Activity Planning and Execution I:
Operator-based Planning and Plan Graphs

Slides dlr?w upon Brian C. Williams

material from:

Prof. Maria Fox, 16410_13

Univ Strathclyde October 4. 2010
2

Assignments

* Remember:
Problem Set #5: Constraint Satisfaction and Activity Planning,
out Wed. Sep. 29™ | due Wed, Oct. 6%, 2010.

» Reading:
— Today: Advanced Planning [4IMA] Ch. 11;
“GraphPlan,” by Blum & Furst.

— Wednesday: Dechter, R., . Meiri, J. Pearl, “Temporal
Constraint Networks,” Artificial Intelligence, 49, pp.
61-95,1991 posted on Stellar.

* Exam:
— Mid-Term - October 20,

Simple Spacecraft Problem

Observation-1 -
reot ——(Lpointing

instruments
N

Observation-2 calibrated

Observation-3

Observation-4

Image credit: NASA.

Propositions: Target Pointed To, Camera Calibrated?, Has Image?
Operators: Calibrate, Turn to Y, and Take Image.

Outline

* Graph Plan
— Problem Statement
— Planning Graph Construction

— Plan Extraction

Graph Plan

Developed in 1995 by Avrim Blum and Merrick Furst, at CMU.

The Plan Graph compactly encodes all possible plans.
— has been a key to scaling up to realistic problems.

Plan Graph representation used for:
— An encoding method for formulating planning as a CSP.
— Relaxed planning as an admissible heuristic (state space search + A*).

Approach has been extended to reason with temporally extended
actions, metric and non-atomic preconditions and effects.

Approach: Graph Plan

1. Construct compact constraint encoding of state
space from operators and the initial state.
- Planning Graph

2. Generate plan by searching for a consistent
subgraph that achieves the goals.

Proposition Action Proposition Action
Init State Time 1 Time 1 Time 2

Representing States

State
* A consistent conjunction of propositions (positive literals).

+ E.g., (and (cleanhands) (quiet) (dinner) (present) (noGarbage))
 All unspecified propositions are false.

Initial State

* Problem state at time i = 0.
* E.g., (and (cleanHands) (quiet)).

Goal State

* A partial state.
* E.g., (and (noGarbage) (dinner) (present)).

« A Plan moves a system from its initial state to a final state
that extends the goal state.

Representing Operators}%%,@ |
% %o S
0?(/ G/)j/ /?/,0
ORCVRY
é@ @&. %@
(:operator cook :precondition (cIeanHandle Oo/%e%.@,)}

-effect (dinner)) }

Preconditions: Propositions that must be true to apply
the operator.
* A conjunction of propositions (no negated propositions).

Effects: Propositions that the operator changes,
given that the preconditions are satisfied.

* A conjunction of propositions (called adds) and
their negation (called deletes).

(Parameterized) Operator Schemata

* Instead of defining many operator instances:
pickup-A and pickup-B and ...

e Define a schema:

(:operator pick-up
.parameters ((?ob1 - block))
:precondition (and (clear ?ob1)
(on-table ?0b1)
(arm-empty))
-effect (and (not (clear ?0b1))
(not (on-table ?0b1))
(not (arm-empty))
(holding ?0b1)))

Example Problem: Dinner Date

Initial Conditions: (:init (cleanHands) (quiet))

Goal: (:goal (noGarbage) (dinner) (present))

Actions:
(:operator carry :precondition
:effect (and (noGarbage) (not (cleanHands)))

(:operator dolly :precondition
:effect (and (noGarbage) (not (quiet)))

(:operator cook :precondition (cleanHands)
:effect (dinner))

(:operator wrap :precondition (quiet)
;effect (present))
+ noops

U
o
S

(Cook, Wrap, Carry)

Visualizing Actions

(:operator cook :precondition (cleanHands)
-effect (dinner))

cook

cleanHands == =P dinner

(:operator carry :precondition
-effect (and (noGarbage) (not (cleanHands)))

lllllllll

Visualizing Actions

» Persistence actions (No-ops)

* Every literal has a no-op action,
which maintains it from time i to i+1.

(:operator noop-P :precondition (P) :effect (P))

P —p DNoop-P __5 p

In Blum & Furst: (& lecture) Only persist positive literals.
AIMA: Persists negative literals as well.
either approach okay for PSet.

Operator Execution Semantics

If all propositions of :precondition appear in state i,
Then create state i+1 from i, by
-« adding to i, all “add” propositions in :effects,

« removing from i, all “delete” propositions
in :effects.

(:operator cook :precondition (cleanHands)
:effect (dinner))

(cleanHands) (cleanHands)
(quiety > GO0k => " (quiet)
(dinner)

Operator Execution Semantics

If all propositions of :precondition appear in state i,
Then create state i+1 from i, by
« adding to i, all “add” propositions in :effects,

« removing from i, all “delete” propositions
in :effects.

(:operator dolly :precondition
-effect (and (noGarbage) (not (quiet)))

(cleanHands) (cleanHands)
(quiet) > dolly == (noGarbage)

Representing Plans: <Actions|[1] >

» Sets of concurrent actions that are performed at each time [i]
» Concurrent actions can be interleaved in any order.

=If actions a and b occur at time i, then it must be valid to
perform either a followed by b, OR b followed by a.

0
::::
0

cleanH
noop-dinner
dinner dinner
\noog-gresent
present present

Pr?p at(Actilon at(ProP at1 ActzonI at1 Prop at 2

A Complete Consistent Plan

Given an initial state that holds at time 0, and goal propositions,
a plan is a solution iff it is:

Complete:
* The goal propositions all hold in the final state.

*The preconditions of every operator at time i,
are satisfied by propositions at time .

Consistent:

Example of a Complete Plan

Initial Conditions: (and (cleanHands) (quiet))

Goal: (and (noGarbage) (dinner) (present))

[noGarb

cleanH carry .,
""A
cleanH

quiet cook
(noop dinner)

dinner P | dinner

wra

noop present, p A
present P | present

[| [[[
Prtl)p at(Actilon at(ProP at 1 ActionI atl Prop alt 2

A Complete Consistent Plan

Given an initial state that holds at time 0, and goal propositions,
a plan is a solution iff it is:

Complete:
* The goal propositions all hold in the final state.

*The preconditions of every operator at time i,
are satisfied by propositions at time i.

Consistent:

» The operators at any time i can be executed in any order,
without one of these operators undoing:

« the preconditions of another operator at time i.

» the effects of another operator at time .

Example of a
Complete Consistent Plan

Initial Conditions: (and (cleanHands) (quiet))

Goal: (and (noGarbage) (dinner) (present))
noGarb
cleanH
(noop dinner)
dinner P | dinner
(noop present)
present present

[| [[
Prtl)p at(Actilon at(ProP at 1 ActionI atl Prop alt 2

Example of a
Complete Inconsistent Plan

Initial Conditions: (and (cleanHands) (quiet))

Goal: (and (noGarbage) (dinner) (present))

noGarb noGarb

noop garb
cleanH
(noop cleanH)
cleanH p cleanH
quiet
(noop dinner)
dinner P | dinner
wrap
\ (noop present)
present P | present

I I I I I
Pr?p at(Actilon at(ProP at 1 ActionI atl Prop alt 2

10

Outline

* Graph Plan
— Problem Statement
— Planning Graph Construction

— Plan Extraction

Graph Plan Algorithm

* Phase 1 — Plan Graph Expansion
— Graph includes all plans that are complete and consistent.

— Graph prunes many infeasible plans.

* Phase 2 - Solution Extraction

— Graph frames a kind of constraint satisfaction problem (CSP).

— Extraction selects actions to perform at each time point,
by assigning variables and by testing consistency.

11

Example: Planning Graph and Solution

/ noGarb noGarb
fﬂiry / CarﬂL,,,"//
cleanH : / “A leanH A cleanH

doll dolly .,
u,‘ ' hu,,"‘

quiet ; quiet quiet
cook 0ok
dinner \ / dinner
wrap \ wrap
present \‘ present
| [[[[
0 lTrop 0 Alction 1 ll’rop 1 Acltion 2 Plrop

Example: Planning Graph and Solution

noGarb noGarb

arry //v cmrII_L.,“'//
cleanH cleanH /A cleanH

A quiet

cook:
7 dinner

wrap: wrap\

present P | present

quiet g

I I I
0 lTrop 0 Alctlon 1 Il’rop 1 Acltion 2 Plrop

Graph Plan Algorithm

* Phase 1 — Plan Graph Expansion
— Graph includes all plans that are complete and consistent.

— Graph prunes many infeasible plans.

* Phase 2 - Solution Extraction
— Graph frames a kind of constraint satisfaction problem (CSP).

— Extraction selects actions to perform at each time point,
by assigning variables and by testing consistency.

* Repeat Phases 1 and 2 for planning graphs with an
increasing numbers of action layers.

Planning Graphs Prune

Initial state reachability:
Prunes partial states and actions at each time
1 that are not reachable from the initial state,

Consistency:
Prunes pairs of propositions and actions
that are mutually inconsistent at time I, and

Goal state reachability:
plans that cannot reach the goals.

13

Graph Properties

 Plan graphs are constructed in polynomial
time and are of polynomial in size.

 Plan graphs do not eliminate all infeasible
plans.

=>»Plan generation requires focused search.

Constructing the Planning Graph...
(Reachability)

* Initial proposition layer
— Contains propositions that hold in the initial state.

14

Example: Initial State, Layer 1

cleanH

quiet

| | | | |
0 I:rop 0 Alction 1 ll’rop 1 Acltion 2 Plrop

Constructing the Planning Graph...
(Reachability)

* Initial proposition layer

— Contains propositions that hold in the initial state.
 Action layer i

— If all of an action’ s preconditions appear in

proposition layer 1,

— Then add action to layer i.
 Proposition layer i+1

— For each action at layer i,

— Add all its effects at layer i+1.

15

Example: Add Actions and Effects

noGarb

carry /
l"‘
cleanH cleanH

dolly /
g

quiet ; \ quiet
cook \
dinner
wrap
present
| [| [[
0 lTrop 0 Alction 1 ll)rop 1 Acltion 2 Plrop

Constructing the Planning Graph...
(Reachability)

Initial proposition layer
— Contains propositions that hold in the initial state.

Action layer 1
— If all of an action’ s preconditions appear in
proposition layer i,
— Then add action to layer 1.
Proposition layer i+1
— For each action at layer i,
— Add all its effects at layer i+1.

Repeat adding layers until all goal propositions appear.

16

Round 1: Stop at Proposition Layer 1?

noGarb
carry =, / Do all goal
cleanH / 4 cleanH propositions
\ dolly o, appear?
:,"
quiet ; \ quiet
cook Goal: (and (noGarbage)
. (dinner)
dinner (present))
wrap
present
| [| [[
0 lTrop 0 Alction 1 ll)rop 1 Acltion 2 Plrop

Constructing the Planning Graph...
(Consistency)

Initial proposition layer
— Contains propositions that hold in the initial state.
Action layer 1
— Ifaction’ s preconditions appear consistent in i [non-mutex],
— Then add action to layer i.
Proposition layer i+1
— For each action at layer i,
— Add all its effects at layer i+1.
Identify mutual exclusions
— Between actions in layer 1, and
— Between propositions in layeri+ 1.
Repeat until all goal propositions appear non-mutex.

17

Mutual Exclusion: Actions

» Actions A,B are mutually exclusive at level i
if no valid plan could consistently contain both at i:

— They have inconsistent effects.
* A deletes B’ s effects.

— Effects interfere with preconditions.
* A deletes B s preconditions, or

* vice-versa.

— Their preconditions compete for needs.
* A and B have inconsistent preconditions.

Mutual Exclusion: Actions

noGarb

carry 7’ 1. Inconsistent effects.
(A cleanH

2. Effect interferes

cleanH with precondition.
: dolly 4 3. Competing needs.
quiet ¢ \ quiet
cook \
dinner
wrap
present
I I I I I
0 lTrop 0 Alction 1 Il’rop 1 Acltion 2 Plrop

18

Mutual Exclusion: Actions

noGarb
arry / 1. Inconsistent effects.
rc "«/ 2. Effect interferes
cleanH ‘A JeanH with precondition.
: dolly / 3. Competing needs.
quiet ; \ quiet
cook \
dinner
wrap
present
| | | | |
0 lTrop 0A|cti0n 1 ll’rop 1 Acltion 2 Plrop
Mutual Exclusion: Actions
noGarb
Carry 1. Inconsistent effects.
2. Effect interferes
CleanH A JeanH with precondition.

do ly / 3. Competing needs.
I,"‘

quiet ¢ quiet
cook \
dinner
wmp
present
I I I I I
0 lTrop 0 Alction 1 Il’rop 1 Acltion 2 Plrop

19

Mutual Exclusion: Actions

noGarb

carry /
l"‘
cleanH cleanH

do l ""u:
o,
\

quiet ; quiet
cook
dinner
wrap
present
| [|
0 lTrop 0 Alction 1 ll’rop

1. Inconsistent effects.

2. Effect interferes
with precondition.

3. Competing needs.

| |
1 Acltion 2 Plrop

Layer 1: Complete Action Mutexs

noGarb

rtarry //'
(N
cleanH - cleanH

doll /
& RN
\

quiet ¢ quiet
cook
dinner
wrap
present
I I I
0 lTrop 0 Alction 1 Il’rop

1. Inconsistent effects.

2. Effect interferes
with precondition.

3. Competing needs.

I I
1 Acltion 2 Plrop

20

Mutual Exclusion: Proposition Layer

Propositions P,Q are inconsistent at i
* if no valid plan could possibly contain both at i,

= if at 1, all ways to achieve P exclude
each way to achieve Q.

Layer 1: Add Proposition Mutexs

noGarb

rtarry / Do all goal
cleanH ("4 leanH propositions

\ doK/ appear non-mutex?
l,‘

quiet ¢ quiet
cook
No pr ition mutexs.
Jinnor 0 proposition mutexs
wrap
present
I I I I I
0 lTrop 0 Alction 1 Il’rop 1 Acltion 2 Plrop

21

Round 2: Extending The Planning Graph

noGarb noGarb

fﬂiry / carry'n,,//
cleanH - 4 cleanH (A cleanH

do]l / dolly .,
\
0

quiet ; quiet quiet

cook co

dinner dinner
wrap \ \ wmp/\A

present present
I I I [[
0 lTrop 0 Alction 1 ll)rop 1 Acltion 2 Plrop
Outline

e Graph Plan
— Problem Statement
— Planning Graph Construction
— Plan Extraction |p]

22

MIT OpenCourseWare
http://ocw.mit.edu

16.410/ 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

