3/6/00

Model-based Monitoring

Brian C. Williams
16.412J)/6.834]
March 6, 2006

Image credit: NASA.

Due to the unknown mode, there tends to be
an exponential number of diagnoses.

G G
Good

Candidates with
UNKNOWN failure

modes

Fault Models don’t help.

Due to the unknown mode, there tends to be
an exponential number of diagnoses.

Candidates with
UNKNOWN failure U
modes U

Fault Models don’t help.

But “unknown” diagnoses represent a small fraction
of the probability density space.

=) Most of the density space may be approximated by
enumerating the few most likely diagnoses

Sequential
Model-based Diagnosis

Input:

* Set of component mode variables M, with finite domains.
* Set of observables X, with finite domains.

* Device model ® over M and X, in propositional logic.

+ Prior distribution P(M,) of mode assignments for each component i.
* Observation sequence X, , = x; , provided dynamically.

Output:
« P(M) Prior Probability of Failure
c PMIX,,=x,) Posterior Given Observation

updated after each observation is received.

Assume:

* Independence of component mode prior distribution.

+ Conditional independence of observations given candidate (Naive Bayes).
* Uniform distribution of observables, given candidate.

3/6/00

Mode Estimation Example

OIAXIB::ICO

Inverter(i):

* G(): Out(i) = not(In(1))

« S1(3): Out(i) =1 '

. S0(): Out(i) = 0 . }Esolat(?s surprises
. UG * Explains

Nominal, Fault and Unknown Modes

Sherlock
[de Kleer & Williams, IICAI 89]

Candidate (Prior) Initial Probabilities

POWELMIIM
= PlwyymRgnfm

POy M J i Assume Independence
Ma Of Initial Mode
A B C

P(G(A),G(B),G(C)) = .97

P(G) .99 99 .99
P(S1) .008 008 .001 PS1(A),6(B).G(C)) =008
P(SO0) 001 001 008 P(S1(A),G(B),S0(C)) = .00006

P(U) 001 001 001 P(S1(A),S1(B),S0(C)) = .0000005

3/6/00

Posterior Probability, after
Observations X, , =X,

PaypPM
- PX), N Bayes’

Rule
- EPgYPM

Pl

Forn>1:

PO 2

<

Observations are conditionally independent

= EPGMp Mx 1,12

Estimating the Observation
Probability P(x; | M)
Assumption: All consistent observations for X, are equally likely

P(x;| M) is estimated using model, @, according to:

If previous observations X, ; ; = x; ;;, M and @ entails X; = x;
Then P(x; | M) =1

If previous observations X, ; | = x;; |, M and © entails X; # v;
Then P(x; | c)=0

Otherwise, Assume all consistent assignments to X are
equally likely observations:

let D = {x,€ Dy; | ¢, ® is consistent with X; = x_ }

Then P(x; | M) = 1/|D

3/6/00

in out
0 ’A . X ’B o Y Co .1
PUhMpMeE
Observe out = 1:
* m=<G(A),G(B),G(C)>
e Prior: P(m) =.97
* Plout=1|m) =7?
. =1
* Pm|out=0) =?
. =1x.97xa
in out
0 I A X I B e C 0
PUh MM

Observe out = 0:
* m=<G(A),G(B),G(C)>

* P(m) =.97

* Plout=0|m) =?

. =0

* Pm|out=0) =?

. =0x.97xa=0

3/6/00

3/6/00

in out
0 phe X BB, v S, 0 =

Example: Tracking Single Faults
* Which are eliminated?

» Which are predict observations?

* Which are agnostic?

1-2 .

&+) N)) N & O
O Q\v' ~@ o\c’ o\v' o\o o\ o\
© © © \?
R\

Leading diagnoses before output observed

Priors for Single A B C

Fault Diagnoses: P(S1) —6o8— |.008 00+—
P(S0) .001 —004— 008
P(U) .001 .001 .001

mn out

%

3/6/00

i

n out
A B C
O-—» S »0 Y »0—~ o ¢m=

Top 6 of 64 =98.6% of P

0-5‘
°I4_
°l3_
0-2‘
011_
o_
fF D & & O O O
9 %) \9
v
A\
%

Leading diagnoses before output observed

Due to the unknown mode, there tends to be
an exponential number of diagnoses

U Candidates with
UNKNOWN failure
modes

But these diagnoses represent a small fraction
of the probability density space.

‘ Most of the density space may be represented
by enumerating the few most likely diagnoses

Optimal CSP

OCSP= <Y, g, CSP>

— Decision variables Y with domain Dy,
— Utility function g(Y): Dy —= R
— CSP is over variables <X,Y>

Find Leading arg max g(Y)
YED,

s.t. I X € Dy s.t. C(X,Y) is True

=>» Encode C in propositional state logic

=> g() is a multi-attribute utility function that is preferentially

independent.

Outline

Self-Repairing Agents
Formulating Diagnosis
Diagnosis from Conflicts
Single Fault Diagnosis
Extracting Conflicts

11/02/09 copyright Brian Williams, 2000-10

3/6/00

Extracting Conflicts
using Unit Propagation

\
Al X | 1
12 RO

>

[

A2

Y
ml—z

Sl I

Rl

e
|m

Symptom:
F is observed 0, but should be 1 if A1, A2 and X1 are okay.

Contflict: {A1=G, A2=G, X1=G} is inconsistent.
— At least A1=U, A2=U or X1=U

11/02/09 copyright Brian Williams, 2000-10 19

Find Symptom Using Unit Propagation
while Maintaining Support for Propagation
true false false
4] -
b true Cp—pV Tt

C,:7rvqg VK -

procedure propagate(C)
Input: Cis a clause
if all literals in C are false except 1, and 1 is unassigned
then assign true to | and
record C as a support for 1 and
for each clause C’ mentioning “not 17,
propagate(C’)
end propgggle copyright Brian Williams, 2000-10)

3/6/00

10

Find Symptom Using Unit Propagation
while Maintaining Support for Propagation

Al1=G A=1 C=1

\ true \ true \ true

41=G | [a=1 | [c=1 | ~(F=1) v ~(F0)
true

{ } }
~(A1=G) v ~(A=1) v =(C=1) v X:1—>-X=)i true true
l F=I y. F=0

X1=G /S
XI=G =(X1=G) v =(X=1) v =(Y=0) v F=1 F=0
true
true
-(A2=G) v ~(D=0) v Y=0
true true

|42=G | D=0 |

A2=G D=0

11/02/09 copyright Brian Williams, 2000-10 21

Extract Conflict by Tracing Support

Al=G) A=T T
true \ true \ true
|a1=G | |a=1 | |c=1 | ~(F=1) v ~(F=0)
)) 4 true ‘ ‘
~(AI=G) v =(A=1) v =(C=1) v X:1<- true trie
I \F=1 | |F=0|
Q-6 S/
V -(X1=G) v ~(X=1) v =(Y=0) v F=1 _E=6—
true

true
-(A2=G) v ~(D=0) v Y=0 <-
frue irue Symptom: F observed 0 but predicted 1.
[42-G | [p=0 | .
Conflict: {A1=G, A2=G, X1=G}.

copyright Brian Williams, 2000-10 22
/02/ pyrig]

3/6/00

11

Extract Conflict by Tracing Support

procedure Conflict(C)

Input: an inconsistent clause C
Output: A conflict of C.

for each literal I in C

union Support-Conflict(!, support('))
end Conflict

procedure Support-Conflict(l, S)
Input:

lis a literal and S is the support clause of |
Output:

A set of mode assignments supporting I.

If unit-clause?(C)
If mode-assignment?(literal(C))
Then {literal(C)}
Else {}
Else for each literal 11 in C, other than 1

Unigp Support-Conflict(] |, sHpRAF kD, »
end Support-Conflict

procedure Test Candidate(c, M, obs)

Input:

Candidate c, Model M, Observation Obs
Output:

Consistent or a conflict.

Assert candidate assignment c;

Propagate obs through model M using unit propagation;
If propagate results in an inconsistent clause

Return Conflict(c);
Else

Search for satisfying solution using DPLL;
If inconsistent

Return c as a conflict;
Else

Return consistent;
End Test_Candidate

11/02/09

copyright Brian Williams, 2000-10 24

12

3/6/00

MIT OpenCourseWare
http://ocw.mit.edu

16.410/ 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

