3/6/00

Mode Estimation and
Model-based Diagnosis

Brian C. Williams
16.410/16.413
October 251, 2010

Image credit: NASA.

Assignment

* Remember:
* Problem Set #6 Propositional Logic,
due this Wednesday, October 27t

e 16:413 Project Part 1: Sat-based Activity Planner,
due Wednesday, November 3.

* Reading
- Today: Johan de Kleer and Brian C. Williams, "Diagnosing Multiple
Faults," Artificial Intelligence, 32:100-117, 1987.

- Wednesday: Brian C. Williams, and Robert Ragno, "Conflict-directed A*
and its Role in Model-based Embedded Systems," Special Issue on Theory
and Applications of Satisfiability Testing, Journal of Discrete Applied
Math, January 2003.

10/25/10 copyright Brian Williams, 2000-10 2

Outline

» Self-Repairing Agents
— Model-based Programming
— Diagnosis as Conflict-directed Search

* Formulating a Diagnosis
 Diagnosis from Conflicts

10/25/10 copyright Brian Williams, 2000-10

observations

Self-Repairing Agent:

* Monitors & Diagnoses

* Repairs & Avoids

e Probes and Tests Symptom-directed
10/25/10 copyiht i Wi, 200010

actions

3/6/00

3/6/00

Orbitlnsert()::
(do-watching ((EngineA = Firing) OR
(EngineB = Firing))
(parallel
(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)
(when-donext ((EngineA = Standby) AND
(Camera = Off))
(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND
(EngineB = Standby) AND
(Camera = Off))
(EngineB = Firing))))

RM Titan Model-based Executive

State estimates

State goals

Observations Commands

001 "W closed
10/25/10™7 inflow iff outflow | ~|copyright Brian Williams, 2000-T0 3

Model-based Programming
of a Saturn Orbiter

Turn camera off and
engine on Orbitlnsert()::

do-watching (EngineA = Thrusting OR
EngineB = Thrusting)

: I parallel {
EngineA = Standby;
EngineB = Standby;
Camera = Off;
do-watching (EngineA = Failed)
{when-donext (EngineA = Standby) AND

Camera = Off)

Eng|neA Eng|neB | EngineA = Thrusting};
when-donext (EngineA = Failed AND
EngineB = Standby AND
]IJ Camera = Off)
| EngineB = Thrusting} |

Science Camera

10/25/10 copyright Brian Williams, 2000-10 6

The program assigns EngineA = Thrusting,
and the model-based executive

Oxidizer tank Fuel tank

Deduces that Plans actions lf '_f
thrust is off, and to open

the engine is healthy six valves

Deduces that a valve

failed - stuck closed
Prog: EnglneB Thrustlng

| 1
Determines that Valves
on the backup engine B
will achieve thrust, and

10/25/10 plans.nesdedactions.

State estimates State goals

Optimal CSP:
arg min f(x)
s.t. C(x) is satisfiable

D(x) is unsatisfiable

arg min P,(YI Obs) arg max R(Y)

s.t. W(X,Y) A O(m’) is consistent s.t. W(X,Y) entails G(X,Y)
s.t. W(X,Y) is consistent

s.t. Y is reachable /

10/25/10 copyright Brian Williarps, [2000-10

3/6/00

3/6/00

Outline

 Self-Repairing Agents
— Model-based Programming
— Diagnosis as Conflict-directed Search

* Formulating a Diagnosis

 Diagnosis from Conflicts

10/25/10 copyright Brian Williams, 2000-10 9

Model-based Diagnosis as
Conflict-directed Best First Search

When you have eliminated the impossible,
whatever remains, however improbable, must be
the truth.

- Sherlock Holmes. The Sign of the Four.

1. Generate most likely candidate.
» 2. Test candidate.
3. If Inconsistent, learn reason for inconsistency
(a conflict).
4. Use conflicts to leap over similarly infeasible options
t§’the next best candidate” ™" N

Compare Most Likely Candidate
to Obervations
A) Ggmhat
@

; ¥

Helium tank

Oxidizer tank Fuel tank
Flow, = zero — +~—— Pressure,= nominal
Pressure; = nominal % i
|
Main
Engines

Acceleration = zero

It is most likely that all components are okay.

10/25/10 copyright Brian Williams, 2000-10 11

Isolate Conflicting Information

mige ()

Helium tank

Fuel tank

X

Main
Engines

Oxidizer tank

—

Flow ;= zero

The red component modes conflict with the model and observations.

10/25/10 copyright Brian Williams, 2000-10 12

3/6/00

Leap to the Next Most Likely Candidate
that Resoles the Conflict

; e

Helium tank

<&
Oxidizer tank Fuel tank
B —
Flow ;= zero ,! i
|
Main
Engines

The next candidate must remove the conflict.

10/25/10 copyright Brian Williams, 2000-10 13

New Candidate Exposes Additional Conflicts

Helium tank

Oxidizer tank Fuel tank
Pressure; = nominal — «—— Pressure,= nominal
® i *
Main
. Engines
Acceleration = zero
Anothep conflict, try remoying.RQths, 20 "

3/6/00

Final Candidate Resolves all Conflicts

=
X
e
P

Helium tank

<&
Oxidizer tank Fuel tank
Pressure; = nominal «— Pressure,= nominal

Flow, = zero ‘ i i Flow, = positive
i |
=
Main
Engines

Acceleration = zero

Implementation: Conflict-djrgcted.AF.search. s

Outline

 Self-Repairing Agents
* Formulating a Diagnosis
* Diagnosis from Conflicts

10/25/10 copyright Brian Williams, 2000-10 16

3/6/00

fail . . Engine temp sensor high

alures requires reasoning . LOX level low

from a model. / ‘ - GN&C detects low thrust
+ H2 level possibly low

|
Issue 1: DlagnosmgaFudden STS-93 Symptoms:

Problem: Liquid hydrogen leak

Effect:
» LH2 used to cool engine
+ Engine runs hot

9 Cnsumes more LOX
\ “_&'
1y W

.
LS

-

ol

Image credit: NASA.

Model-based Diagnosis

Input: Observations of a system with symptomatic behavior,
and a model @ of the system.

Output: Diagnoses that account for the symptoms.

1 A 1 1 Symptom
B L0

1 = Teene®
c|L

1 A2 Y 1

| E a3 —,Z_

10/25/10 copyright Brian Williams, 2000-10 18

3/6/00

Solution: Diagnosis as
Hypothesis Testing

Generate candidates, given symptoms.

Test if candidates account for all symptoms.

Set of diagnoses should be complete.

Set of diagnoses should exploit all
available information.

10/25/10 copyright Brian Williams, 2000-10

Outline

» Self-Repairing Agents
* Formulating Diagnosis
— Explaining failures
— Handling unknown failures
— Multiple faults
— Partial explanation

— Execution monitoring

 Diagnosis from Conflicts

10/25/10 copyright Brian Williams, 2000-10

20

3/6/00

10

3/6/00

How Should Diagnoses
Account for Symptoms?

Abductive Diagnosis: Given symptoms,
find diagnoses that predict observations.

1A__i_O_ 0 Symptom
X

B | F 0
lc—l_i 0 X1

1 = A2 Y — 1

o R — 1 x| j—E 1
1E_A3—,Z_

* Fault Model: A1’s output is stuck at 0.
» Abductive diagnosis needs exhaustive fault models.

10/25/10 copyright Brian Williams, 2000-10 21

Input: Abductive,
Model-based Diagnosis

Xor(i): L x

= G(i): 1 B__L — xi|—E 0
Out(i) = In1(i) xor In2(i) | 4 = v

= Stuck_0(i): o ol 1
Out(i)=0 L a _IZ

* Model ®
— Structure.

— Model of normal behavior for each component.
— Model for every component failure mode.
* Observations Obs

— Inputs and Response.
10/25/10 copyright Brian Williams, 2000-10 22

11

Model: Abductive,
Model-based Diagnosis

Y
XOI’(I): 1 A—_ﬁ_l <
= G(i): B i [—E 0
Out(i) = In1(i) xor In2(i) 1 L‘l_ —
= Stuck_0(i): In L2 Y — ;
Out(i) =0 0 x2 | —G
1 E A3 | Z
+ X mode variables, one for each component c.
+ D, modes of component ¢ = domain of m, € M.
- Y state variables, with domains Dy.
+ O(X,Y) model constraints.
+ O observed variables OCMu Y.
» Partitioned into Input I and Response R variables.
10/25/10 copyright Brian Williams, 2000-10 23
Output: Abductive,
Model-based Diagnosis
1\
XOI’(I): 1 A—_ﬁ_l <
= G(i): B x| —E 0
Out(i) = In1(j) xor In2(j) 1 Q‘l_ —
= Stuck_O0(i): 1 In A2 Y — L
OUt(i) =0 0 D X2 LG
1 E A3 _I Z

Candidate = {X1=G, X2=G, A1=G, A2=G, A3=G}
Diagnosis = {X1=G, X2=G, A1=S0, A2=G, A3=G}

Obs = <Inp; Rsp> Assignment to I and R, respectively.
Candidate C;;: Assignment of modes to X.
Diagnosis D;: A candidate such that

D; A Inp A @ entails Rsp.

10/25/10 copyright Brian Williams, 2000-10 24

3/6/00

12

Abductive Diagnosis
by Generate and Test

Given: exhaustive fault models, structure and observations.

Generate: candidate mode assignment C;.

Test: C, as an abductive diagnosis:
1. Find Rsp entailed by C,, given Inp.
2. Compare observed and predicted Rsp:

Disagree: Discard
Agree: Keep
No prediction: Discard

Exonerate: component if none of its fault models agree.

Problem:
* Fault models are typically incomplete.
* May incorrectly exonerate faulty components.

10/25/10 copyright Brian Williams, 2000-10

25

Outline

» Self-Repairing Agents
* Formulating Diagnosis
— Explaining failures
— Handling unknown failures
— Multiple faults
— Partial explanation

— Execution monitoring

 Diagnosis from Conflicts

10/25/10 copyright Brian Williams, 2000-10

26

3/6/00

13

Issue 2: Failures are Often Novel

* Mars Observer

* Mars Climate Orbiter
* Mars Polar Lander

* Deep Space 2

Image credit: NASA/JPL.

10/25/10 copyright Brian Williams, 2000-10 27

g

we CLUSTER #1 o
T 00 i

Failure models are never completely known.

10/25/10 copyright Brian Williams, 2000-10 28

© Source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

3/6/00

14

http://ocw.mit.edu/fairuse

How Should Diagnoses

Account for Novel

Symptoms?

Consistency-based Diagnosis: Given symptoms,
find diagnoses that are consistent with symptoms.

Suspending Constraints: For novel faults, make
no presumption about faulty component behavior.

1 A ; 1 < '/'1\\‘ Symptom
1 B X1 —E“g,"
clléa o
1 A2 Y -
0 1 x2S 1
E A3 _I 7 [deKleer & Brown, 83]
1 [Davis, 84]
10/25/10 copyright Brian Williams, 2000-10 29
[Geneserth, 84]
Outline

 Self-Repairing Agents
* Formulating Diagnosis
— Explaining failures
— Handling unknown failures
— Multiple faults
— Partial explanation

— Execution monitoring

 Diagnosis from Conflicts

10/25/10 copyright Brian Williams, 2000-10

3/6/00

15

Issue 3: Multiple Faults Occur

» Three shorts, tank-line and
pressure jacket burst, and
panel flies off.

=>» Solve by divide & conquer:
1. Diagnose each symptom.
2. Summarize conflicts.
3. Combine diagnoses.

Image source: NASA.
31
APOLLO 1 3 copyright Brian Williams, 2000-10

10/25/10

=>» Diagnosis = mode assignment.

Solution: Identify all Combinations
of Consistent “Unknown” Modes

And(i): 1 A Al X
= G(): : 1 F 0O
Out(i) = In1(i) AND In2(i)
o 1 C A2 Y
= U(): D G
0 X2 1
1 E A3 Z

Candidate = {A1=G, A2=G, A3=G, X1=G, X2=G}

Candidate: Assignment of G or U to each component.

10/25/10 copyright Brian Williams, 2000-10 32

3/6/00

16

3/6/00

Solution: Identify all Combinations
of Consistent Unknown Modes

And(i): 1 —a X!
= Gi): | B = < (_Eo
Out(i) = In1(i) AND In2(i) o -
(@): D — G
0 —

Diagnosis = {A1=G, A2=U, A3=G, X1=G, X2=U}

» Candidate: Assignment of G or U to each component.
» Diagnosis: Candidate consistent with model and observations.
10/25/10 copyright Brian Williams, 2000-10 33

 Self-Repairing Agents
* Formulating Diagnosis
— Explaining failures
— Handling unknown failures
— Multiple faults
— Partial explanation

— Execution monitoring

 Diagnosis from Conflicts

10/25/10 copyright Brian Williams, 2000-10 34

17

Issue 4: The cause of failure is often needed to plan a
recovery strategy (Partial Explanation).

Issue 5: Component mode estimates are needed to
confirm correct behavior (Execution Monitoring).

10/25/10 copyright Brian Williams, 2000-10 35

Incorporating Failure Modes:
Mode Estimation

Sherlock
[de Kleer & Williams, [JCAI 89]

0 »A, X »B. Y »C. .0

Inverter(i):
. G(): Out(i) = not(In(i))
« S1(): Out(i) = 1 Isolates unknown
L S ° u wil.
S00): Out(i) = 0 * Explains.
« U®):

Nominal, Fault and Unknown Modes

10/25/10 copyright Brian Williams, 2000-10 36

3/6/00

18

3/6/00

Example Diagnoses

0 A.X’B.Y C_.0

Diagnosis: [S1(A),G(B),U(C)]

Sherlock 10/25/10 copyright Brian Williams, 2000-10 37
[de Kleer & Williams, IJCAI 89]

n out
0 .A. X »B. Y »C._,()

Diagnoses: (42 of 64 candidates)

Fully Explained Failures Partial Explained
* [G(A).G(B),S0(C)] * [G(A),U(B),S0(C)]
* [G(A),S1(B),S0(C)] « [U(A),S1(B),G(C)]

* [S0(A),G(B),G(C)] « [SO(A),U(B),G(C)]

Fault Isolated, But Unexplained
* [G(A),G(B),UO)]
* [G(A),U(B),G(O)]
* [U(A),G(B),G(C)]

10/25/10 copyright Brian Williams, 2000-10 38

19

Mode Estimation

= Mode, State, Observation Variables: X, Y, 0

= Model: d(X,Y) = components + structure
And(i): 1 &g -
G(): B = | F O
Out(i) = In1(i) AND In2(i) ! Xl
u(i): & —1y?°
D — G
ALL components have “unknown Mode” U, 1
whose assignment is never mentioned in any 1 E A3 —,Z_
constraint.
Diagnosis = {A1=G, A2=U A3=G, X1=G. X2=U}
» Candidate C;: Assignment of modes to X.
* Obs: Assignment to O.
» Diagnosis D;: Candidate consistent with Model and Obs:
D, A Obs A O(X,Y) is satisfiable.
10/25/10 copyright Brian Williams, 2000-10 39
Mode Estimation
Given:
= Mode, State, Observation Variables: X,Y, O
= Model: O(X,Y) = components + structure
And(i): 1 A X1
G(i): B I 1 F 0
Out(i) = In1(i) AND In2() ! X
U(i): € —1y?
o D — G |
« All behaviors associated with modes.
1
* ALL components have “unknown Mode” U, E A3 —,Z_
whose assignment is never mentioned in any
constraint.
Return:
D,,, ={X € D, 13Y € D,st Obs Ad(X.Y)}
10/25/10 copyright Brian Williams, 2000-10 40

3/6/00

20

Constraint Modeling and
Consistency Testing

— Propositional Logic:
* Complete: DPLL. (Titan)
* Incomplete: Unit propagation. (Livingstone/DS1)

* Finite Domain Constraints:
* Complete: Backtracking with forward checking.
* Incomplete: AC-3 / Waltz constraint propagation.

« Algebraic Constraints: (GDE/Sherlock/GDE+/XDE)
* Complete: Gaussian Elimination.
* Incomplete: Sussman/Steele Constraint Propagation.
* Propagate newly assigned values through equations
that mention the newly assigned variables.
*To propagate, use assigned values of constraint to
deduce unknown value(s) of constraint.

10/25/10 copyright Brian Williams, 2000-10 41

Models in

Propositional State Logic

And(i):
= G(i):

Out(i) = In1(i) AND In2(i) i=G D {[Inl(i)=1 A In2(i)=1] iff Out(i)=1}
= U):

Or(i):
= G(i):
Out(i) = In1(i) OR In2(i) i=G > {[Inl(i)=1 v In2(i)=1] iff Out(i)=1}

XE{10} X=1v X=0

[X=1 A X=0] ~(i=G) v ~(In1(i)=1) v Out(i)=1
~(i=G) v ~(In2(i)=1) v Out(i)=1
~(i=G) v ~(In1(i)=0) v ~(In2(i)=0) v Out(i)=0

10/25/10 copyright Brian Williams, 2000-10 42

3/6/00

21

Solution: Diagnosis as
Hypothesis Testing

1. Generate candidates C,, given symptoms.
— Use Backtrack Search over mode variables X.

2. Test if candidates account for all symptoms.

— Use DPLL to find assignment to Y such that
C; A Obs A O(X,Y) 1s satisfiable.

* Set of diagnoses should be complete.

* Set of diagnoses should exploit all
available information.

10/25/10 copyright Brian Williams, 2000-10 43

Outline

» Self-Repairing Agents

* Formulating Diagnosis

* Diagnosis from Conflicts
— Kernels
— Conflicts
— Candidate Generation

— Conflict Recognition

10/25/10 copyright Brian Williams, 2000-10 44

3/6/00

22

Mode Estimation

Mode, State, Observation Variables: X, Y, 0

Model: d(X,Y) = components + structure
And(i): 1 &g -
G(): B = | F O
Out(i) = In1(i) AND In2(i) ! Xl
UG@): 1 c — Y 0
D — G
ALL components have “unknown Mode” U, 1
whose assignment is never mentioned in any 1 E A3 —,Z_

constraint.

D, .. ={X € D, 1Y € Dyst Obs A®(X,Y)}

As more constraints are relaxed, candidates are more easily satisfied.
=> Typically an exponential number of diagnoses (mode estimates).

How do we encode solutions compactly?

10/25/10 copyright Brian Williams, 2000-10 45

Partial Diagnoses

A ?
1 1
B L
Partial Diagnosis 1 Xl
C v 0
{A1=U, A2=U, X2=U} o D 9 G
[T
1 E A3 Z
Partial Diagnosis: Extensions (Diagnoses):
A partial mode assignment M, {A1=U, A2=U, A3=G, X1=G, X2=U}

all of whose full extensions are diagnoses. A 1-u, A2=U, A3=G, X1=U, X2=U}

* M “removes all symptoms.” {A1=U, A2=U, A3=U, X1=G, X2=U}
{A1=U, A2=U, A3=U, X1=U, X2=U}

10/25/10 copyright Brian Williams, 2000-10 46

3/6/00

23

Partial Diagnoses

A ?
1 x|
N . | B xi[—E£ 0
Partial Diagnosis
C v 0
{A1=U, A2=U, X2=U} 0 D 9 G |
E A3 —F
l —
Partial Diagnosis: Extensions (Diagnoses):
A partial mode assignment M, {A1=U,A2=U, A3=G, X1=G, X2=U}
all of whose full extensions are diagnoses. {A1=U, A2=U, A3=G, X1=U, X2=U}
* M “removes all symptoms.” {A1=U, A2=U, A3=U, X1=G, X2=U}
* M A @ A Obs is consistent. {A1=U, A2=U, A3=U, X1=U, X2=U}

* M entails ® A Obs. (implicant)

10/25/10 copyright Brian Williams, 2000-10 47

Kernel Diagnoses

A ?
1 = a1 Xl
B = <17l Eo
Kernel Diagnosis 1
Cc YO
{A2=U, X2=U} 0 D 9 G |
1 E A3 IZ1

Partial Diagnosis:

A partial mode assignment M, all of whose full extensions are diagnoses.

* M entails @ A Obs (implicant)

Kernel Diagnosis:

A partial diagnosis K, no subset of which is a partial diagnosis.
* K is a prime implicant of ® A Obs

48

3/6/00

24

Example Diagnoses

Sherlock
[de Kleer & Williams, IJCAI 89]

0 A.X’B.Y C_.0

Diagnoses: [S1(A),G(B),U(C)] (42 total)
A B C
O " 0
Kernel Diagnoses: [U(C)] [S1(B),G(C)]
[SO(C)] [U(A),G(B),G(C)]
[U(B),G(C] [SO(A),G(B),G(C)]
Outline

 Self-Repairing Agents

* Formulating Diagnosis

* Diagnosis from Conflicts
— Kernels
— Conflicts
— Candidate Generation

— Conflict Recognition

10/25/10 copyright Brian Williams, 2000-10 50

3/6/00

25

Diagnosis by

Divide and Conquer

Given model @ and observations Obs
1. Find all symptoms.

2. Diagnose each symptom separately
(each generates a conflict).

3. Merge diagnoses
(set covering — kernel diagnoses).

10/25/10

General Diagnostic Engine
[de Kleer & Williams, AlJ 87]
[Reiter ALJ 87]

copyright Brian Williams, 2000-10 51

Conlflicts Explain How to
Remove Symptoms

Symptom:

1
1
0
1

F is observed 0, but predicted to be 1 if A1, A2 and X1 are okay.

Conflict 1: {A1=G, A2=G, X1=G} is inconsistent.
— One of A1, A2 or X1 must be broken.
Conflict: An inconsistent partial assignment to mode variables X.
10/25/10 copyright Brian Williams, 2000-10 52

3/6/00

26

Second Conflict

Conflicting modes aren’t always
upstream from symptom.

— D e

Symptom: G is observed 1, but predicted 0.
Conflict 2: {A1=G, A3=G, X1=G, X2=G} is inconsistent.

—One of A1, A3, X1 or X2 must be broken.

10/25/10 copyright Brian Williams, 2000-10 53

Summary: Conflicts

1 Symptom
1
1
0 1
, E —1a3 —,Z_
Conflict: A partial mode assignment M that is
inconsistent with the model and observations.
Properties:
¢ Every superset of a conflict is a conflict.
* Only need conflicts that are minimal under subset.
e ®DAObs>-M
10/25/10 copyright Brian Williams, 2000-10 54

3/6/00

27

Outline

 Self-Repairing Agents
» Formulating Diagnosis
 Diagnosis from Conflicts
— Kernels
— Conflicts
— Candidate Generation

— Conflict Recognition

10/25/10 copyright Brian Williams, 2000-10 55

From Conflicts to Kernels

Constituent Kernel: An assignment a that “resolves” one conflict C..

1

{A2=U} resolves {A1=G, A3=G, X1=G, X2=G}.

a entails - C,.

10/25/10 copyright Brian Williams, 2000-10 56

3/6/00

28

Mapping Conflicts to
Constituent Kernels
Conflict: {A1=G, A2=G, X1=G}

=(A1=G A A2=G A X1=G)

. B

Al=U v A2=U v X1=U

. B

Constituent Kernels: {A1=U, A2=U, X1=U}

Constituent _Kernels(c)={-[1c =-(al)}

10/25/10 copyright Brian Williams, 2000-10 57

From Conflicts to Kernels

Constituent Kernel: An assignment a that “resolves” one conflict C,.

{A2=U} resolves {A1=G, A3=G, X1=G, X2=G}.

Kernel: A minimal set of assignments A that “resolve” all conflicts C.

{A2=U, X2=U} resolves {A1=G, A3=G, X1=G, X2=G}, and
{A2=U, X2=U} resolves {A1=G, A2=G, X1=G}.

10/25/10 copyright Brian Williams, 2000-10 58

3/6/00

29

From Conflicts to Kernels

Constituent Kernel: An assignment a that “resolves” a conflict C,.
a entails = C,.

Kernel: A minimal set of assignments A that “resolves” all conflicts C.
A entails -~ C;for all C; in C.

= Map constituent kernels to kernels by minimal set covering.

10/25/10 copyright Brian Williams, 2000-10 59

Generate Kernels From Conflicts

{A1=G, A2=G, X1=G} Conflict 1.
{A1=G, A3=G, X1=G, X2=G} Conflict 2.
{A1=U, A2=U, X1=U} constituents of Conflict 1.

{A1=U, A3=U, X1=U, X2=U} constituents of Conflict 2.

Kernel Diagnoses =

“Smallest” sets of modes that remove all conflicts. 60

3/6/00

30

Generate Kernels From Conflicts

{A1=G, A2=G, X1=G} Conflict 1.
{A1=G, A3=G, X1=G, X2=G} Conflict 2.
{AlEU, A2=U, X1=U} constituents of Conflict 1.

{A

Kernel Diagnoses = {Al=U} 1. Compute cross product.

2. Remove supersets.

New superset Old.
Old superset New.

“Smallest” sets of modes that remove all conflicts. 6l

,A3=U, X1=U, X2=U} constituents of Conflict 2.

Generate Kernels From Conflicts

{A1=G, A2=G, X1=G} Conflict 1.
{A1=G, A3=G, X1=G, X2=G} Conflict 2.
{Al1=U, A2=U, X1=U} constituents of Conflict 1.

{A1=U, , X1=U, X2=U} constituents of Conflict 2.

Kernel Diagnoses = ;
{A1=U} 2. Remove supersets.

New superset Old.
Old superset New.
“Smallest” sets of modes that remove all conflicts. 6

1. Compute cross product.

3/6/00

31

Generate Kernels From Conflicts

{A1=G, A2=G, X1=G} Conflict 1.
{A1=G, A3=G, X1=G, X2=G} Conflict 2.
{Al1=Y,A2=U, X1=U} constituents of Conflict 1.
{A1=U, A3= <U, X2=U} constituents of Conflict 2.

Kernel Diagnoses = {At=U7Xt=637— 1. Compute cross product.

{A1=U} 2. Remove supersets.
New superset Old.
Old superset New.

“Smallest” sets of modes that remove all conflicts. 6

Generate Kernels From Conflicts

{A1=G, A2=G, X1=G} Conflict 1.
{A1=G, A3=G, X1=G, X2=G} Conflict 2.
{Al=,;, A2=U, X1=U} constituents of Conflict 1.

{A1=U,A3=U, XI= =U} constituents of Conflict 2.

Kernel Diagnoses = {At=U72%2=07— 1. Compute cross product.

{A1=U} 2. Remove supersets.
New superset Old.
Old superset New.
“Smallest” sets of modes that remove all conflicts. o

3/6/00

32

Generate Kernels From Conflicts

{A1=G, A2=G, X1=G}
{A1=G, A3=G, X1=G, X2=G}

{A1=U,

{A1=U,A3=

Kernel Diagnoses = {A2=U, X2=U}

Conflict 1.
Conflict 2.

constituents of Conflict 1.

constituents of Conflict 2.

1. Compute cross product.

{A2=U, X1=U} 2. Remove supersets.
{A2=U,A3=U} New superset Old.
(A=t ;’ Ad=U] Old superset New.
{A1=U}

“Smallest” sets of modes that remove all conflicts. 6

Generate Kernels From Conflicts

{A1=G, A2=G, X1=G}
{A1=G, A3=G, X1=G, X2=G}

{A1=U, A2=U, X1=U}

{A1=U, A3=U,

Kernel Diagnoses = {XI1=U}

{A2=U, X2=U}

b

{A2=U, A3=U}
10/25/10 {AIZU}

Conflict 1.
Conflict 2.

constituents of Conflict 1.

X2=U} constituents of Conflict 2.

1. Compute cross product.
2. Remove supersets.

* New superset Old.
Old superset New.

66

3/6/00

33

Generate Kernels From Conflicts

{A1=G, A2=G, X1=G} Conflict 1.
{A1=G, A3=G, X1=G, X2=G} Conflict 2.
{A1=U, A2=U, X1=U} constituents of Conflict 1.

{A1=U, A3=U, X2=U} constituents of Conflict 2.

Kernel Diagnoses = {X1=U} 1. Compute cross product.
{A2=U, X2=U} 2. Remove supersets.
{A2=U, A3=U} * New superset Old.
{A1=U} * Old superset New.

“Smallest” sets of modes that remove all conflicts.

10/25/10 copyright Brian Williams, 2000-10 67

Candidate-Generation(Conflicts) {
// Compute all minimal coverings of Conflicts
Next Kernels = {};
For each c in Conflicts{
Kernels = Next Kernels;
Next Kernels = {};
For each ¢’ in Constituent Kernels(c) {
For each k in Kernels {
Next Kernels
= Add Kernel(c’Uk, Next Kernels)
return Next Kernels}} }

} 10/25/10 copyright Brian Williams, 2000-10 68

3/6/00

34

Add-Kernel(Kernel, Kernels){

/I Add Kernel to Kernels while preserving minimality.

If 3k € Kernels. k C Kernel
Then return Kernels

Else {
New_ Kernels = {};
For each k in Kernels{
Unless Kernel C k
Add To End(k, New_ Kernels)};
return {Kernel} U New _Kernels

Iy

10/25/10 copyright Brian Williams, 2000-10

69

n out
0 .A. X »B. Y »C._,()

Diagnoses: (42 of 64 candidates)

Fully Explained Failures Partial Explained
* [G(A).G(B),S0(C)] * [G(A),U(B),S0(C)]
* [G(A),S1(B),S0(C)] « [U(A),S1(B),G(C)]

* [S0(A),G(B),G(C)] « [SO(A),U(B),G(C)]

Fault Isolated, But Unexplained
* [G(A),G(B),UO)]
* [G(A),U(B),G(O)]
* [U(A),G(B),G(C)]

10/25/10 copyright Brian Williams, 2000-10

70

3/6/00

35

Generate Kernels from Conflicts

©), SO(C), U(C)]

, S1(B), U(B), S1(C), SO(C), U(C)]

(A), U(A), S1(B), SO(B), U(B), S1(C), SO(C), U(C)]
[S1(A), SO(A), U(A), SI(B), SO(B), U(B), S1(C), SO(C), U(C)]

[
Z

= [U(C)] = [S1(B).G(C)]
= [SO(C)] = [U(A),G(B),G(C)]
= [U(B),G(C] = [SO(A),G(B),G(C)]

Summary: Mapping Conflicts to Kernels

Conflict C;: A partial mode assignment, to X, that is inconsistent with
model ® and obs.

C; A @ A obs is inconsistent @ A obs entails ~C;

Constituent Kernel: An assignment a that resolves one conflict C;.

a entails = C;

Kernel: A minimal partial assignment that resolves all conflicts C.
A entails - C;for all C;in C

72

3/6/00

36

Outline

 Self-Repairing Agents

» Formulating Diagnosis

 Diagnosis from Conflicts

— Kernels
— Conflicts
— Candidate Generation

— Conflict Recognition

10/25/10

copyright Brian Williams, 2000-10 73

Recognizing Conflicts within GDE

13
A

1{
B

13
C
D 0{}

1{
A

Al

A2

A3

General Diagnostic Engine
[de Kleer & Williams, 87]

10/25/10

1{A1=G}
X Conflict 1
’ - — — — — —y \
/ 1{A1=G,A2=G X1=G}
N FoOg
-~y ~ e - -
X1
1{A1=G X1=G}
Y O{AA.«:G}
X2 —_——
7 10 h
G O A X =C X
\ 0 {A1=G,A3=G X1=G X2=G
-~ —~ e e = - wl
1{A3= .
7 {A3=G} Conflict 2

copyright Brian Williams, 2000-10 74

3/6/00

37

Recognizing Conflicts within GDE

1{A1=G}
10 X 0{A2=G X1=G}HA3=G X1=GX2=G}
A0
N 1 {A1=G,A2=G X1=G}
1{ Fo{}
B ¢
X1
1{ R
co A2 1 {A1=G X1=G}
| Y 0{A2=G}{A3=GX2=G}
1
D 0} X2
1{}
1
A 0 {} A3 G 0
1 {A3=G}H{A2=G X2=G}
General Diagnostic Engine Z 0{A1=GX1=G X2=G}
[de Kleer & Williams, 87]
10/25/10 copyright Brian Williams, 2000-10 75
Summary:

Mode Estimation

* A failure is a discrepancy between the model and
observations of an artifact.

* Mode estimation supports diagnosis of
unknown failures, multiple faults, partial explanation and
execution monitoring.

* Mode estimates are encoded compactly using kernels.

* Symptoms are used to recognize conflicts, which are
merged to produce kernels.

* Conflict-directed search is at the foundation of
fast satisfiability and optimization.

10/25/10

copyright Brian Williams, 2000-10 76

3/6/00

38

Outline

Self-Repairing Agents

Formulating Diagnosis

Diagnosis from Conflicts

Appendix: Single Fault Diagnosis

10/25/10 copyright Brian Williams, 2000-10 77

Single Fault Diagnosis

The single fault diagnoses are the

intersections of the conflict constituent kernels.

{A1=G, A2=G, X1=G} Conflict 1.
{A1=G, A3=G, X1=G, X2=G} Conflict 2.
{A1=U, A2=U, X1=U} constituents of Conflict 1.

Single Fault Diagnoses = 1=U}

10/25/10 copyright Brian Williams, 2000-10 78

constituents of Conflict 2.

3/6/00

39

Finding Single Fault Diagnosis

A

1 22—
Al X

B _|— F 0 HT[Davis & Shrobe]
1 __I_ — X1 Dart [Genesereth]
1 C| A2 Y Sophie [de Kleer & Brown]

~ Early 80°s

o x2 | j—G
1 E__]A3 -1

1. Generate initial candidates:

* Assume all components okay and test consistency.

3 If inconsistent, conflict kernels denote single fault candidates.
2. Check consistency of each candidate:

e Prune candidate if superset of a conflict.

* Else check consistency and record conflict if inconsistent.

10/25/10 copyright Brian Williams, 2000-10 79

Procedure Single_Fault_w_Conflicts(Md, M, Obs)

Input: A model Md, Mode variables M, and observations Obs.
Output: A set of consistent, single fault diagnoses.

All Good < { M=G | M; € M}; Assume all components are okay,
Conlflict <= Test Candidate(All Good, Md, Obs)
If Conflict = Consistent
Return All_Good
Else
Cands Generate single fault candidates
<~ {{M=U} U Z=G | M=G € Conlflict, Z=M - {M, } };
Diagnoses < Test_Candidates(Cands, Md, Obs)
Return Diagnoses

10/25/10 copyright Brian Williams, 2000-10 80

3/6/00

40

Generate Candidates From Symptom

— S e

Symptom: G is observed 1, but predicted 0
Conflict: {A1=G, A3=G, X1=G, X2=G} is inconsistent
Candidates: {{A1=U...}, {A3=U...}, {X1=U...}, {X2=U...}}

10/25/10 copyright Brian Williams, 2000-10 381

Generate Candidates From Symptom

Symptom

Symptom: G is observed 1, but predicted 0
Conflict: {A1=G, A3=G, X1=G, X2=G} is inconsistent
Candidates: {{A1=U...}, {A3=U...}, {X1=U...}, {X2=U...}}

10/25/10 copyright Brian Williams, 2000-10 82

3/6/00

41

Procedure Single_Fault_Test_Candidates(C,M, Obs)

Input: Candidates C, Model Md, Observation Obs
Output: The set of consistent single-fault diagnoses.

Diagnoses <= {}, Conflicts < {}
For each C; in C
If C; is a superset of some Conlflict; in Conflicts
Then inconsistent candidate C,, ignore.
Else Conflict, = Test Candidate(C, M, Obs)
If Conflict; = Consistent
Then add C; to Diagnoses
Else add Conflict; to Conflicts
return Diagnoses

10/25/10 copyright Brian Williams, 2000-10 83

Test Candidates, Collect Conflicts

Candidates: {M.}, {A3=U...}, {X1=U...}, {X2=U...}}
Diagnoses: {{A1=U...}}

1 = N X1
c L 0
1 = A2 Y
| BE_]a3 P
* First candidate {A1=U, ...} * Add to diagnoses

* Suspend A1’s constraints
» Test consistency —> consistent

10/25/10 copyright Brian Williams, 2000-10 84

3/6/00

42

Test Candidates, Collect Conflicts

Candidates: {{/776/ VU IX1=U...}, (X2=U...}}

Diagnoses: {{Al1=U...}}
Conflicts: {{A1=G, A2=G, X1=G}}
A —7 1

1 — -
__ Al X RN
B = _E/0
1 _—I_ —2 o X1 |\1)
1 C_ A2 Y - \,/
o 2 L —G
* Second candidate {A3=U, ...} * Extract conflict
* Suspend A3’s constraints {A1=G, A2=G, X1=G}

« Test consistency — inconsistent .« Intersect candidates

10/25/10 copyright Brian Williams, 2000-10 85

Test Candidates, Collect Conflicts

Candidates: {{}17{ 1, {X2=U...1}

Diagnoses: {{Al1=U...}}
Conflicts: {{A1=G, A2=G, X1=G}}
—1 1

A

1 = X

U

clbéeg o

1 = _|A2 Y -
77N

OID_J_i 1)(2_(}'11\|

IE_AS—,Z_ N

* Third candidate {X1=U, ...}

» Superset of conflict? — No, since X1 = U, not X1=G

* Suspend X1’s constraints

* Test consistency — consistent “

10/25/10 copyright Brian Williams, 2000-10

3/6/00

43

Test Candidates, Collect Conflicts

Candidates: {W 3

Diagnoses: {{Al=U...}, {X1=U...}}
Conflicts: {{A1=G, A2=G, X1=G}}

A

1 S5 S
Al X

B g F 0
1 _—I_ X1
1 Y a2 Y
o M Xzi—Gl
1 E A3 —,Z_

* Fourth candidate {X2=U, ...}

» Superset of conflict? — Yes, since A1=G, A2=G and X1=G
» Eliminate candidate

10/25/10 copyright Brian Williams, 2000-10 87

Test Candidates, Collect Conflicts

Candidates: {}
Diagnoses: {{Al1=U...}, {X1=U...}}
Conflicts: {{A1=G, A2=G, X1=G}}

A
1_
— 1Al X
B g F 0
1——|_ X1
1 Y Ta %
o M x2| —S 1
1E_A3—,Z_

* Return diagnoses— A1 or X1 broken

10/25/10 copyright Brian Williams, 2000-10 88

3/6/00

44

MIT OpenCourseWare
http://ocw.mit.edu

16.410/ 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

