
1

Massachusetts Institute of Technology

Robust Execution of Temporal Plans �
�

�

Prof Brian Williams

16.410 / 16.413

October.6th, 2010

Slide Contributions:

Andreas Hofmann

Julie Shah

Brian Williams, Fall 10 2

Assignments

•� Remember:
Problem Set #5 due today, Wed, Oct. 6th, 2010.

Problem Set #6 out today.

•� Reading:
–� Today: Dechter, R., I. Meiri, J. Pearl, “Temporal Constraint

Networks,” Artificial Intelligence, 49, pp. 61-95,1991.

–� Wednesday: Logic [AIMA] Ch. 7, 8

•� Exam:
–� Mid-Term - October 20th.

2

3

Executing Time Critical Missions�

4

An effective Scrub Nurse:

•� works hand-to-hand, face-to-face with surgeon,

•� assesses and anticipates needs of surgeon,

•� provides assistance and tools in order of need,

•� responds quickly to changing circumstances,

•� responds quickly to surgeon’s cues and requests.

Team Coordination under Time Pressure�

Image credit: NASA.

Images of scrub nurses and surgeons
removed due to copyright restrictions.

3

5

Human-Robot Teaming�

6

Robust Execution of Time-critical Tasks

•� Executing Simple Plans

•� Robust Execution

–� Describing Temporal Plans

–� Checking Temporal Plan Consistency

–� Scheduling Plans

–� Robust, Dynamic Scheduling

Images of human-robot teaming (in surgical, space, and rescue settings)
removed due to copyright restrictions.

4

�
�
�
�

�
�
�

�
�
dinner�

�
�
present�

�

�
�
�
�
�
�

�
�
wrap�
�

carry�
�
�
�
�
�
�
�
�

�
�
�
 cleanH�
�
�
 quiet�

 noGarb�
�
�
 cleanH�
�

�
 dinner�
�
�
 present�
�

Prop at 0 Action at 0 Prop at 1 Action at 1 Prop at 2

noop-dinner�

noop-present�

Total Order Plans <Actions[i] >

Contain Irrelevant Commitments

�
�
�
�

�
�
�

�
�
dinner�

�
�
present�

�

�
�
�
�
�
�
cook�
�
�
wrap�
�

carry�
�
�
�
�
�
�
�
�

�
�
�
 cleanH�
�
�
 quiet�

 noGarb�
�
�
 cleanH�
�

�
 dinner�
�
�
 present�
�

Prop at 0 Action at 0 Prop at 1 Action at 1 Prop at 2

Partial Order Plans <Actions, Orderings, Links>

Remove Irrelevant Commitments

5

�
�
�
�

�
�
�

�
�
dinner�

�
�
present�

�

�
�
�
�
�
�
cook�
�
�
wrap�
�

carry�
�
�
�
�
�
�
�
�

�
�
�
 cleanH�
�
�
 quiet�

 noGarb�
�
�
 cleanH�
�

�
 dinner�
�
�
 present�
�

Prop at 0 Action at 0 Prop at 1 Action at 1 Prop at 2

Partial Order Plan Execution

Start�

Partial Order Plan Execution

Initialize queue Ready, with action Start..

Mark all actions as “not executed.”

Loop

•� If Ready is empty, Then terminate.

•� Dequeue action a from Ready and execute.

•� When completed, mark a as executed.

•� For each succeeding action b such that
a < b or linked(a,b,p),

–� If every preceding action c is marked “executed,”
such that c < b or linked(c,b,p’),

–� Then queue b on Ready.

6

�
�
�
�

�
�
�

�
�
dinner�

�
�
present�

�

�
�
�
�
�
�
cook�
�
�
wrap�
�

carry�
�
�
�
�
�
�
�
�

�
�
�
 cleanH�
�
�
 quiet�

 noGarb�
�
�
 cleanH�
�

�
 dinner�
�
�
 present�
�

Prop at 0 Action at 0 Prop at 1 Action at 1 Prop at 2

Plan Execution w Action Monitoring

Start�

Plan Execution w Action Monitoring

Initialize queue Ready, with action Start.

Mark all actions as “not executed.”

Loop

•� If Ready is empty, Then terminate.

•� Dequeue action a from Ready.

•� If a’s preconditions satisfied, then execute, else fail.

•� When completed, mark a as executed.

•� For each succeeding action b such that
a < b or linked(a,b,p),

–� If every preceding action c is marked “executed,”
such that c < b or linked(c,b,p’),

–� Then queue b on Ready.

7

�
�
�
�

�
�
�

�
�
dinner�

�
�
present�

�

�
�
�
�
�
�
cook�
�
�
wrap�
�

carry�
�
�
�
�
�
�
�
�

�
�
�
 cleanH�
�
�
 quiet�

 noGarb�
�
�
 cleanH�
�

�
 dinner�
�
�
 present�
�

Prop at 0 Action at 0 Prop at 1 Action at 1 Prop at 2

Execution Monitoring
•�Check if any preconditions of unexecuted actions are violated.

�� Check if a causal link that crosses the current time is violated.

Plan Execution w Execution Monitoring

Initialize agenda Ready with action Start

Initialize agenda ActiveLinks to empty

Mark all actions as “not executed.”

Loop

•� If Ready is empty then terminate.

•� For each link on ActiveLinks

–� If the proposition for link doesn’t hold,
Then return failure

•� Dequeue action a from Ready

•� If preconditions of action are satisfied

–� Then execute

–� Else return failure

•� … (continued on next slide)

8

Plan Execution w Execution Monitoring (cont)

Loop

•� … (continued from previous slide)

•� Mark a as “executed.”

•� For each action c such that linked(c,a,p).

–� dequeue <c,a,p> from ActiveLinks.

•� For each action d such that linked(a,d,p).

–� queue <a,d,p> on ActiveLinks.

•� For each action b such that a < b or linked(a,b,p).

–� If every action c has been executed,
such that c < b or linked(c,b,p’)

–� Then queue b on Ready.

16

Robust Execution of Time-critical Tasks

•� Executing Simple Plans

•� Robust Execution

9

17

Executing Timed Programs and Plans Robustly

Start End
Rover1.goto(p4)

Rover2.goto(p1)

Rover1.imageTargets Rover1.goto(p5) Rover1.goto(p3)

Rover2.goto(p2)Rover2.imageTargets Rover2.goto(p3)

imageScienceTargets(Rover1, Rover2)
{Parallel

 {Sequence

[5,10] Rover1.goto(p4);

[5,10] Rover1.goto(p5);
[2,5] Rover1.imageTargets();

[5,10] Rover1.goto(p3);

 },

 {Sequence

 [5,10] Rover2.goto(p1);

 [5,10]Rover2.imageTargets();
 [2,5] Rover2.goto(p2);

 [5,10] Rover2.goto(p3);

 }

}

p1

p2
p3

p4

p5
1

2

[5,10] [5,10] [2,5] [5,10]

[5,10] [5,10] [2,5] [5,10]

Agents adapt to temporal disturbances in a coordinated manner

by scheduling the start of activities on the fly.
In general, categorize durations into controllable and uncontrollable (STNUs).�

in RMPL [williams et al]�

18

To Execute a Temporal Plan�

offline

online

�

3. Schedule Plan�

�

1. Describe Temporal Plan�

�

�
�

2. Test Consistency�

�

4. Execute Plan�

�

Part I : Scheduling Off-line

�

4. Dynamically Execute Plan�

�

�

3. Reformulate Plan�

�

2. Test Consistency�

�

1. Describe Temporal Plan�

�

�

Part II: Scheduling Online

10

19

Start

End

Rover1.goto(p4)

Rover2.goto(p1)

Rover1.imageTargets

Rover1.goto(p5)

Rover1.goto(p3)

p1

p2
p3

p4

p5
1

2

Rover1.goto(p5)

Rover1.imageTargets

Rover2.goto(p2)

Rover2.imageTargets

Rover2.goto(p3)

Rover2.goto(p2) Rover2.goto(p3)

Rover2.imageTargets

Ask site1 = ¬¬ obstructed

Ask site1 = ¬ obstructed

Rover2.imageTargets

sk site1 = ¬ obstructed

 Failure

Tell site1 = ¬¬ obstructedobstructed

imageScienceTargets(Rover1, Rover2)

{

 {

 [5,10] Rover1.goto(p4);

choose {

 {

 do { [5,10] Rover1.goto(p5); }

maintaining(site1 = ¬ obstructed);

 [2,5] Rover1.imageTargets();

 }

 {

 [2,5] Rover1.imageTargets();

 [5,10] Rover1.goto(p5);

 }

 };

 [5,10] Rover1.goto(p3);

 },

 {

 [5,10] Rover2.goto(p1);

choose {

 {

 do { [2,5]Rover2.imageTargets(); }

maintaining (site1 = ¬ obstructed);

 [5,10] Rover2.goto(p2);

 [5,10] Rover2.goto(p3);

 }

 {

 [5,10] Rover2.goto(p2);

 [5,10] Rover2.goto(p3);

 [2,5] Rover2.imageTargets();

}

 }

}

Expanding Robustness by

Dynamically Choosing Methods

distributed Kirk�
[Kim:Effinger;Block; Wehowsky]]�

in RMPL [williams et al]�

20

Expanding Robustness by

Dynamically Assigning Tasks

20

Remove one ball from red bin�

Remove one ball from blue bin�

Remove one ball from green bin�

Remove one ball from pink bin�

Swap black striped ball�

•� Right Robot picks up and
offers ball.�

•� Robots perform hand-to-hand
swap.�

Swap red striped ball�

•� Left Robot picks up and offers
ball.�

•� Robots perform hand-to-hand
swap.�

 tstart� tfinish�

(Someone) Remove one ball from red bin�

Remove one ball from red bin�

L[32,39] V R[42,55]�

OR�

Agents choose and�
schedule activities�

Chaski, Drake, Kirk�
[Kim; Shah; Conrad]�

in RMPL [williams et al]�

11

21

Expanding Robustness

by Dynamically Assigning Tasks

•� Off-nominal

•� Partner adapts

in response to

teammate’s

failure.

22

Expanding Robustness by�
Coordinating Underactuated Systems

Chekov; Sulu: Kongming�
[Hofmann; Leaute; Blackmore; Ono; Li]�

12

23

Expanding Robustness by�
Coordinating Underactuated Systems�

Chekov; Sulu: Kongming�
[Hofmann; Leaute; Blackmore; Ono; Li]�

24

Robust Execution of Time-critical Tasks

•� Executing Simple Plans

•� Robust Execution

–� Describing Temporal Plans

–� Checking Temporal Plan Consistency

–� Scheduling Plans

–� Robust, Dynamic Scheduling

13

25

To Execute a Temporal Plan�

offline

online

�

3. Schedule Plan�

�

1. Describe Temporal Plan�

�

�
�

2. Test Consistency�

�

4. Execute Plan�

�

Part I : Schedule Off-line Part II: Schedule Online

�

4. Dynamically Execute Plan�

�

�

3. Reformulate Plan�

�

2. Test Consistency�

�

1. Describe Temporal Plan�

�

�

26

Describing Temporal Plans�
�
�

•� Activities to perform�
•� Relationships among activities�

Egress/ Setup

Remove NH3 Shunt Vent NH3 Shunt & Stow Release Loop A Tray

Configure Vent Tools Fluid Caps SFU Reconfig Release Loop B Tray

t = tmax

Image credit: NASA.

14

27

Describing Temporal Plans�
�
Qualitative Temporal Relationships (Allen 83)�

�

Y�

X� Y�

X� Y�

X� Y�

Y�X�

Y�X�

Y� X�

X�

X before Y

X meets Y

X overlaps Y

X during Y

X starts Y

X finishes Y

X equals Y

Y after X

Y met-by X

Y overlapped-by X

Y contains X

Y started-by X

Y finished-by X

Y equals X

X disjoint Y

28

Describing Temporal Plans�
�
Example: Deep Space One Remote Agent Experiment�

Max_ThrustIdle Idle

Poke

Timer

Attitude

Accum thrust

SEP Action

SEP_Segment

Th_Seg

contained_by�

equals� equals�
meets�

meets�

contained_by�

Start_Up Start_Up
Shut_Down Shut_Down

Thr_Boundary

Thrust ThrustThrustThrustStandby Standby Standby

Th_Sega Th_Seg Th_SegIdle_Seg Idle_Seg

Accum_NO_Thr Accum_Thr Accum_Thr Accum_Thr Thr_Boundary

contained_by�

CP(Ips_Tvc) CP(Ips_Tvc) CP(Ips_Tvc)

contained_by�

Th_Seg

15

29

Describing Temporal Plans�
�
Adding Metric Information�

•� Going to the store takes at least 10 min and at
most 30 min.

•� Bread should be eaten within one day of baking.

Activity: Going to the store�

[10min, 30min]�

Activity: Bake Bread�
[0d, 1d]�

Activity: Eat Bread�

30

Describing Temporal Plans�
�
Simplify by reducing interval relations to�

 relations on timepoints.�

Activity A�

Start Activity A�

A+� A-�

End Activity A�

16

31

Describing Temporal Plans�
�
Qualitative Temporal Relationships as timepoint inequalities�

�

Y�

X� Y�

X� Y�

X� Y�

Y�X�

Y�X�

Y� X�

X�

X before Y

X meets Y

X overlaps Y

X during Y

X starts Y

X finishes Y

X equals Y

X+ < Y-

X+ = Y-

Y- < X+ and X- < Y+ �

Y- < X- and X+ < Y+ �

X- = Y- and X+ < Y+ �

X- < Y- and X+ = Y+ �

X- = Y- and X+ = Y+ �

X disjoint Y X+ < Y- or Y+ < X- �

Y-�X+�
[0,inf]�

Y-�
[0,0]�

X+�

32

Describing Temporal Plans�
�
Encode metric Information by generalizing inequalities

to interval constraints.�
•� Going to the store takes at least 10 min and at
most 30 min.

•� Bread should be eaten within one day of baking.

Start Going to Store�

G-� G+�

End Going to Store�

[10,30]�
10 < [G+ - G-] < 30�

End Bake Bread�

B+� E-�

Start Eat Bread�

[0,1]�
0 < [E- - B+] < 1�

17

33

•� Simple Temporal Problem (STP)�
•� variables X1,…Xn, representing �

time points with real-valued domains, �
•� binary constraints of the form:�

Temporal Relations Described as an STP�

X1� X3�

X2�

[l1, u1]�

[l2, u2]� [l3, u3]�

Xk � Xi() � aik ,bik[].

Sufficient to represent:�
•� all Allen relations but 1…�
•� simple metric constraints�

Can’t represent:�
•� Disjoint activities�

34

•� Temporal Constraint
Satisfaction Problem (TCSP)�

•� Extends STP by allowing multiple
intervals for each binary constraints: �

Temporal Relations Described as a TCSP�

X1� X2�

[l1, u1]V [l2, u2]V…V[ln,un] �

Supports:�

•�Multiple time windows for accomplishing an
activity.�

•�Different methods of accomplishing an activity.�

�

X1� X2�

[5, 7] V [10, 11]�

Xk � Xi() � P aik ,bik[] | aik � bik{ }().

18

35

•� Disjunctive Temporal Problem (DTP)�
•� Extends TCSP by allowing non-binary constraints. �

Temporal Relations Described as a DTP�

MS� D-�

[0, inf]�
D+� S-� S+�

I-� I+�

[5, 10]� [0, inf]� [4, 5]�

[15, 15]�

[1, 1]�

[0, inf]�

Activities of Mars Rover: Drill (D) , Image (I), Send Data (S)�

Drilling causes vibration.�

Image cannot occur �

•� during the last two minutes before drilling, or�

•� during the first minute after drilling ends.�

2 < D+ - I+ < inf�
OR�

1 < I - - D+ < inf�

Send data�Drill�

Image�

36

•� Disjunctive Temporal Problem (DTP)�
•� extends a TCSP by allowing non-binary constraints. �

A Temporal Plan Described as a DTP�

DTP� -�non-binary constraints�

-�multiple intervals in constraints�

TCSP� -� binary constraints�

-�multiple intervals�

STP�
-� binary constraints�

-�simple intervals�

19

37

RMPL - Nested Compositions:�
•� Activity�

•� Sequence�
•� Parallel�

•� Choice�

•� With Time�

Temporal Plan Networks and Conditional STPs�

�������
��
�

��
��
� ������

� �������� ������

��
��
�

��

�����

�����

�����

��

� �

� �������� ������

� �������� ������

� � � �

� �������� ������

� �

��
��
�

�����

�����

��
��
�

�

�����

p1

p2

p4

p5
1

2

TPN:�

38

To Execute a Temporal Plan�

offline

online

�

3. Schedule Plan�

�

1. Describe Temporal Plan�

�

�
�

2. Test Consistency�

�

4. Execute Plan�

�

Part I : Schedule Off-line
[1,10]�

[0,9]�

[1,1]�

[2,2]�

A�
B�

C�

D�

20

39

Input:�An STP <X, C> where Cj = <Xk, Xi, lj, uj>�
�

�
�

�

�
�

�
Output: True iff there exists an X satisfying C�

Consistency of an STP�

[1,10]�

[0,9]�

[1,1]�

[2,2]�

A�
B�

C�
D�

40

Map STP to Equivalent Distance Graph

For efficient

inference

Idea: Map STN to distance (weighted) graph and check for negative cycles.

•� Map upper bound to outgoing, non-negative arc.

•� Map lower bound to incoming, negative arc.

[13,13]

[19,19]

13

-13

19

-19

l Xj – Xi u�

Xj – Xi u�

Xi – Xj - l�

21

41

STP Consistency

•� Example of inconsistent constraint:

–� An STP is consistent iff its distance graph has no negative

cycles.

–� Detect by computing shortest path from one node to all
other nodes.

•� Single Source Shortest Path (SSSP)

A B
[2, 1]

A B

1

-2

42

STP Consistency:

Generic Labeling Algorithm

Detect negative cycles by computing the shortest-path
from a single node to all other nodes (Single Source Shortest Path).

1.� For all nodes s in graph G

2.� d(s) = inf

3.� d(sstart) = 0

4.� while some arc(i,j) is violating,

5.� d(j) = d(i) + c(i,j)

d(A) = inf d(B) = inf

22

43

STP Consistency:

Generic Labeling Algorithm

Can detect negative cycles by just computing the shortest-path from a single node to
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G

2.� d(s) = inf

3.� d(sstart) = 0

4.� while some arc(i,j) is violating,

5.� d(j) = d(i) + c(i,j)

d(A) = 0 d(B) = inf

44

STP Consistency:

Generic Labeling Algorithm

Can detect negative cycles by just computing the shortest-path from a single node to
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G

2.� d(s) = inf

3.� d(sstart) = 0

4.� while some arc(i,j) is violating,

5.� d(j) = d(i) + c(i,j)

d(A) = 0 d(B) = inf

arc(i,j) is violating if,

d(j) > d(i) + c(i,j)

23

45

STP Consistency:

Generic Labeling Algorithm

Can detect negative cycles by just computing the shortest-path from a single node to
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G

2.� d(s) = inf

3.� d(sstart) = 0

4.� while some arc(i,j) is violating,

5.� d(j) = d(i) + c(i,j)

d(A) = 0 d(B) = 2

46

STP Consistency:

Generic Labeling Algorithm

Can detect negative cycles by just computing the shortest-path from a single node to
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G

2.� d(s) = inf

3.� d(sstart) = 0

4.� while some arc(i,j) is violating,

5.� d(j) = d(i) + c(i,j)

d(A) = -1 d(B) = 2

24

47

STP Consistency:

Generic Labeling Algorithm

Can detect negative cycles by just computing the shortest-path from a single node to
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G

2.� d(s) = inf

3.� d(sstart) = 0

4.� while some arc(i,j) is violating,

5.� d(j) = d(i) + c(i,j)

d(A) = -1 d(B) = 1

48

STP Consistency:

Generic Labeling Algorithm

Can detect negative cycles by just computing the shortest-path from a single node to
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G

2.� d(s) = inf

3.� d(sstart) = 0

4.� while some arc(i,j) is violating,

5.� d(j) = d(i) + c(i,j)

d(A) = -2 d(B) = 1

25

49

STP Consistency:

Generic Labeling Algorithm

Can detect negative cycles by just computing the shortest-path from a single node to
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G

2.� d(s) = inf

3.� d(sstart) = 0

4.� while some arc(i,j) is violating,

5.� d(j) = d(i) + c(i,j)

d(A) = -2 d(B) = 0

50

STP Consistency:

Generic Labeling Algorithm

Can detect negative cycles by just computing the shortest-path from a single node to
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G

2.� d(s) = inf

3.� d(sstart) = 0

4.� while some arc(i,j) is violating,

5.� d(j) = d(i) + c(i,j)

d(A) = -3 d(B) = 0

26

51

STP Consistency:

Generic Labeling Algorithm

Can detect negative cycles by just computing the shortest-path from a single node to
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G

2.� d(s) = inf

3.� d(sstart) = 0

4.� while some arc(i,j) is violating,

5.� d(j) = d(i) + c(i,j)

d(A) = -3 d(B) = -1

52

STP Consistency:

Generic Labeling Algorithm

Can detect negative cycles by just computing the shortest-path from a single node to
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G

2.� d(s) = inf

3.� d(sstart) = 0

4.� while some arc(i,j) is violating,

5.� d(j) = d(i) + c(i,j)

d(A) = -4 d(B) = -1

27

53

STP Consistency:

Generic Labeling Algorithm

Can detect negative cycles by just computing the shortest-path from a single node to
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G

2.� d(s) = inf

3.� d(sstart) = 0

4.� while some arc(i,j) is violating,

5.� d(j) = d(i) + c(i,j)

d(A) = -4 d(B) = -1

How do we detect inconsistency?
1.� One way: Check for any d-value to drop below –nC

54

STP Consistency:

FIFO Labeling Algorithm

Can detect negative cycles by just computing the shortest-path from a single node to
all the other nodes (Single Source Shortest Path)

1.� For all nodes s in graph G

2.� d(s) = inf

3.� d(sstart) = 0

4.� while some arc(i,j) is violating,

5.� d(j) = d(i) + c(i,j)

d(A) = -4 d(B) = -1

•�Maintain queue of updated nodes.

•�For each node on queue, check for

outgoing arcs that may be potentially

violating.

28

55

To Execute a Temporal Plan�

offline

online

�

3. Schedule Plan�

�

1. Describe Temporal Plan�

�

�
�

2. Test Consistency�

�

4. Execute Plan�

�

Part I : Schedule Off-line
[1,10]�

[0,9]�

[1,1]�

[2,2]�

A�
B�

C�

D�

56

Scheduling

X0 Ls Le

Ss Se

[10,20] [30,40]

[10,20]

[40,50]

[60,70]

•� Idea: Expose Implicit Constraints in STP

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�

29

57

Scheduling with All Pairs Shortest Path Graph

-10

20

-30

40

-10
20

-40

50

X0 Ls Le

Ss Se

70

-60

X0 Ls Le

Ss Se

[10,20] [30,40]

[10,20]

[40,50]

[60,70]

•� Idea: Expose Implicit Constraints in STP

•� Compute All-Pairs-Shortest-Path (APSP) of d-graph
(Floyd-Warshall).

58

Distance Graph Gd implies Constraints

•� Path constraint: i0 =i, i1 = . . ., ik = j

� Conjoined path constraints result in the shortest
path as bound:

where dij is the shortest path from i to j

X j � Xi � uij�1 ,i j
j=1

k

�

Xj � Xi � dij

30

59

All Pairs Shortest Path
Floyd-Warshall (alternatively Johnson)

1. for i := 1 to n do dii 0;

2. for i, j := 1 to n do dij w(i,j);

3. for k := 1 to n do

4. for i, j := 1 to n do

5. dij min{dij, dik + dkj};

Complexity O(n3)

i�
k�

j�

Initialize distances�

Take minimum distance�
over all triangles�

60

APSP

-10

20

-30

40

-10
20

-40

50

20

X0 Ls Le

Ss Se

 inf inf 70

-10 40 inf inf

 inf -30 -10 inf

inf inf 20 50

-60 inf inf 40

Initial d-graph

70

-60

0

Slatest = (d01, � , d0n)

i = X0, k = Ls, j = L
�
3. for k := 1 to n do�
4. for i, j := 1 to n do�
5. dij min{dij, dik + dkj};�
�

60�

31

61

Scheduling with All Pairs Shortest Path Graph

20 50 30 70

-10 40 20 60

-40 -30 -10 30

-20 -10 20 50

-60 -50 -20 40

APSP d-graph

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�

After Floyd Warshall�

62

Scheduling: Latest Solution

-10

20

-30

40

-10
20

-40

50

20

X0 Ls Le

Ss Se

50 30 70

-10 40 20 60

-40 -30 -10 30

-20 -10 20 50

-60 -50 -20 40

APSP d-graph

70

-60

reference0

Slatest = (d01, � , d0n)

Active constraints�

32

63

Scheduling: Earliest Solution

-10

20

-30

40

-10
20

-40

50

20

X0 Ls Le

Ss Se

50 30 70

-10 40 20 60

-40 -30 -10 30

-20 -10 20 50

-60 -50 -20 40

APSP d-graph

70

-60

reference0

Searliest = (-d10, � , dn0)

Active constraints�

64

Scheduling: Window of Feasible Values

20 50 30 70

-10 40 20 60

-40 -30 -10 30

-20 -10 20 50

-60 -50 -20 40

APSP d-graph

0 Latest Times

Earliest Times

•�Ls in [10, 20]

•�Le in [40, 50]

•�Ss in [20, 30]

•�Se in [60, 70]

33

65

Scheduling without Search:

 Solution by Decomposition

Key ideas

•� Incrementally tighten feasible intervals,

 as commitments are made.

•� Perform on demand.

•� Can assign variables in any order, without backtracking.

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�

66

Scheduling without Search:

 Solution by Decomposition

Key ideas

•� Incrementally tighten feasible intervals,

 as commitments are made.

•� Perform on demand.

•� Can assign variables in any order, without backtracking.

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�

•� Select value for X0�

� ��

t=0

34

67

Scheduling without Search:

 Solution by Decomposition

Key ideas

•� Incrementally tighten feasible intervals,

 as commitments are made.

•� Perform on demand.

•� Can assign variables in any order, without backtracking.

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�

•� Select value for X0�

•� Select value for Ls,
consistent with X0�

� ��

t=0 [10,20]

68

Scheduling without Search:

 Solution by Decomposition

Key ideas

•� Incrementally tighten feasible intervals,

 as commitments are made.

•� Perform on demand.

•� Can assign variables in any order, without backtracking.

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�

•� Select value for X0�

•� Select value for Ls,
consistent with X0�

•� Select value for Le,
consistent with X0, Ls�

� ��

t=0 t=15 [45,50]

35

69

Scheduling without Search:

 Solution by Decomposition

Key ideas

•� Incrementally tighten feasible intervals,

 as commitments are made.

•� Perform on demand.

•� Can assign variables in any order, without backtracking.

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�

•� Select value for X0�

•� Select value for Ls,
consistent with X0�

•� Select value for Le,
consistent with X0, Ls�

� ��

t=0 t=15 t=45

70

Scheduling without Search:

 Solution by Decomposition

Key ideas

•� Incrementally tighten feasible intervals,

 as commitments are made.

•� Perform on demand.

•� Can assign variables in any order, without backtracking.

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�

•� Select value for X0�

•� Select value for Ls,
consistent with X0�

•� Select value for Le,
consistent with X0, Ls�

•� Select value for Ss,
consistent with X0, Ls,
Le�

t=0 t=15 t=45

[25,30]

36

71

Scheduling without Search:

 Solution by Decomposition

Key ideas

•� Incrementally tighten feasible intervals,

 as commitments are made.

•� Perform on demand.

•� Can assign variables in any order, without backtracking.

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�

•� Select value for X0�

•� Select value for Ls,
consistent with X0�

•� Select value for Le,
consistent with X0, Ls�

•� Select value for Ss,
consistent with X0, Ls,
Le�

t=0 t=15 t=45

t=30

72

Scheduling without Search:

 Solution by Decomposition

Key ideas

•� Incrementally tighten feasible intervals,

 as commitments are made.

•� Perform on demand.

•� Can assign variables in any order, without backtracking.

X0� Ls� Le�

S s� S e�

[40,50]�

[10,20]� [30,40]�

[20,30]�
[10,20]�

[60,70]�

[40,50]�

[20,30]�

[50,60]�

[10
,20

]�

•� Select value for X0�

•� Select value for Ls,
consistent with X0�

•� Select value for Le,
consistent with X0, Ls�

•� Select value for Ss,
consistent with X0, Ls,
Le�

•� Select value for Se…�

t=0 t=15 t=45

t=30 t=70

37

73

To Execute a Temporal Plan�

offline

online

�

3. Schedule Plan�

�

1. Describe Temporal Plan�

�

�
�

2. Test Consistency�

�

4. Execute Plan�

�

Part I : Schedule Off-line Problem: delays and fluctuations in task
duration can cause plan failure.�

�

Observation: Least commitment
temporal plans leave room to
adapt.�

�

Flexible Execution adapts through
dynamic scheduling [Muscettola et al]�
–� Assigns time to event when

executed�

74

To Execute a Temporal Plan�

offline

online

�

3. Schedule Plan�

�

1. Describe Temporal Plan�

�

�
�

2. Test Consistency�

�

4. Execute Plan�

�

Part I : Schedule Off-line Part II: Schedule Online

�

4. Dynamically Execute Plan�

�

�

3. Reformulate Plan�

�

2. Test Consistency�

�

1. Describe Temporal Plan�

�

�

38

75

To Execute a Temporal Plan�

offline

online

Part I : Schedule Off-line Part II: Schedule Online

�

4. Dynamically Execute Plan�

�

�

3. Reformulate Plan�

�

2. Test Consistency�

�

1. Describe Temporal Plan�

�

�

[1,10]�

[0,9]�

[1,1]�

[2,2]�

[0,9]�

[1,1]�

[1,1]�

A�
B�

C�

D�

A�

B�

C�

D�

[0,9]�

[1,1]�

[1,1]�A�

B�

C�

D�
t=0�

t=2�

t=3�

t=4�

How do we schedule on line?�

76

Dynamic Scheduling by Decomposition?�

Consider a Simple Example�

C

D

B

[2,11]�

A [1,1]�

[0,10]�

[0,10]� [2,2]�

[1,1]�

•� Select executable timepoint and assign�

•� Propagate assignment to neighbors�

39

77

Dynamic Scheduling by Decomposition?�

Consider a Simple Example�

C

D

B

[2,11]�

A [1,1]�

[0,10]�

[0,10]� [2,2]�

[1,1]�

•� Select executable timepoint and assign�

•� Propagate assignment to neighbors�

At = 0

[0, 10]

[0, 10]

[2, 11]

78

Dynamic Scheduling by Decomposition?�

Consider a Simple Example�

C

D

B

[2,11]�

A [1,1]�

[0,10]�

[0,10]� [2,2]�

[1,1]�

•� Select executable timepoint and assign�

•� Propagate assignment to neighbors�

At = 0

t = 3

[2, 2]

[4, 4]

Uh oh! �

C must be
executed at t =2 �
in the past! �

How can we fix it?�

40

79

Dispatching Execution Controller�

•� How can we fix it?�
–� Assignments must monotonically increase in value.�

–� Respect induced orderings.�

•� Execute an event when enabled and alive�

�
–� Enabled – Predecessors are completed�

�

–� Alive – Current time within bound of task�

A�

C�

D�

B�
[0,10]�

[2,11]�

[0,10]�

[1,1]�

[2,2]�

[1,1]�

80

Dispatching Execution Controller�

Initially:�
•� E = Time points w/o predecessors�
•� S = { }�

Repeat:�
1.� Wait until current time has advanced

such that some TP in E is active�
2.� Set TP’s execution time to current time.�

3.� Add TP to S.�
4.� Propagate time of execution to TP’s

immediate neighbors�

5.� Add to E, all immediate neighbors that
become enabled�

•� TP enabled if all +lb edges
starting at TP have their
destination in S.�

A�

C�

D�

B�
[0,10]�

[2,11]�

[0,10]�

[1,1]�

[2,2]�

[1,1]�

41

81

Dynamic Scheduling through Dispatchable Execution

Compiler

Dispatcher

Temporal

Plan

Observations of

past events

Generate dynamic

schedule

offline

online

Image credit: NASA.

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

