	

Engines	

Flow 1= zero	

Leap to the Next Most Likely Hypothesis
that Resolves the Conflict

The next hypothesis must remove the conflict. 	

10/27/10

4

New Hypothesis Exposes Additional Conflicts

Pressure1 = nominal	

 Pressure2= nominal	

Acceleration = zero	

Helium tank	

Fuel tank	

Oxidizer tank	

Main	

Engines	

Another conflict, try removing both.	

Final Hypothesis Resolves all Conflicts

Helium tank	

Fuel tank	

Oxidizer tank	

Main	

Engines	

Pressure1 = nominal	

Flow1 = zero	

Pressure2= nominal	

Flow2 = positive	

Acceleration = zero	

Implementation: Conflict-directed A* search.	

10/27/10

5

Outline

•  Model-based Diagnosis
•  Optimal CSPs
•  Informed Search
•  Conflict-directed A*

10/27/10 10

Constraint Satisfaction Problem
CSP = <X, DX,C>

– variables X with domain DX.
– Constraint C(X): DX → {True, False}.

Problem: Find X in DX s.t. C(X) is True.

R,G,B

 G R, G

Different-color constraint
V1

V2 V3

10/27/10

6

10/27/10 11

Optimal CSP
OCSP= <Y, g, CSP>

–  Decision variables Y with domain DY.
–  Utility function g(Y): DY → ℜ.
–  CSP over variables <X;Y>.

Find leading arg max g(Y)
 Y ∈ Dy

 s.t. ∃ X ∈ DX s.t. C(X,Y) is True.

  g: multi-attribute utility with preferential independence,
 value constraint, …

  CSP: propositional state logic, simple temporal problem,
 mixed logic-linear program, …

10/27/10 12

CSPs Are Frequently Encoded in
Propositional State Logic

(mode(E1) = ok implies
 (thrust(E1) = on if and only if flow(V1) = on and flow(V2) = on)) and
 (mode(E1) = ok or mode(E1) = unknown) and
 not (mode(E1) = ok and mode(E1) = unknown)

E1

V1 V2

10/27/10

7

10/27/10 13

Multi Attribute Utility Functions
g(Y) = G(g1(y1), g2(y2), . . .)

where
 G(u1, u2 … un) = G(u1,G(u2 … un))
 G(u1) = G(u1, IG)

Example: Diagnosis
 gi(yi=modeij) = P(yi = modeij)
 G(u1,u2) = u1 x u2
 IG = 1

10/27/10 14

Mutual Preferential Independence (MPI)

Assignment δ1 is preferred over δ2
if g(δ1) < g(δ2).

For any set of decision variables W ⊆ Y,
our preference between two assignments to
W is independent of the assignment to the
remaining variables W – Y.

10/27/10

8

10/27/10 15

MPI Example: Diagnosis

If A1 = G is more likely than A1 = U,

then
 {A1 = G, A2 = G, A3 = U, X1 = G, X2 = G}

is preferred to
 {A1 = U, A2 = G, A3 = U, X1 = G, X2 = G}.

Outline
•  Model-based Diagnosis
•  Optimal CSPs
•  Informed Search

– A*
– Branch and Bound

•  Conflict-directed A*

10/27/10

9

Brian Williams, Fall 05 17

C

S

B

G
A

D 2

5

4

2
3

2

5 1

Informed Search

Problem:
•  Given graph <V,E> with weight function w: E →ℜ, and vertices S, G in V,
•  Find a path S →p G with the shortest path length δ(S,G) where

•  w(p) = Σ w(vi-1,vi).
•  δ(u,v) = min {w(p) : u →p v }

g = 8
S

D

B A

C G

C G

D

C G

2 5

6 4

9 9 8

6 10

8

0

Extend search tree nodes
to include path length g

Brian Williams, Fall 05 18

A B

x x

start
goal

Best-first Search with
Uniform Cost spreads
evenly from the start.

10/27/10

10

Brian Williams, Fall 05 19

start
goal

 A* biases uniform cost
towards the goal by using h.

•  f = g + h

•  g = distance from start.

•  h = estimated distance
 to goal.

A B

x x

Best-first Search with
Uniform Cost spreads
evenly from the start.

A* finds an optimal solution
if h never over estimates.

Then h is called “admissible”

Greedy goes for the
goal, but forgets its
past.

Brian Williams, Fall 05 20

A*

0
C

S

B

G
A

D 2

5

4

2
3

2

5 1

2

1

0
1

3

Heuristic Value h in Red
Edge cost in Green

•  Best-first Search with Q ordered by admissible f = g + h.

S

B

C D D G

G C G C

A

0

4

5

8

7

10 8 10 10

7 10

10/27/10

11

10/27/10 21

A* Search: State of Search
Problem: State Space Search Problem.
•  Θ Initial State.
•  Expand(node) Children of Search Node = adjacent states.
•  Goal-Test(node) True if search node at a goal-state.
•  Nodes Search Nodes to be expanded.
•  Expanded Search Nodes already expanded.
•  Initialize Search starts at Θ, with no expanded nodes.

g(state) Cost to state
h(state) Admissible Heuristic - Optimistic cost to go.

Search Node: Node in the search tree.
•  State State the search is at.
•  Parent Parent in search tree.

Nodes[Problem]:
•  Enqueue(node, f) Adds node to those to be expanded.
•  Remove-Best(f) Removes best cost queued node according to f.

10/27/10 22

A* Search
Function A*(problem, h)
 returns the best solution or failure. Problem pre-initialized.
 f(x) ← g[problem](x) + h(x)
 loop do

 node ← Remove-Best(Nodes[problem], f)

 new-nodes ← Expand(node, problem)
 for each new-node in new-nodes

 then Nodes[problem]← Enqueue(Nodes[problem], new-node, f)

end

Expand
Best-first

10/27/10

12

10/27/10 23

A* Search
Function A*(problem, h)
 returns the best solution or failure. Problem pre-initialized.
 f(x) ← g[problem](x) + h(x)
 loop do
 if Nodes[problem] is empty then return failure
 node ← Remove-Best(Nodes[problem], f)

 new-nodes ← Expand(node, problem)
 for each new-node in new-nodes

 then Nodes[problem] ← Enqueue(Nodes[problem], new-node, f)
 if Goal-Test[problem] applied to State(node) succeeds
 then return node
end

Terminate
when . . .

Brian Williams, Fall 05 24

S

D A 2 4

Expand Vertices More Than Once

0
path length

S

A

D 2
1

4
G

•  The shortest path from S to G
is (G D A S).

1

edge cost

•  D is reached first using
path (D S).

Suppose we expanded only the
first path that visits each vertex X?

10/27/10

13

Brian Williams, Fall 05 25

S

D A 2 5

D 3

Expand Vertices More Than Once

0
path length

S

A

D 2
1

4
G

•  The shortest path from S to G
is (G D A S).

1

edge cost

•  D is reached first using
path (D S).

•  This prevents path (D A S)
from being expanded. Suppose we expanded only the

first path that visits each vertex X?

Brian Williams, Fall 05 26

S

D

D A 2 5

3

Expand Vertices More Than Once

0
path length

S

A

D 2
1

4
G

•  The shortest path from S to G
is (G D A S).

1

edge cost

•  D is reached first using
path (D S).

•  This prevents path (D A S)
from being expanded. Suppose we expanded only the

first path that visits each vertex X?

10 G

10/27/10

14

Brian Williams, Fall 05 27

S

D

D A 2 5

3

Expand Vertices More Than Once

0
path length

S

A

D 2
1

4
G

•  The shortest path from S to G
is (G D A S).

1

edge cost

•  D is reached first using
path (D S).

•  This prevents path (D A S)
from being expanded. Suppose we expanded only the

first path that visits each vertex X?

10 G

•  The suboptimal path (G D S)
is returned.  Eliminate the Visited List.

 Return solution when taken off queue.

Brian Williams, Fall 05 28

8 9
u v

1

5 7
x y

2

0

10

5
7

9 2 3 4 6 s

Shortest Paths Contain
Only Shortest Paths

•  Subpaths of shortest paths are shortest paths.
•  s →p v = <s, x, u, v> Shortest, then ….
•  s →p u = <s, x, u> Shortest
•  s →p x = <s, x> Shortest
•  x →p v = <x, u, v> Shortest
•  x →p v = <x, u> Shortest
•  u →p v = <u, v> Shortest

10/27/10

15

Brian Williams, Fall 05 29

8 9

u v
1

5 7

x y

2

0

10

5

7

9
2 3 4 6s

Shortest Paths can be
Grown From Shortest Paths

 The length of shortest path s →p u → v
 is δ(s,v) = δ(s,u) + w(u,v) such that
 ∀ <u,v> ∈ E δ(s,v) ≤ δ(s,u) + w(u,v).

Dynamic Programming Principle:

"   Given the shortest path to U, don’t extend other paths to U;
delete them (expanded list).

"   When A* dequeues the first partial path with head node U,
this path is guaranteed to be the shortest path from S to U.

10/27/10 30

A* Search
Function A*(problem, h)
 returns the best solution or failure. Problem pre-initialized.
 f(x) ← g[problem](x) + h(x)
 loop do
 if Nodes[problem] is empty then return failure
 node ← Remove-Best(Nodes[problem], f)
 state ← State(node)
 remove any n from Nodes[problem] such that State(n) = state
 Expanded[problem] ← Expanded[problem] ∪ {state}
 new-nodes ← Expand(node, problem)
 for each new-node in new-nodes
 unless State(new-node) is in Expanded[problem]
 then Nodes[problem] ← Enqueue(Nodes[problem], new-node, f)
 if Goal-Test[problem] applied to State(node) succeeds
 then return node
end

Dynamic
Programming
Principle . . .

10/27/10

16

Outline
•  Model-based Diagnosis
•  Optimal CSPs
•  Informed Search

– A*
– Branch and Bound

•  Conflict-directed A*

Brian Williams, Fall 05 32

Branch and Bound

0
C

S

B

G
A

D 2

5

4

2
3

2

5 1

2

1

0
1

3

Heuristic Value h in Red
Edge cost in Green

•  Maintain the best solution found thus far (incumbent).

•  Prune all subtrees worse than the incumbent.

S

B

C D D G

G C G C

A

0

4

5

8

7

10 8 10 10

7

Incumbent:
 cost U =
 path P =

∞,
(),

8
(S A D G)

10

10/27/10

17

Brian Williams, Fall 05 33

Branch and Bound

0
C

S

B

G
A

D 2

5

4

2
3

2

5 1

2

1

0
1

3

Heuristic Values of g in Red
Edge cost in Green

•  Maintain the best solution found thus far (incumbent).

•  Prune all subtrees worse than the incumbent.

•  Any search order allowed (DFS, Reverse-DFS, BFS, Hill w BT…).
S

B

C D D G

G C G C

A

0

4

5

8

7

10 8 10 10

7

Incumbent:
 cost U =
 path P =

∞,
(),

10,
(S B G)

8
(S A D G)

10

Brian Williams, Fall 05 34

Simple Optimal Search
Using Branch and Bound

1.  Initialize Q with partial path (S); Incumbent U = ∞, P = ();
2.  If Q is empty, return Incumbent U and P,

Else, remove a partial path N from Q;
3.  If f(N) >= U, Go to Step 2.
4.  If head(N) = G, then U = f(N) and P = N (a better path to the goal)
5.  (Else) Find all children of head(N) (its neighbors in <V,E>) and

create one-step extensions from N to each child.
6.  Add extended paths to Q.
7.  Go to Step 2.

Let <V,E> be a Graph Let Q be a list of simple partial paths in <V,E>
Let S be the start vertex in <V,E> and Let G be a Goal vertex in <V,E>.
Let f = g + h be an admissible heuristic function.
U and P are the cost and path of the best solution thus far (Incumbent).

10/27/10

18

Outline
•  Model-based Diagnosis
•  Optimal CSPs
•  Informed Search
•  Conflict-directed A*

10/27/10 36

Increasing
Cost

Feasible

Infeasible

A*

10/27/10

19

10/27/10 37

Increasing
Cost

Feasible

Infeasible

Conflict-directed A*

10/27/10 38

Increasing
Cost

Feasible

Infeasible
Conflict 1

Conflict-directed A*

10/27/10

20

10/27/10 39

Increasing
Cost

Feasible

Infeasible
Conflict 1

Conflict-directed A*

10/27/10 40

Increasing
Cost

Feasible

Infeasible
Conflict 2

Conflict 1

Conflict-directed A*

10/27/10

21

10/27/10 41

Increasing
Cost

Feasible

Infeasible
Conflict 2

Conflict 1

Conflict-directed A*

10/27/10 42

Increasing
Cost

Feasible

Infeasible

C
onflict 3

Conflict 2

Conflict 1

Conflict-directed A*

10/27/10

22

10/27/10 43

Increasing
Cost

Infeasible

C
onflict 3

Conflict 2

Conflict 1

Conflict-directed A*

Feasible

10/27/10 44

Solving Optimal CSPs
Through Generate and Test

Generate	

Candidate	

Test	

Candidate	

Consistent?	

Keep	

(Optional) Update	

Cost	

Below	

Threshold?	

Extract	

Conflict	

Done	

 Yes	

 No	

Yes	

 No	

Leading Candidates	

Based on Cost	

 Conflict-directed A*

Constraint Solver

10/27/10

23

10/27/10 45

Conflict-directed A*
Function Conflict-directed-A*(OCSP)
 returns the leading minimal cost solutions.
 Conflicts[OCSP] ← {}
 OCSP ← Initialize-Best-Kernels(OCSP)
 Solutions[OCSP] ← {}
 loop do
 decision-state ← Next-Best-State-Resolving-Conflicts(OCSP)

 new-conflicts ← Extract-Conflicts(CSP[OCSP], decision-state)
 Conflicts[OCSP]
 ← Eliminate-Redundant-Conflicts(Conflicts[OCSP] ∪ new-conflicts)
end

Conflict-guided
Expansion

10/27/10 46

Conflict-directed A*
Function Conflict-directed-A*(OCSP)
 returns the leading minimal cost solutions.
 Conflicts[OCSP] ← {}
 OCSP ← Initialize-Best-Kernels(OCSP)
 Solutions[OCSP] ← {}
 loop do
 decision-state ← Next-Best-State-Resolving-Conflicts(OCSP)
 if no decision-state returned or
 Terminate?(OCSP)
 then return Solutions[OCSP]
 if Consistent?(CSP[OCSP], decision-state)
 then add decision-state to Solutions[OCSP]
 new-conflicts ← Extract-Conflicts(CSP[OCSP], decision-state)
 Conflicts[OCSP]
 ← Eliminate-Redundant-Conflicts(Conflicts[OCSP] ∪ new-conflicts)
end

10/27/10

24

Increasing
Cost

Infeasible

C
onflict 3

Conflict 2

Conflict 1

Conflict-directed A*
•  Each feasible subregion described by a kernel assignment.
  Approach: Use conflicts to search for kernel assignment
containing the best cost candidate.

Kernel 1

Kernel 2

Kernel 3
Feasible

10/27/10 48

Recall: Mapping Conflicts to Kernels

Conflict Ci: A set of decision variable assignments that are ���
 inconsistent with constraints Φ.	

	

Ci ^ Φ is inconsistent # #  	

Φ entails ¬Ci 	

	

Constituent Kernel: An assignment a that resolves a conflict Ci.	

	

a entails ¬ Ci	

Kernel: A minimal set of decision variable assignments
that resolves all known conflicts C.

 A entails ¬ Ci for all Ci in C

11

0

A	

B	

C

D	

E

F

G	

X	

Y	

Z

1

1

1

0

1

0

1
1

1

A1

A2

A3

X1

X2

A	

B	

C

D	

E

1

1

1

0

1

F

G

X	

Y	

Z

0

1

A1

A3

X1

?
?

?

10/27/10

25

10/27/10 49

{X1=U}

A1=? ∧ A2=U ∧ A3=? ∧ X1=? ∧ X2=?

 A1=G ∧ A2=U ∧ A3=G ∧ X1=G ∧ X2=G

•  Select best utility value for unassigned variables (Why?).

Extracting a kernel’s best state

10/27/10 50

Next Best State Resolving
Conflicts

function Next-Best-State-Resolving-Conflicts(OCSP)
 best-kernel ← Next-Best-Kernel(OCSP)
 if best-kernel = failure
 then return failure
 else return kernel-Best-State[problem](best-kernel)
end

function Kernel-Best-State(kernel)
 unassigned ← all variables not assigned in kernel
 return kernel ∪ {Best-Assignment(v) | v ∈ unassigned}
End

function Terminate?(OCSP)
 return True iff Solutions[OCSP] is non-empty

Algorithm for only finding the first solution, multiple later.

10/27/10

26

10/27/10 51

Assume Independent Failures:
•  PG(mi) >> PU(mi)

•  Psingle >> Pdouble

•  PU(A2) > PU(A1) > PU(A3) > PU(X1) > PU(X2)

Example: Diagnosis
A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

1	

1	

1	

0	

1	

0	

1	

A1

A2

A3

X1

X2

10/27/10 52

•  Conflicts / Constituent Kernels
–  none

•  Best Kernel:
–  {}

•  Best Candidate:
–  ?

First Iteration
A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

1	

1	

1	

0	

1	

0	

1	

A1

A2

A3

X1

X2

10/27/10

27

10/27/10 53

{ }

A1=? ∧ A2=? ∧ A3=? ∧ X1=? ∧ X2=?

 A1=G ∧ A2=G ∧ A3=G ∧ X1=G ∧ 2=G

•  Select best value for unassigned variables

Extracting the kernel’s best state

10/27/10 54

•  Conflicts / Constituent Kernels
–  none

•  Best Kernel:
–  {}

•  Best Candidate:
–  A1=G ∧ A2=G ∧ A3=G ∧ X1=G ∧ X2=G
–  ?

First Iteration
A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

1	

1	

1	

0	

1	

0	

1	

A1

A2

A3

X1

X2

10/27/10

28

10/27/10 55

Test: A1=G ∧ A2=G ∧ A3=G ∧ X1=G ∧ X2=G

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

1	

1	

1	

0	

1	

0	

1	

A1

A2

A3

X1

X2

10/27/10 56

Test: A1=G ∧ A2=G ∧ A3=G ∧ X1=G ∧ X2=G

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

1	

1	

1	

0	

1	

0	

1	

A1

A2

A3

X1

X2

0	

1	

 1	

 Symptom	

•  Extract Conflict and Constituent Kernels:
 ¬ [A1=G ∧ A2=G ∧ X1=G]

 A1=U ∨ A2=U ∨ X1=U

10/27/10

29

10/27/10 57

•  Conflicts  Constituent Kernels
–  A1=U ∨ A2=U ∨ X1=U

•  Best Kernel:
–  A2=U (why?)

•  Best Candidate:
–  A1=G ∧ A2=U ∧ A3=G ∧ X1=G ∧ X2=G

Second Iteration
•  PG(mi) >> PU(mi)

•  Psingle >> Pdouble

•  PU(A2) > PU(A1) >
PU(A3) > PU(X1) > PU(X2)

11

0

A	

B	

C

D	

E

F

G

X	

Y	

Z

1

1

1

0

1

0

1
1

1

A1

A2

A3

X1

X2

10/27/10 58

Test: A1=G ∧ A2=U ∧ A3=G ∧ X1=G ∧ X2=G

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

1	

1	

1	

0	

1	

0	

1	

A1

A3

X1

X2

10/27/10

30

10/27/10 59

Test: A1=G ∧ A2=U ∧ A3=G ∧ X1=G ∧ X2=G

1	

1	

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

1	

1	

1	

0	

1	

0	

1	

1	

0	

A1

A3

X1

X2

•  Extract Conflict:
 ¬ [A1=G ∧ A3=G ∧ X1=G ∧ X2=G]

 A1=U ∨ A3=U ∨ X1=U ∨ X2=U

10/27/10 60

•  Conflicts  Constituent Kernels
–  A1=U ∨ A2=U ∨ X1=U

–  A1=U ∨ A3=U ∨ X1=U ∨ X2=U

•  Best Kernel:
–  A1=U

•  Best Candidate:
–  A1=U ∧ A2=G ∧ A3=G ∧ X1=G ∧ X2=G

Third Iteration
•  PG(mi) >> PU(mi)

•  Psingle >> Pdouble

•  PU(A2) > PU(A1) >
PU(A3) > PU(X1) > PU(X2)

1

1

1

0

1

0

1

1

1

A	

B

C

D	

E

F

G

X	

Y	

Z
1

0

A1

A3

X1

X2

10/27/10

31

10/27/10 61

Test: A1=U ∧ A2=U ∧ A3=G ∧ X1=G ∧ X2=G

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

1	

1	

1	

0	

1	

0	

1	

A2

A3

X1

X2

10/27/10 62

Test: A1=U ∧ A2=U ∧ A3=G ∧ X1=G ∧ X2=G

0	

0	

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

1	

1	

1	

0	

1	

0	

1	

1	

1	

A3

X1

X2

•  Consistent!

A2

10/27/10

32

Outline
•  Model-based Diagnosis
•  Optimal CSPs
•  Conflict-directed A*

– Generating the Best Kernel
– Performance Comparison

X1=U, X2=U, ���
A1=U, A3=U	

X1=U	

 A1=U	

 A2=U	

X2=U	

 M1=U	

A3=U	

X1=U	

A1=U ∧ X2=U	

 A2=U ∧ A3=U	

X1=U	

 A1=U	

Generating The Best Kernel of The Known Conflicts

X1=U, A1=U , A2=U	

Constituent Kernels

•  Minimal set covering is an instance of breadth first search.	

 Insight:
•  Kernels found by minimal set covering	

10/27/10

33

10/27/10 65

A2=U	

 X1=U	

A1=U	

A2=U ∨ A1=U ∨ X1=U	

{ }

To Expand a Node:
•  Select an unresolved Conflict.
•  Each child adds a constituent kernel of Conflict.
•  Prune any node that is

–  Inconsistent, or
–  A superset of a known kernel.

Expanding a Node to
Resolve a Conflict

Constituent kernels

X1=U, X2=U, ���
A1=U, A3=U	

X1=U	

 A1=U	

 A2=U	

A1=U	

Generating The Best Kernel of The Known Conflicts

X1=U, A1=U, A2=U	

Constituent Kernels

•  Minimal set covering is an instance of breadth first search.	

  To find the best kernel, expand tree in best first order.	

 Insight:
•  Kernels found by minimal set covering	

10/27/10

34

10/27/10 67

Admissible h(α): Cost of best state
that extends partial assignment α

 ∧ A1=? ∧ A3=? ∧ X1=? ∧ X2=?

 x PA1=G x PA3=G x PX1=G x PX2=G

•  Select best value of unassigned variables.

f = g + h

PA2=u

A2=U

10/27/10 68

Admissible Heuristic h
•  Let g = <G,gi,Y> describe a multi-attribute utility fn

•  Assume the preference for one attribute xi is independent of another xk
–  Called Mutual Preferential Independence:

For all u, v ∈Y
If gi(u) ≥ gi(v) then for all w

G(gi(u),gk(w)) ≥ G(gi(v),gk(w))

An Admissible h:
–  Given a partial assignment, to X ⊆ Y
–  h selects the best value of each unassigned variable Z = X – Y

 h(Y) = G({gzi_max| zi∈Z, max gzi(vij))})
 vij∈Dzi

–  A candidate always exists satisfying h(Y).

10/27/10

35

10/27/10 69

Terminate when all conflicts resolved

Function Goal-Test-Kernel (node, problem)
 returns True IFF node is a complete decision state.
 if forall K in Constituent-Kernels(Conflicts[problem]),
 State[node] contains a kernel in K
 then return True
 else return False

10/27/10 70

Next Best Kernel of Known Conflicts
Function Next-Best-Kernel (OCSP)
 returns the next best cost kernel of Conflicts[OCSP].
 f(x) ← G[OCSP] (g[OCSP](x), h[OCSP](x))
 loop do
 if Nodes[OCSP] is empty then return failure
 node ← Remove-Best(Nodes[OCSP], f)
 add State[node] to Visited[OCSP]
 new-nodes ← Expand-Conflict(node, OCSP)
 for each new-node ∈ new-nodes
 unless ∃ n ∈ Nodes[OCSP] such that State[new-node] = State[n]
 OR State[new-node] ∈ Visited[problem]
 then Nodes[OCSP] ← Enqueue(Nodes[OCSP], new-node, f)
 if Goal-Test-Kernel[OCSP] applied to State[node] succeeds
 Best-Kernels[OCSP]
 ← Add-To-Minimal-Sets(Best-Kernels[OCSP], best-kernel)
 if best-kernel ∈ Best-Kernels[OCSP]
 then return State[node]
end

An instance
of A*

10/27/10

36

Outline
•  Model-based Diagnosis
•  Optimal CSPs
•  Conflict-directed A*

– Generating the Best Kernel
– Performance Comparison

10/27/10 72

Problem
Parameters

Constraint-based
A* (no conflicts)

Conflict-directed A* Mean CD-CB Ratio

Dom
Size

Dec
Vars

Clau
-ses

Clau
-se
lngth

Nodes
Expande
d

Queue
Size

Nodes
Expand

Queue
Size

Conflicts
used

Nodes
Expanded

Queue
Size

5 10 10 5 683 1,230 3.3 6.3 1.2 4.5% 5.6%
5 10 30 5 2,360 3,490 8.1 17.9 3.2 2.4% 3.5%
5 10 50 5 4,270 6,260 12.0 41.3 2.6 0.83% 1.1%

10 10 10 6 3,790 13,400 5.7 16.0 1.6 2.0% 1.0%
10 10 30 6 1,430 5,130 9.7 94.4 4.2 4.6% 5.8%
10 10 50 6 929 4,060 6.0 27.3 2.3 3.5% 3.9%

5 20 10 5 109 149 4.2 7.2 1.6 13.0% 13.0%
5 20 30 5 333 434 6.4 9.2 2.2 6.0% 5.4%
5 20 50 5 149 197 5.4 7.2 2.0 12.0% 11.0%

Performance:
With and Without Conflicts

10/27/10

37

Multiple Fault Diagnosis of
Systems with Novel Failures

Consistency-based Diagnosis: Given symptoms,
find diagnoses that are consistent with symptoms.

Suspending Constraints: Make no presumption
about a component’s faulty behavior.

1	

 Symptom	

1	

0	

A	

B	

C	

D	

E	

F	

G	

X	

Y	

Z	

1	

1	

1	

0	

1	

0	

1	

1	

1	

A1

A2

A3

X1

X2

 When you have eliminated the impossible,
whatever remains, however improbable, must be
the truth.

- Sherlock Holmes. The Sign of the Four.

Model-based Diagnosis as
Conflict-directed Best First Search

1.  Generate most likely Hypothesis.	

2.  Test Hypothesis.	

3.  If Inconsistent, learn reason for inconsistency ���

(a Conflict).	

4.  Use conflicts to leap over similarly infeasible options ���

to next best hypothesis.	

10/27/10

38

Outline
•  Model-based Diagnosis
•  Optimal CSPs
•  Conflict-directed A*

– Generating the Best Kernel
– Performance Comparison
– Appendix:

•  Intelligent Tree Expansion
•  Extending to Multiple Solutions
•  Review of A*

10/27/10 76

A2=U	

 X1=U	

A1=U	

Order constituents by
decreasing utility.

{ }

> >

Expand Only Best Child & Sibling

•  Traditionally all children expanded.
•  Only need child containing best candidate.
 Child with best estimated cost f = g+h.

A2=U ∨ A1=U ∨ X1=U	

Constituent kernels

10/27/10

39

10/27/10 77

A2=U	

Order constituents by
decreasing utility

{ }

Expand Only Best Child & Sibling

A2=U ∨ A1=U ∨ X1=U	

Constituent kernels

•  Traditionally all children expanded.
•  Only need child with best candidate.
 Child with best estimated cost f = g+h.

10/27/10 78

A1=U ∨ A3=U ∨ ���
X1=U ∨ X2=U	

 A1=U	

A2=U	

 A1=U	

When Do We Expand
The Child’s Next Best Sibling?

A2=U ∨ A1=U ∨ X1=U	

Constituent kernels

•  When a best child has a subtree or leaf pruned,
it may have lost its best candidate.

•  One of the child’s siblings might now contain the best candidate.
 Expand child’s next best sibling:

–  when expanding children to resolve another conflict.

{ }

10/27/10

40

10/27/10 79

Expand Node to Resolve Conflict
function Expand-Conflict(node, OCSP)
 return Expand-Conflict-Best-Child(node, OCSP) ∪
 Expand-Next-Best-Sibling (node, OCSP)

function Expand-Conflict-Best-Child(node, OCSP)
 if for all Kγ in Constituent-Kernels(Γ[OCSP])
 State[node] contains a kernel ∈ Kγ
 then return {}
 else return Expand-Constituent-Kernel(node,OCSP)

function Expand-Constituent-Kernel(node, OCSP)
 Kγ ← = smallest uncovered set ∈ Constituent-Kernels(Γ[OCSP])
 C ← {yi = vij | {yi = vij} in Kγ, yi = vij is consistent with State[node]}
 Sort C such that for all i from 1 to |C| - 1,
 Better-Kernel?(C[i],C[i+1], OCSP) is True
 Child-Assignments[node] ← C
 yi = vij ← C[1], which is the best kernel in Kγ consistent with State[node]
 return {Make-Node({yi = vij}, node)}

10/27/10 80

Expand Node to Resolve Conflict

function Expand-Next-Best-Sibling(node, OCSP)
 if Root?[node]
 then return {}
 else {yi = vij} ← Assignment[node]
 {yk = vkl} ← next best assignment in consistent
 child-assignments[Parent[node]] after {yi =

vij}
 if no next assignment {yk = vkl}
 or Parent[node] already has a child with {yk = vkl}
 then return {}
 else return {Make-Node({yk = vkl}, Parent[node])}

10/27/10

41

Outline
•  Model-based Diagnosis
•  Optimal CSPs
•  Conflict-directed A*

– Generating the Best Kernel
– Performance Comparison
– Appendix:

•  Intelligent Tree Expansion
•  Extending to Multiple Solutions
•  Review of A*

X2=U	

A3=U	

X1=U, X2=U, ���
A1=U, A3=U	

X1=U	

 A1=U	

 A2=U	

X1=U	

 A1=U	

 A1=U ∧ X2=U	

 A2=U ∧ A3=U	

Multiple Solutions: Systematically Exploring Kernels

X1=U, A1=U , A2=U	

Constituent Kernels

10/27/10

42

10/27/10 83

Child Expansion For Finding
Multiple Solutions

If Unresolved Conflicts: If All Conflicts Resolved:

A2=U	

 A1=U	

 X1=U	

X2=G	

 X2=U	

¬ (A2=G ∧ A1=G ∧ X1=G)	

Conflict
 { }

  Select unresolved conflict.
  Each child adds a

constituent kernel.

  Select unassigned variable yi.
  Each child adds an

assignment from Di.

10/27/10 84

A1=U

Intelligent Expansion
Below a Kernel

Order assignments by
decreasing utility.

A2=G ∨ A2=U	

Select Unassigned Variable.

Expand best child.

Continue expanding
best descendents.

When leaf visited,,
expand all next
best ancestors. (why?)

A2=G	

A3=G	

X1=G	

X2=G	

A2=U	

A3=U	

X1=U	

X2=U	

{}

10/27/10

43

10/27/10 85

A1=U ∨ A3=U ∨ ���
X1=U ∨ X2=U	

 A1=U	

A2=U	

 A1=U	

Putting It Together:
Expansion Of Any Search Node

A2=U ∨ A1=U ∨ X1=U	

Constituent kernels

•  When a best child loses any candidate,
expand child’s next best sibling:
–  If child has unresolved conflicts,

expand sibling when child expands its next conflict.
–  If child resolves all conflicts,

expand sibling when child expands a leaf.

{ }

A2=G	

A3=G	

X1=G	

X2=G	

A2=U	

A3=U	

A1=U	

A2=U	

10/27/10 86

 When you have eliminated the impossible,
 whatever remains, however improbable,
 must be the truth.

- Sherlock Holmes. The Sign of the Four.

Conflict-directed A*

1.  Generate most likely hypothesis.
2.  Test hypothesis.
3.  If inconsistent, learn reason for inconsistency

(a Conflict).
4.  Use conflicts to leap over similarly infeasible options

to next best hypothesis.

10/27/10

44

Outline
•  Using conflicts in backtrack search

– Dependency-directed backtracking
– Conflict learning
– Conflict-directed backjumping

11/02/09 copyright Brian Williams, 2000-10 87

Using Conflicts to Guide Search:
Dependency-directed Search

[Stallman & Sussman, 1978]
Input: Constraint satisfaction problem.
Output: Satisfying assignment.

Repeat while a next candidate assignment exists.
•  Generate candidate assignment c.
•  Check candidate c against conflicts.

–  If c is a superset of a conflict,
Then loop to the next candidate.

•  Check consistency of c.
–  If inconsistent,
–  Then extract and record a conflict from c.
–  Else return c as a solution.

⇒ Like a Graphplan memo, but generalizes an inconsistent solution.

11/02/09 copyright Brian Williams, 2000-10 88

10/27/10

45

Procedure Dependency_directed_Backtracking
(<X,D,C>)
Input: A constraint network R = <X, D, C>
Output: A solution, or notification that the network is inconsistent.

 i ← 1; ai = {}; conflicts = {} Initialize variable counter, assignments,
 D’i ← Di; Copy domain of first variable.
 while 1 ≤ i ≤ n
 instantiate xi ← Select-DDB-Value(); Add to assignments ai.
 if xi is null No value was returned,
 i ← i - 1; then backtrack
 else
 i ← i + 1; else step forward and
 D’i ← Di; copy domain of next variable

 end while
 if i = 0
 return “inconsistent”
 else
 return ai , the instantiated values of {xi, …, xn}
end procedure

11/02/09 copyright Brian Williams, 2000-10 89

Procedure Select-DDB-Value()
Output: A value in D’i consistent with ai-1, or null, if none.

 while D’i is not empty
 select an arbitrary element a ∈ D’i and remove a from D’i;
 ai ← ai-1,∪ {xi = a};
 if for every c in conflicts, not (ai superset c)
 if consistent(ai-1, xi = a)
 return a;
 else conflicts ← conflicts ∪
 minimal inconsistent subset of ai-1;
 end while
 return null
end procedure

11/02/09 copyright Brian Williams, 2000-10 90

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

