
1

Activity Planning II:

Plan Extraction and Analysis

Brian C. Williams

16.410-13

October 4th, 2010

Slides draw upon

material from:

Prof. Maria Fox

Univ Strathclyde,

Scotland

��Brian Williams, Fall 10 ��2

Assignments

•� Remember:
Problem Set #5: Constraint Satisfaction and Activity Planning,

out Wed. Sep. 29th , due Wed, Oct. 6th, 2010.

•� Reading:
–� Today: Advanced Planning [AIMA] Ch. 11

GraphPlan, by Blum & Furst.

–� Wednesday: Wednesday: Dechter, R., I. Meiri, J. Pearl,

“Temporal Constraint Networks,” Artificial Intelligence, 49,

pp. 61-95,1991 posted on Stellar.

•� Exam:
–� Mid-Term - October 20th.

2

Example Problem: Dinner Date
Initial Conditions: (:init (cleanHands) (quiet))

Goal: (:goal (noGarbage) (dinner) (present))

Actions:

(:operator carry :precondition

:effect (and (noGarbage) (not (cleanHands)))

(:operator dolly :precondition

:effect (and (noGarbage) (not (quiet)))

(:operator cook :precondition (cleanHands)

:effect (dinner))

(:operator wrap :precondition (quiet)

:effect (present))

+ noops

Solution: (Cook, Wrap, Carry)

Approach: Graph Plan

1.� Construct compact encoding of candidates that
prunes many invalid plans – Plan Graph.

2.� Generate plan by searching for a consistent
subgraph that achieves the goals.

Proposition

Init State

Action

Time 1

Proposition

Time 1

Action

Time 2

3

Plan Graph

•� Compactly encodes the space of consistent

plans,

•� while pruning . . .

1.� partial states and actions at each time i

that are not reachable from the initial state.

2.� pairs of propositions and actions

that are mutually inconsistent at time i.

3.� plans that cannot reach the goals.

Graph Plan

•� Create plan graph level 1 from initial state

•� Loop

1.� If goal � propositions of the highest level

(nonmutex),

2.� Then search graph for solution

•� If solution found, then return and terminate.

3.� Extend graph one more level.

��6

A kind of double search: forward direction checks necessary

(but insufficient) conditions for a solution, ...

Backward search verifies...

4

Layer 1: Add Proposition Mutexs

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�
0 Prop 0 Action 1 Prop 1 Action 2 Prop

Do all goal

propositions

appear non-mutex?

No Proposition Mutexs

Round 2: Extend the Plan Graph
 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

0 Prop 0 Action 1 Prop 1 Action 2 Prop

5

Search Graph for Solution
 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Outline

•� Graph Plan

–�Solution Extraction

–�Memos

–�Properties

–�Termination with Failure

6

2. Search for a Solution

Recursively find consistent actions that
achieve all goals at time t, t-1 ... :

•� Find actions to achieve each goal Gi at time t:

–� For each action Ai that makes Gi true at t:

•� If Ai isn t mutex with a previously chosen action at t,
Then select it.

–� Finally,
•� If no action that achieves Gi is consistent,

•� Then backtrack to the predecessor goal Gi-1, at t.

•� Finally

–� If actions are found for all goals at time t,

–� Then recurse on t-1, using the action preconditions as goals,

–� Else backtrack to the next candidate solution at t+1.

–� Return plan if t = 0.
��11

2. Search for a Solution

Recursively find consistent actions that
achieve all goals at time t, t-1 ... :

•� Find actions at t-1 to achieve each goal Gi at t,
by solving CSPt:

•� Variables: One for each goal Gi

•� Domain: For variable Gi, all actions in layer t-1 that add Gi.

•� Constraints: Action mutex of layer t-1

•� Finally

–� If solution to CSPt found,

–� Then recurse on preconditions of actions selected for layer t-1,

–� Else, backtrack to next candidate solution at t+1.

–� Return plan if t = 0.
��12

7

•� Favor No-ops over other actions.

–� guarantees the plan will avoid

redundant plan steps.

Search Action Layer 0
 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�
0 Prop 0 Action 1 Prop

carry

cook

noGarb

dinner

present

dolly

cook

wrap

8

Extend & Search Action Layer 1
 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Search Action Layer 1

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

1 Action 2 Prop

noop carry

noop wrap

noop cook

noop wrap noop wrap

noop cook

noop wrap

noGarb

dinner

present

dolly

9

Search Action Layer 0
 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Search Action Layer 0
 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�
0 Prop 0 Action 1 Prop

carry dolly

cook

wrap

noGarb

dinner

present

cook

wrap

Backtrack!

10

Search Action Layer 1 Again!

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

1 Action 2 Prop

noop carry

noop wrap

noop cook

noop wrap noop wrap

noop cook

noop wrap

noGarb

dinner

present

dolly

Search Action Layer 0
 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

0 Prop 0 Action 1 Prop 1 Action 2 Prop

11

Search Action Layer 0
 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�
0 Prop 0 Action 1 Prop

carry dolly

noop

cook

noGarb

quiet

dinner

noop

cook

Backtrack!

Search Action Layer 1 Again!

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

1 Action 2 Prop

noop carry

noop wrap

noop cook

noop wrap noop wrap

noop cook

noop wrap

noGarb

dinner

present

dolly

12

Search Action Layer 0
 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Search Action Layer 0
 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�
0 Prop 0 Action 1 Prop

carry dolly

noop

wrap

noGarb

cleanH

present

noop

wrap

Backtrack!

13

Search Action Layer 1 Again!

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

1 Action 2 Prop

noop carry

noop wrap

noop cook

noop wrap noop wrap

noop cook

noop wrap

noGarb

dinner

present

dolly

Search Action Layer 0
 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

0 Prop 0 Action 1 Prop 1 Action 2 Prop

14

Search Action Layer 0
 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�
0 Prop 0 Action 1 Prop

cook

wrap

dinner

present

Consistent!

Solution: Cook & Wrap, then Carry

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

0 Prop 0 Action 1 Prop 1 Action 2 Prop

15

Outline

•� Graph Plan

–�Solution Extraction

–�Memos

–�Properties

–�Termination with Failure

Memos of Inconsistent Subgoals

To prevent wasted search effort:

•� If a goal set at layer k cannot be achieved,

Then memoize the set at k (~ nogood / conflict).

•� Check each new goal set at k against memos.

–� If memo,

•� Then fail,

•� Else test by solving a CSP.

16

Search Layer 0: Record Memo
 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�
0 Prop 0 Action 1 Prop

carry

cook

wrap

noGarb

dinner

present

dolly

cook

wrap

Layer 0 Memos

•� noGarb, dinner, present

Search Layer 1: Check L0 memos
 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Layer 0 Memos

•� noGarb, dinner, present

17

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Search Layer 1: New Memo 2

Layer 0 Memos

•� noGarb, dinner, present

•� noGarb, dinner, quiet

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Search Layer 1: New Memo 3

Layer 0 Memos

•� noGarb, dinner, present

•� noGarb, dinner, quiet

•� noGarb, cleanH, present

18

Solution Found: (Not a Memo)

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

carry�
�
�
dolly�
�
�
cook�
�
�
wrap�
�

�
�
�
 cleanH�
�
�
 quiet�
�
�
�
�
�

�
�

 noGarb�
�
�
 cleanH�
�
�
 quiet�
�
�
 dinner�
�
�
 present�
�

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Layer 0 Memos

•� noGarb, dinner, present

•� noGarb, dinner, quiet

•� noGarb, cleanH, present

Outline

•� Review

•� Graph Plan

–�Solution Extraction

–�Memos

–�Properties

–�Termination with Failure

•� Execution

•� Planning in a Continuous Domain

for Deep Sea Exploration

19

Properties:

Optimality and Redundancy

•� Plans guarantee parallel optimality.

–� Parallel plan will take as short a time as possible.

•� Plans don t guarantee sequential optimality.

–� Might be possible to achieve all goals
at a later layer using fewer actions.

•� Plans do not contain redundant steps.

–� Achieved by preferring no-ops.

Plan Graph Properties:

Fixed Points

•� Propositions monotonically increase.

–� Once added to a layer they remain in successive layers.

•� Mutexes monotonically decrease.

–� Once a mutex has decayed it never reappears.

��The graph eventually reaches a fix point.

•� Level where propositions and mutexes no longer change.

20

Fix point Example:

Door Domain
Move from room ?X to room ?Y

•� pre: robot in ?X, door is open

•� add: robot in ?Y

•� del: robot in ?X

Open door

•� pre: door closed

•� add: door open

•� del: door closed

Close door

•� pre: door open

•� add: door closed

•� del: door open

A B

noop

noop

Move

Move

Open

noop

Close

noop

In(B)

In(A)

Closed

Opened

Layer 3

Move

Move

Open

In(A)

Closed

Layer 0

Open

noop

noop

In(A)

Closed

Opened

Layer 1

In(B)

noop

noop

Move

Open

noop

Close

In(A)

Closed

Opened

Layer 2

Layer 3 is the fixed point of the graph – called level out.

21

Graph Search Properties

•� Graphplan may need to expand well beyond the fix

point to find a solution.

Why?

Gripper Example

Move from one room to another

•� pre: robot in first room

•� add: robot in second room

•� del: robot in first room

Pick up ball

•� pre: gripper free, ball in room

•� add: holding ball

•� del: gripper free, ball in room

Drop ball

•� pre: holding ball, in room

•� add: ball in room, gripper free

•� del: holding ball

22

Gripper Example

•� Fix point occurs at Layer 4.

–�All propositions concerning ball and robot locations

are pairwise non-mutex after 4 steps.

•� Solution layer depends on # balls moved.

–�E.g., for 30 balls,

•� solution is at layer 59;

•� 54 layers with identical propositions, actions and mutexes.

Outline

•� Review

•� Graph Plan

–�Solution Extraction

–�Memos

–�Properties

–�Termination with Failure

23

Termination Property

Graphplan returns failure if and only if
no plan exists.

How?

Simple Termination

•� If the fix point is reached and:

–� a goal is not asserted OR

–� two goals are mutex,

Then return "No solution," without any search.

•� Otherwise, there may be higher order exclusions
(memos) that prevent a solution.

��Requires a more sophisticated termination test.

24

Why Continue After FixPoint?

•� Propositions, actions and mutexes no longer change

after a fix point.

•� But: memos (N-ary exclusions) do change.

–� New layers add time to the graph.

–� Time allows actions to be spaced so that memos decay.

–� Memos monotonically decrease.

•� Any goal set achievable at layer i, is achievable at i + n.

�� Track memos & terminate on their fix point.

Appendix

25

Termination Test

•� A graph levels off if the memos at layer n+1 are the same as at n.

•� If the Graph levels off at layer n, and the current search stage is t >n,
Then Graphplan can output "No Solution".

Layer

n

Layer

n + 1

Layer

t

St
n = St

n+1 Where Sm
k = the sets of goals found

unsolvable at layer k during search from m

Termination Property

•� Theorem: Graphplan returns with failure iff the
problem is unsolvable.

•� Proof of If the problem is unsolvable, then
Graphplan returns with failure : The number of
goal sets found unsolvable at layer n from layer t
will never be smaller than the number at n from
layer t+1. In addition, there is a finite maximum
number of goal sets. Hence, if the problem is
unsolvable, eventually two successive layers will
contain the same memoized sets.

26

If Graphplan outputs "No Solution," then the problem is unsolvable.

•� Suppose the fix point is at layer n and Graphplan has completed an
unsuccessful search starting at layer t > n.

•� A plan to achieve any goal set that is unsolvable at layer n+1 must, one
step earlier, achieve some set unsolvable at layer n.

•� Suppose Graphplan returns "No Solution," but the problem is solvable:

•� If St
n = St

n+1 then S' and S'' must both be in St
n+1. This means that some set in St

n

+1 will need to be achieved in n+1. this situation is contradictory.

Layer

n

Layer

n + 1

Layer

q

S in St
n S in St

n+1

Layer

q + 1

Solution Layer

q

SS

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

