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Activity Planning II: 

Plan Extraction and Analysis 

Brian C. Williams 

16.410-13 

October 4th, 2010  

Slides draw upon

material from: 

Prof. Maria Fox 

Univ Strathclyde,

Scotland

��Brian Williams, Fall  10 ��2

Assignments

•� Remember:
Problem Set #5: Constraint Satisfaction and Activity Planning, 

out Wed. Sep. 29th , due Wed, Oct. 6th, 2010. 

•� Reading:
–� Today: Advanced Planning [AIMA] Ch. 11 

GraphPlan,  by Blum & Furst.

–� Wednesday: Wednesday: Dechter, R., I. Meiri, J. Pearl, 

“Temporal Constraint Networks,” Artificial Intelligence, 49, 

pp. 61-95,1991 posted on Stellar.

•� Exam:
–� Mid-Term - October 20th.
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Example Problem: Dinner Date
Initial Conditions:  (:init (cleanHands) (quiet)) 

Goal:    (:goal (noGarbage) (dinner) (present)) 

Actions:

(:operator carry :precondition

:effect (and (noGarbage) (not (cleanHands))) 

(:operator dolly :precondition

:effect (and (noGarbage) (not (quiet))) 

(:operator cook :precondition (cleanHands)

:effect (dinner)) 

(:operator wrap :precondition (quiet)

:effect (present)) 

+ noops 

Solution: (Cook, Wrap, Carry) 

Approach: Graph Plan 

1.� Construct compact encoding of candidates that 
prunes many invalid plans – Plan Graph. 

2.� Generate plan by searching for a consistent
subgraph that achieves the goals.

Proposition

Init State 

Action

Time 1 

Proposition

Time 1 

Action

Time 2 
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Plan Graph 

•� Compactly encodes the space of consistent 

plans,

•� while pruning . . . 

1.� partial states and actions at each time i

that are not reachable from the initial state. 

2.� pairs of propositions and actions

that are mutually inconsistent at time i.

3.� plans that cannot reach the goals. 

Graph Plan 

•� Create plan graph level 1 from initial state 

•� Loop

1.� If goal � propositions of the highest level 

(nonmutex),

2.� Then search graph for solution 

•� If solution found, then return and terminate.

3.� Extend graph one more level. 

��6

A kind of double search: forward direction checks necessary  

(but insufficient) conditions for a solution, ... 

Backward search verifies... 



4

Layer 1: Add Proposition Mutexs 
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Search Graph for Solution 
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Outline

•� Graph Plan 

–�Solution Extraction 

–�Memos

–�Properties

–�Termination with Failure 
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2. Search for a Solution 

Recursively find consistent actions that
achieve all goals at time t, t-1 ... : 

•�  Find actions to achieve each goal Gi at time t: 

–� For each action Ai that makes Gi true at t: 

•� If Ai isn t mutex with a previously chosen action at t,
Then select it. 

–� Finally,
•� If no action that achieves Gi is consistent,

•� Then backtrack to the predecessor goal Gi-1, at t. 

•� Finally

–� If actions are found for all goals at time t, 

–� Then recurse on t-1, using the action preconditions as goals, 

–� Else backtrack to the next candidate solution at t+1. 

–� Return plan if t = 0. 
��11 

2. Search for a Solution 

Recursively find consistent actions that 
achieve all goals at time t, t-1 ... : 

•� Find actions at t-1 to achieve each goal Gi at t,
by solving CSPt:

•� Variables: One for each goal Gi

•� Domain: For variable Gi, all actions in layer t-1 that add Gi.

•� Constraints: Action mutex of layer t-1 

•� Finally

–� If solution to CSPt found, 

–� Then recurse on preconditions of actions selected for layer t-1, 

–� Else, backtrack to next candidate solution at t+1. 

–� Return plan if t = 0. 
��12 
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•� Favor No-ops over other actions. 

–� guarantees the plan will avoid

redundant plan steps.
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Extend & Search Action Layer 1 
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Search Action Layer 0 
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Backtrack!
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Search Action Layer 1 Again! 
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Search Action Layer 0 
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Search Action Layer 0 
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Search Action Layer 1 Again! 
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Search Action Layer 0 
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Solution: Cook & Wrap, then Carry 
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Outline

•� Graph Plan 

–�Solution Extraction 

–�Memos

–�Properties

–�Termination with Failure 

Memos of Inconsistent Subgoals 

To prevent wasted search effort: 

•� If a goal set at layer k cannot be achieved,

Then memoize the set at k (~ nogood / conflict).

•� Check each new goal set at k against memos.

–� If memo,

•� Then fail,

•� Else test by solving a CSP. 
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Search Layer 0: Record Memo 
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Search Layer 1: New Memo 3 
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Solution Found: (Not a Memo) 
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Outline

•� Review

•� Graph Plan 

–�Solution Extraction 

–�Memos

–�Properties

–�Termination with Failure 

•� Execution

•� Planning in a Continuous Domain 

for Deep Sea Exploration 
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Properties:

Optimality and Redundancy 

•� Plans guarantee parallel optimality.

–� Parallel plan will take as short a time as possible. 

•� Plans don t guarantee sequential optimality.

–� Might be possible to achieve all goals
at a later layer using fewer actions. 

•� Plans do not contain redundant steps.

–� Achieved by preferring no-ops.

Plan Graph Properties:

Fixed Points 

•� Propositions monotonically increase.

–� Once added to a layer they remain in successive layers.

•� Mutexes monotonically decrease. 

–� Once a mutex has decayed it never reappears.

��The graph eventually reaches a fix point. 

•� Level where propositions and mutexes no longer change. 
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Fix point Example:

Door Domain 
Move from room ?X to room ?Y

•� pre: robot in ?X, door is open 

•� add: robot in ?Y 

•� del: robot in ?X 

Open door 

•� pre: door closed 

•� add: door open 

•� del: door closed

Close door 

•� pre: door open 

•� add: door closed 

•� del: door open

A B

noop

noop

Move

Move

Open

noop

Close

noop

In(B)

In(A)

Closed

Opened

Layer 3 

Move

Move

Open

In(A)

Closed

Layer 0 

Open

noop

noop

In(A)

Closed

Opened

Layer 1 

In(B)

noop

noop

Move

Open

noop

Close

In(A)

Closed

Opened

Layer 2 

Layer 3 is the fixed point of the graph – called level out.
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Graph Search Properties 

•� Graphplan may need to expand well beyond the fix 

point to find a solution. 

Why?

Gripper Example 

Move from one room to another 

•� pre: robot in first room 

•� add: robot in second room 

•� del: robot in first room

Pick up ball

•� pre: gripper free, ball in room

•� add: holding ball 

•� del: gripper free, ball in room

Drop ball

•� pre: holding ball, in room 

•� add: ball in room, gripper free

•� del: holding ball
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Gripper Example 

•� Fix point occurs at Layer 4. 

–�All propositions concerning ball and robot locations 

are pairwise non-mutex after 4 steps.

•� Solution layer depends on # balls moved. 

–�E.g., for 30 balls,

•� solution is at layer 59;

•� 54 layers with identical propositions, actions and mutexes.

Outline

•� Review

•� Graph Plan 

–�Solution Extraction 

–�Memos

–�Properties

–�Termination with Failure 
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Termination Property 

Graphplan returns failure if and only if
no plan exists. 

How?

Simple Termination 

•� If the fix point is reached and: 

–� a goal is not asserted OR 

–� two goals are mutex, 

Then return "No solution," without any search. 

•� Otherwise, there may be higher order exclusions 
(memos) that prevent a solution. 

��Requires a more sophisticated termination test. 
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Why Continue After FixPoint? 

•� Propositions, actions and mutexes no longer change

after a fix point.

•� But: memos (N-ary exclusions) do change.

–� New layers add time to the graph.

–� Time allows actions to be spaced so that memos decay.

–� Memos monotonically decrease. 

•� Any goal set achievable at layer i, is achievable at i + n. 

�� Track memos & terminate on their fix point. 

Appendix
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Termination Test 

•� A graph levels off  if the memos at layer n+1 are the same as at n. 

•� If the Graph levels off at layer n, and the current search stage is t >n,
Then Graphplan can output "No Solution".

Layer

n

Layer

n + 1 

Layer

t

St
n =   St

n+1 Where Sm
k = the sets of goals found 

unsolvable at layer k during search from m  

Termination Property 

•� Theorem: Graphplan returns with failure iff the 
problem is unsolvable.

•� Proof of If the problem is unsolvable, then 
Graphplan returns with failure : The number of 
goal sets found unsolvable at layer n from layer t 
will never be smaller than the number at n from 
layer t+1. In addition, there is a finite maximum 
number of goal sets. Hence, if the problem is 
unsolvable, eventually two successive layers will 
contain the same memoized sets. 
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If Graphplan outputs "No Solution," then the problem is unsolvable.

•� Suppose the fix point is at layer n and Graphplan has completed an 
unsuccessful search starting at layer t > n. 

•� A plan to achieve any goal set that is unsolvable at layer n+1 must, one 
step earlier, achieve some set unsolvable at layer n. 

•� Suppose Graphplan returns "No Solution," but the problem is solvable:

•� If St
n = St

n+1 then S' and S'' must both be in St
n+1. This means that some set in St

n

+1 will need to be achieved in n+1. this situation is contradictory.

Layer

n

Layer

n + 1 

Layer

q

S  in St
n S  in St

n+1

Layer

q + 1 

Solution Layer  

q

SS
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