Soundness and Completeness of
State Space Search

Sertac Karaman
16.410-13
Sept 20t, 2010

Assignments

e Remember:
Problem Set #2: Uninformed search

Out last Wednesday,
Due this Wednesday, September 22

* Reading:
— Today: Proofs and Induction: Lecture 2 and 3 Notes of 6.042.

— Wednesday: [AIMA] Ch. 6.1; 24.3-5 Constraint Satisfaction.
* To learn more: Constraint Processing, by Rina Dechter

— Chapter 2: Constraint Networks
— Chapter 3: Consistency Enforcing and Propagation

7/2/11

Autonomous Systems:
e Plan complex sequences of actions
e Schedule tight resources
e Monitor and diagnose behavior
e Repair or reconfigure hardware.

=formulate as state space search.

Formalizing Graph Search

Input: A search problem SP = <g, S, G> where
e graph g =<V, E>,

e start vertex S in V, and

e goal vertex Gin V.

Output: A simple path P =<S, v2, ... G>in g from S to G.

(i.e., <v,v;,;>EE, and v, # Vjifi#j).

¢« C
A

9/20/10

A Graph Search is a Kind
‘ of State Space Search
©,

Graph Search is a Kind
Of Tree Search

— 1

Brian Williams, Fall 10

Solution: Depth First Search (DFS)

0/‘\
S B>

e R

Solution: Breadth First Search (BFS)

> o
@é> ooe

Brian Williams, Fall 10

9/20/10

Solution: Depth First Search (DFS)

‘/‘\ Depth-first:

Add path extensions to front of Q
S ORI

Pick first element of Q
) © &

Solution: Breadth First Search (BFS)

‘/‘\ Breadth-first:

é Add path extensions to back of Q
Pick first element of Q
© & e

The Worst of The Worst

Which is better, depth-first or breadth-first?

£ 2T

e Assume d = m in the worst case, and call both m.

e Best-first can’t expand to level m+1, just m.

Search Worst Worst Shortest Guaranteed to
Method Time Space Path? find path?
Depth-first ~bm b*m No Yes for finite graph
Breadth-first ~pm pm Yes it Ingth Yes

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

9/20/10

Elements of Algorithm Design

Description: (last Monday)
— Problem statement.

— Stylized pseudo code, sufficient to analyze and implement the
algorithm.

— Implementation (last Wednesday).

Analysis: (last Wednesday)

e Performance:
— Time complexity:
¢ how long does it take to find a solution?
— Space complexity:
* how much memory does it need to perform search?

e Correctness: (today)
— Soundness:
¢ when a solution is returned, is it guaranteed to be correct?
— Completeness:
¢ is the algorithm guaranteed to find a solution when there is one?

Outline

e Review

Proof techniques and the axiomatic method

Proofs of soundness and completeness of
search algorithms

Limits of axiomatic method

9/20/10

Envelope game
Probabilities do not work!

| put an amount SN and S2N into two different envelopes
(vou do not know N).

| open one of them, it has SX.
Would you pick the open one or the other?

Reasoning 1: (I pick one at random)
— seeing inside an envelope does not matter...

Reasoning 2: (I pick the second one)
— If | get this envelope, | get SX.

— If | get the other envelope, | get, on average:
(1/2) X/2 + (1/2) 2X = (5/4) X

Unexpected hanging paradox
Induction does not work!

A judge tells a criminal that

“the criminal will be hanged on a weekday at noon next
week, he will not know when he will be hanged, it will be a
total surprise”.

Criminal’s reasoning:

— He can not be hanged on a Friday (by Thursday afternoon, he
will know — it won’t be a surprise).

— Then, he can not be hanged on Thursday either.
— Then, he can not be hanged at all... So he feels safe.

(He was hanged on Wed. at noon — it was a total surprise...)

What went wrong with criminal’s deduction?

9/20/10

The axiomatic method

* Invented by Euclid around 300BC (in
Alexandria, Egypt).

* 5 axioms of geometry mentioned in his
work Elements.

 Starting from these axioms,
Euclid established many “propositions
by providing “proofs”.

”

Oldest surviving copy
of the Elements on a
... papyrus found in
Oxyrhynchus, Egypt.

Euclid statute in Oxford

Images are in the public domain.

The axiomatic method

e A definition of a “proof”:
* Any sequence of logical deductions from

. . .. 7
axioms and previously proven propositions/

statements that concludes with the
proposition in question.

* There are many types of “propositions”:
e Theorem: Important results, main results
e Lemma: a preliminary proposition for proving
later results

e Corollary: An easy (but important) conclusion,
an afterthought of a theorem.

Euclid statute in Oxford

9/20/10

The axiomatic method

e Euclid’s axiom-proof approach is now
fundamental to mathematics!

e Amazingly, essentially all mathematics can
be derived from just a handful of axioms...

e How to even start a proof?

e There are many “templates”
(outlines, or techniques)

¢ The details differ...

Euclid statute in Oxford

Proving an implication

e Several mathematical claims are of the form:
e “If P, then Q”, or equivalently “P implies Q”.

¢ Quadratics:

—bE Vb2 -4
olf az®+bx+c=0anda+#0,thenz = o ac

¢ Inequalities:
elf 0<2<2,then —2>+42+1>0
¢ Goldbach’s Conjecture:

e If n>2, then nisasum of two primes.

9/20/10

Proving implications:
Simplest proof technique

* To prove “P implies Q”,
— “Assume P” and show that Q logically follows.

e Theorem:
—1f 0<2<2,then —z° +4x+1>0
* Proof:
— Assume 0< 2 <2 (P)
— Then, ,2 — x,andx + 2 are all non-negative
— Then, (2 — z)(2 +) is non-negative
— Then, (2 — z)(2 + x) + 1 is non-negative
- Then muItlpIylng out the left side gives
— 23 +4dx+1>0 Q)

Proof by Contradiction

e To prove that a statement P is True.
— Assume that it is not.
— Show that some absurd (clearly false) statement follows.

* Formalized: In order to prove a statement P is True
— Assume that P is Fal se,

— Deduce a logical contradiction (negation of a previous
statement or an axiom).

9/20/10

Proof by Contradiction

e Theorem: /2 is an irrational number.
e Proof:

Assume that\/§ is not irrational.

Then, /2 is a rational number and can be written as v/2 = a/b
where a and b are integers and fraction is in lowest terms

Then, squaring both sides and rearranging gives 2 = a?/b?
Then, a must be even

Then, a? must be a multiple of 4

Then, 2b? must also be a multiple of 4

Then, b is also even

Then, the fraction is not in the lowest terms
(since a and b are both even)

Proof by Induction

Pick parameter N to define problem size.
* Number of edges in the solution.
* Number of nodes in graph.

Base Step: N =0 (or small N)
* Prove property for N=0

Induction Step:
e Assume property holds for N
* Prove property for N+1

* Conclusion: property holds for all problem sizes N.

9/20/10

10

Proof by Induction formalized

Let P(i) be a statement with parameter i.

Proof by induction states the following implication:
e “P(0)isTrue” (1) and “P(i) implies P(i+1)” (2)
e (1) and (2) implies “P(i) is True for all i”.

Induction is one of the core principles of mathematics.

It is generally taken as an axiom, or the axioms are
designed so that induction principle can be proven.

An induction example

n(n+1)

e Theorem: 1+2+---+n= 5 for all n.
e Proof:
— Base case: P(0) is True.
* Because, 0=0.
— Induction step: P(n) implies P(n+1)
* Assume that the hypothesis holds for n.
* Forn+1:
1424 +n+(n+1) = n(n;l) +n+1
. (n+1)(n+2)
2

9/20/10

11

A faulty induction

e Theorem[!]: All horses are the same color.
* Prooff!]
— Base case: P(1) is True.
* because, there is only one horse.

— Induction step: P(i) implies P(i+1).
¢ Assume that P(i) is True.

* By the induction hypothesis first i horses are the same color, and the
last i horses are also the same color.

hi,ha, ..., hihita hi,hay ..o hiyhiga

¢ So all the i+1 horses must be the same color.
e Hence, P(i+1) is also True.

* What went wrong here?

Proof by Invariance
A common technique in algorithm analysis

e Show that a certain property holds throughout
in an algorithm.

* Assume that the property holds initially.

e Show that in any step that the algorithm takes,
the property still holds.

* Then, property holds forever.

* ltis a simple application of induction. Why?

9/20/10

12

9/20/10

Proving statements about algorithms
Handle with care!

* Correctness of simplest algorithms may be
very hard to prove...

e Collatz conjecture:
e Algorithm (Half Or Triple Plus One - HOTPO):
e Given an integer n.
1. Ifniseven,thenn=n/2
2. Ifnisodd,thenn=3n+1
3. Ifn=1, then terminate, else go to step 1.

e Conjecture: For any n, the algorithm always
terminates (with n = 1).

Proving statements about algorithms
Handle with care!

Collatz conjecture:
e First proposed in 1937.

* Itis not known whether the
conjecture is true or false.

Paul Erdds (1913-1996)
- famous number theorist —

“Mathematics is not yet ready
for such problems”, 1985.

First 100 First 1000
numbers numbers

Images are in the public domain. Images by Keenan Pepper and Jon McL oone

13

http://en.wikipedia.org/wiki/File:Collatz-graph-all-30-no27.svg
http://en.wikipedia.org/wiki/File:Collatz1000mathematica.png

9/20/10

Soundness and Completeness of
Search Algorithms
* Today:

* prove statements about the search algorithms we
have studied in the class.

* study whether the algorithm returns a correct
solution.

* study whether the algorithm returns a solution at
all when one exists.

Soundness and Completeness

Given a problem PR, an algorithm that attempts to solve this
problem may have the following properties:

Soundness:
* The solution returned by the algorithm is correct.

Completeness:
* The algorithm always returns a solution, if one exists.
e [f there is no solution, the algorithm reports failure.

Also, Optimality:
e The algorithm returns the optimal solution, if it returns one.

14

Some Other Notions of
Soundness and Completeness

Probabilistic Completeness:

* The algorithm returns a solution, if one exists, with probability
approaching to one as the number of iterations increases.

* If there is no solution, it may run for forever.

Probabilistic Soundness:

* The probability that the “solution” reported solves the
problem approaches one, as the number of iterations
increases.

Asymptotic Optimality:

* The algorithm does not necessarily return an optimal solution,
but the cost of the solution reported approaches the optimal
as the number of iterations increases.

Problem: State Space Search

Input: A search problem S = <g, S, G> where
e graph g =<V, E>,

e start vertex S in V, and

e goal vertex Gin V.

Output: A simple path P =<S, v2, ... G>in g from S to G.

9/20/10

15

Pseudo Code For Simple Search

Let g be a Graph G be the Goal vertex of g.
S be the start vertex of g Q be a list of simple partial paths in GR,

1. Initialize Q with partial path (S) as only entry; set Visited = ();
2. 1fQisempty, fail. Else, pick some partial path N from Q;
3. Ifhead(N) =G, return N; (goal reached!)
4. Else
a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child;

c) Add to Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

Soundness and Completeness
Theorems

We would like to prove the following two theorems:

Theorem 1 (Soundness):
Simple search algorithm is sound.

Theorem 2 (Completeness):
Simple search algorithm is complete.

We will use a blend of proof techniques for proving them.

9/20/10

16

Soundness and Completeness
Theorems

Theorem 1 (Soundness):
Simple search algorithm is sound.

Let us prove 3 lemmas before proving this theorem.

A lemma towards the proof

 Lemma 1: If <v,, v,, ..., v,> is a path in the
queue at any given time, then v, =S.

* Proof: (by invariance)

— Base case: Initially, there is only <S> in the queue.

Hence, the invariant holds.

— Induction step: Let’s check that the invariant
continues to hold in every step of the algorithm.

9/20/10

17

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,> is a path in the queue at any given time, then v, = S.

1
2.
3.
4

Initialize Q with partial path (S) as only entry; set Visited = ();

If Q is empty, fail. Else, pick some partial path N from Q;
If head(N) = G, return N; (goal reached!)
Else

a)
b)

Remove N from Q;

Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child;

Add to Q all the extended paths;
Add children of head(N) to Visited;
Go to step 2.

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,> is a path in the queue at any given time, then v, = S.

A w0 e

Initialize Q with partial path (S) as only entry; set Visited = ();

If Q is empty, fail. Else, pick some partial path N from Q;
If head(N) = G, return N; (goal reached!)

Else

a)
b)

Remove N from Q;

Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child;

Add to Q all the extended paths;
Add children of head(N) to Visited;
Go to step 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.

In this case no new path is added to the queue.

9/20/10

18

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,> is a path in the queue at any given time, thenv, =S.

1. Initialize Q with partial path (S) as only entry; set Visited = ();
2. IfQis empty, fail. Else, pick some partial path N from Q;

3. Ifhead(N) =G, return N; (goal reached!)

4. Else

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child,;

c) Addto Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.
In this case no new path is added to the queue. 37

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,> is a path in the queue at any given time, thenv, =S.

Initialize Q with partial path (S) as only entry; set Visited = ();
If Q is empty, fail. Else, pick some partial path N from Q;

If head(N) = G, return N; (goal reached!)

Else

oW e

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child,;

c) Addto Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.
In this case no new path is added to the queue (a path is removed) ::

9/20/10

19

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,> is a path in the queue at any given time, thenv, =S.

1. Initialize Q with partial path (S) as only entry; set Visited = ();
2. IfQis empty, fail. Else, pick some partial path N from Q;

3. Ifhead(N) =G, return N; (goal reached!)

4. Else

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child;

¢) Add to Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.
Several paths added, each satisfy the invariant since N satisfies it.

39

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,> is a path in the queue at any given time, thenv, =S.

1. Initialize Q with partial path (S) as only entry; set Visited = ();
2. IfQis empty, fail. Else, pick some partial path N from Q;

3. Ifhead(N) =G, return N; (goal reached!)

4. Else

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child,;

c) Addto Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.
In this case no new path is added to the queue.

40

9/20/10

20

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,> is a path in the queue at any given time, then v, = S.

1. Initialize Q with partial path (S) as only entry; set Visited = ();
2. It Qisempty, fail. Else, pick some partial path N from Q;

3. Ifhead(N) =G, return N; (goal reached!)

4. Else

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child;

c) Addto Q all the extended paths;
d) Add children of head(N) to Visited;
e) Gotostep 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.
In this case no new path is added to the queue.

Another lemma towards the proof

* Definition: A path <v,, v, ..., v,>is valid if
(vi—1,v) € E forall ie{1,2,...,k}

* Lemma 2: If<v,, v,, ..., v,>is a path in the queue
at any given time, then it is valid.
* Proof: (by invariance)

— Base case: Initially there is only one path <S>, which is
valid. Hence, the invariant holds.

— Induction step: Let’s check that the invariant continues
to hold in every step of the algorithm.

9/20/10

21

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,> is a path in the queue at any given time, then it is valid

1
2.
3.
4

Initialize Q with partial path (S) as only entry; set Visited = ();

If Q is empty, fail. Else, pick some partial path N from Q;
If head(N) = G, return N; (goal reached!)
Else

a)
b)

Remove N from Q;

Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child;

Add to Q all the extended paths;
Add children of head(N) to Visited;
Go to step 2.

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,> is a path in the queue at any given time, then it is valid

A w0 e

Initialize Q with partial path (S) as only entry; set Visited = ();

If Q is empty, fail. Else, pick some partial path N from Q;
If head(N) = G, return N; (goal reached!)

Else

a)
b)

Remove N from Q;

Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child;

Add to Q all the extended paths;
Add children of head(N) to Visited;
Go to step 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.

In this case no new path is added to the queue.

9/20/10

22

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,>is a path in the queue at any given time, then it is valid

> ow e

Initialize Q with partial path (S) as only entry; set Visited = ();
If Q is empty, fail. Else, pick some partial path N from Q;

If head(N) = G, return N; (goal reached!)

Else

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child,;

c) Addto Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.

In this case no new path is added to the queue.

45

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,>is a path in the queue at any given time, then it is valid

1
2.
3.
4

Initialize Q with partial path (S) as only entry; set Visited = ();
If Q is empty, fail. Else, pick some partial path N from Q;

If head(N) = G, return N; (goal reached!)

Else

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child,;

c) Addto Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.

In this case no new path is added to the queue.

46

9/20/10

23

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,>is a path in the queue at any given time, then it is valid

1. Initialize Q with partial path (S) as only entry; set Visited = ();
2. IfQis empty, fail. Else, pick some partial path N from Q;
3. Ifhead(N) =G, return N; (goal reached!)
4. Else
a) Remove N from Q;
b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child,;
c) Addto Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.

In this case no new path is added to the queue.

47

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,>is a path in the queue at any given time, then it is valid

1. Initialize Q with partial path (S) as only entry; set Visited = ();
2. IfQis empty, fail. Else, pick some partial path N from Q;
3. Ifhead(N) =G, return N; (goal reached!)
4. Else
a) Remove N from Q;
b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child;
¢) Add to Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.

Note that validity holds for all newly added path (from Line 4.b)

48

9/20/10

24

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,>is a path in the queue at any given time, then it is valid

Initialize Q with partial path (S) as only entry; set Visited = ();
If Q is empty, fail. Else, pick some partial path N from Q;

If head(N) = G, return N; (goal reached!)

Else

How e

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child,;

c) Addto Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.
In this case no new path is added to the queue.

49

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,>is a path in the queue at any given time, then it is valid

Initialize Q with partial path (S) as only entry; set Visited = ();
If Q is empty, fail. Else, pick some partial path N from Q;

If head(N) = G, return N; (goal reached!)

Else

oW e

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child,;

c) Addto Q all the extended paths;
d) Add children of head(N) to Visited;
e) Gotostep 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.
In this case no new path is added to the queue.

50

9/20/10

25

Yet another lemma towards the proof

* Lemma 3: If <v,, v,, ..., v,>is a path in the
gueue at any given time, then it is a simple
path (contains no cycles).

* Proof: (by invariance)

— Base case: Initially, there is only <S> in the queue.
Hence, the invariant holds.

— Induction step: Let’s check that the invariant
continues to hold in every step of the algorithm.

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,> is a path in the queue at any given time, then it is a simple path.

1. Initialize Q with partial path (S) as only entry; set Visited = ();
2. If Qisempty, fail. Else, pick some partial path N from Q;

3. Ifhead(N) =G, return N; (goal reached!)

4. Else

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child;

c) Add to Q all the extended paths;
d) Add children of head(N) to Visited,;
e) Gotostep 2.

9/20/10

26

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,> is a path in the queue at any given time, then it is a simple path.

Initialize Q with partial path (S) as only entry; set Visited = ();
If Q is empty, fail. Else, pick some partial path N from Q;
If head(N) = G, return N; (goal reached!)

Else

M ow o

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child,;

c) Addto Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.
In this case no new path is added to the queue. 53

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,> is a path in the queue at any given time, then it is a simple path.

1. Initialize Q with partial path (S) as only entry; set Visited = ();
2. If Qisempty, fail. Else, pick some partial path N from Q;

3. Ifhead(N) =G, return N; (goal reached!)

4. Else

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child,;

c) Addto Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.
In this case no new path is added to the queue. 54

9/20/10

27

Invariant: If <v,, v,, ..., v,> is a path in the queue at any given time, then it is a simple path.

1
2.
3.
4

Pseudo Code For Simple Search

Initialize Q with partial path (S) as only entry; set Visited = ();
If Q is empty, fail. Else, pick some partial path N from Q;

If head(N) = G, return N; (goal reached!)

Else

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child,;

c) Addto Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.

In this case no new path is added to the queue. 55

Invariant: If <v,, v,, ..., v,> is a path in the queue at any given time, then it is a simple path.

oW e

Pseudo Code For Simple Search

Initialize Q with partial path (S) as only entry; set Visited = ();
If Q is empty, fail. Else, pick some partial path N from Q;

If head(N) = G, return N; (goal reached!)

Else

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child,;

c) Addto Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.

In this case no new path is added to the queue. 56

9/20/10

28

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,> is a path in the queue at any given time, then it is a simple path.

1. Initialize Q with partial path (S) as only entry; set Visited = ();
2. IfQis empty, fail. Else, pick some partial path N from Q;

3. Ifhead(N) =G, return N; (goal reached!)

4. Else

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child;

c) Add to Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

We would like to show that each newly added path is simple assuming N is simple.

Proof: (by contradiction) Assume one path is not simple. Then, a children of
head(N) appears in N. But, this is contradicts Line 4.b

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,> is a path in the queue at any given time, then it is a simple path.

1. Initialize Q with partial path (S) as only entry; set Visited = ();
2. IfQis empty, fail. Else, pick some partial path N from Q;

3. Ifhead(N) =G, return N; (goal reached!)

4. Else

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child,;

c) Addto Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.
In this case no new path is added to the queue.

9/20/10

29

Pseudo Code For Simple Search

Invariant: If <v,, v,, ..., v,> is a path in the queue at any given time, then it is a simple path.

Initialize Q with partial path (S) as only entry; set Visited = ();
If Q is empty, fail. Else, pick some partial path N from Q;
If head(N) = G, return N; (goal reached!)

Else

A w0 e

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child;

c) Addto Q all the extended paths;
d) Add children of head(N) to Visited;
e) Gotostep 2.

Before this line: assume that invariant holds.
After this line: show that invariant is still true.
In this case no new path is added to the queue. 59

Soundness and Completeness
Theorems

Theorem 1 (Soundness):
Simple search algorithm is sound.

Proof: by contradiction...

9/20/10

30

Proof of Soundness

Assume that the search algorithm is not sound:

Let the returned pathbe < wvo,v1,..., v >

Then, one of the following must be True:

e 1. Returned path does not start with S:
Vg 7§ S

e 2. Returned path does not contain G at head:
vg # G

e 3. Some transition in the returned path is not valid:
(vi—1,v:) ¢ B forsome i€ {1,2,...,v;}

e 4. Returned path is not simple:
v; =v; forsome 4,7 €4{0,1,...,k} withi#j

Proof of Soundness

* 1. Returned path does not start with S: vx #5

e But, this contradicts Lemma 1!

* Lemma 1: If <v,, v,, ..., v,>is a path in the
queue at any given time, then v, =S.

9/20/10

31

Proof of Soundness

e 2. Returned path does not contain G at head:
Vo % G

e But clearly, the returned path has the property that
Head(N)=G

* Recall the pseudo code:

Invariant: If <v,, v,, ..., v,> is a path in the queue at any given time, then it is a simple path.

1
2.
3.
4

Pseudo Code For Simple Search

Initialize Q with partial path (S) as only entry; set Visited = ();
If Q is empty, fail. Else, pick some partial path N from Q;

If head(N) = G, return N; (goal reached!)

Else

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child;

c) Add to Q all the extended paths;
d) Add children of head(N) to Visited,;
e) Gotostep 2.

9/20/10

32

9/20/10

Proof of Soundness

* 3. Some transition in the returned path is not valid:
(vie1,v;) € E forsome i€ {1,2,...,ux}

e Contradicts Lemma 2!

e Lemma 2: If <v,, v,, ..., v,> is a path in the
gueue at any given time, then it is valid.

Proof of Soundness

e 4. Returned path is not simple:
v; =v; forsome 4,5 €{0,1,...,k} with i#j

e Contradicts Lemma 3!

e Lemma 3: If <v,, v,, ..., v, > is a path in the
gueue at any given time, then it is a simple
path (contains no cycles).

33

Proof of Soundness

Assume that the search algorithm is not sound:
Let the returned pathbe < wvo,v1,..., v >
Then, one of the following must be True:
e 1. Returned path does not start with S:
v £ S
e 2. Returned path does not contain G at head:
vg # G

e 3. Some transition in the returned path is not valid:

(vi—1,v:) ¢ B forsome i€ {1,2,...,v;}
e 4. Returned path is not simple:
v; =v; forsome i,j €{0,1,...,k} withi#j

Proof of Soundness

Assume that the search algorithm is not sound:

We reach a contradiction in all cases.

Hence, the simple search algorithm is sound.

9/20/10

34

Proof of Completeness

Theorem 2 (Completeness):
Simple search algorithm is complete.

Need to prove:

 If there is a path to reach from S to G, then the
algorithm returns one path that does so.

> w e

Pseudo Code For Simple Search

Let g be a Graph G be the Goal vertex of g.
S be the start vertex of g Q be a list of simple partial paths in GR,

Initialize Q with partial path (S) as only entry; set Visited = ();
If Q is empty, fail. Else, pick some partial path N from Q;

If head(N) = G, return N; (goal reached!)

Else

a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child;

c) Add to Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

9/20/10

35

A common technique in
analysis of algorithms

e Let’s slightly modify the algorithm
* We will analyze the modified algorithm.

e Then, “project” our results to the original
algorithm.

Pseudo Code For Simple Search

Let g be a Graph G be the Goal vertex of g.
S be the start vertex of g Q be a list of simple partial paths in GR,

1. Initialize Q with partial path (S) as only entry; set Visited = ();
2. IfQis empty, fail. Else, pick some partial path N from Q;
3. Il'f head(N) = G, return N; (goal reached!)
4. Else
a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child;

c) Add to Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

9/20/10

36

9/20/10

Proof of Completeness

* The modified algorithm terminates when the
queue is empty.

e Let us prove a few lemmas regarding the
behavior of the modified algorithm

Proof of Completeness

* Lemma 1: A path that is taken out of the queue is not
placed into the queue again at a later step.

* Proof: (using logical deduction)

* Another way to state this: “If p =<v, v,, ..., v,> is a path
that is taken out of the queue, then p = <v,, vy, ..., v, > is
not placed in to the queue at a later step.”

* Assume that p = <v,, v,, ..., v, > is taken out of the
queue.

* Then, p must be placed in to the queue at an earlier
step.

* Then, v, must be in the visited list at this step.

* Then, p =<v,, vy, .., V> can not placed in to the queue
at a later step, since v, is in the visited list.

37

Proof of Completeness

¢ Definition: A vertex v is reachable from S, if there exists a

path <v, v, ..., v> that starts from Sand ends at v, i.e., v, =

Sandv,=w.

* Lemma 2: If a vertex v is reachable from S, then v is placed
in to the visited list after a finite number of steps.

Proof of Completeness

* Lemma 2: If a vertex v is reachable from S, then v is placed in to the visited list
after a finite number of steps.

e Proof: (by contradiction)

e Assume v is reachable from S, but it is never placed on the visited list.

* Since v is reachable from S, there exists a path that is of the form <v, v,, ..,
vi>, where vy =vandv, =

* Letvy, be the first node (starting from v,) in the chain that is never added to
the visited list.

* (1) Note that v, was not in the visited list before this step.

* (2) Note also that (v,,4, v;) isin E.

* Since v,,; was in the visited list, the queue included a path <v,, ..., v;>(not
necessarily the same as above) where v, =

¢ This path must have been popped from the queue, since there are only
finitely many different partial paths and no path is added twice (by Lemma
1)and v, was not in the visited list (see statement 1 above).

e Since it is popped from the queue, then <v, ., V> must be placed in to
queue (see statement 2 above) and v, placeé in to the visited list

e Red statements contradict!

9/20/10

38

Proof of Completeness

* Lemma 2: If a vertex v is reachable from S,
then v is placed in to the visited list after a
finite number of steps.

e Corollary: In the modified algorithm, G is
placed into the visited queue.

* “Project” back to the original algorithm:

e This is exactly when the original algorithm
terminates

Proof of Completeness

Theorem 2 (Completeness):
Simple search algorithm is complete.

* Proof: Follows from Lemma 2 evaluated in the
original algorithm.

9/20/10

39

Pseudo Code For Simple Search

Let g be a Graph G be the Goal vertex of g.
S be the start vertex of g Q be a list of simple partial paths in GR,

1. Initialize Q with partial path (S) as only entry; set Visited = ();
2. IfQis empty, fail. Else, pick some partial path N from Q;
3. Ifhead(N) = G, return N; (goal reached!)
4. Else
a) Remove N from Q;

b) Find all children of head(N) (its neighbors in g) not in Visited
and create a one-step extension of N to each child;

c) Add to Q all the extended paths;
d) Add children of head(N) to Visited;
e) Goto step 2.

Summarize Completeness and
Soundness

* Hence, we have proven two theorems:

Theorem 1 (Soundness):
Simple search algorithm is sound.

Theorem 2 (Completeness):
Simple search algorithm is complete.

e Soundness and completeness is a requirement for most algorithms,
although we will their relaxations quite often

9/20/10

40

Back to the Axiomatic Method
Does it really work?

* Essentially all of what we know in mathematics today can
be derived from a handful of axioms called the
Zarmelo-Frankel set theory with the axiom of Choice (ZFC).

* These axioms were made up by Zarmelo
(they did not exist a priori, unlike physical phenomena).

* We do not know whether these axioms are logically
consistent!

— Sounds crazy! But, happened before...
Around 1900, B. Russell discovered that the axioms of that time

were logically inconsistent, i.e., one could prove a contradiction.

Back to the Axiomatic Method
Does it really work?

e ZFC axioms gives one what she/he wants:
— Theorem: 5+ 5 =10.

* However, absurd statements can also be driven:
— Theorem (Banach-Tarski): A ball can be cut into a finite

number of pieces and then the pieces can be rearranged
to build two balls of the same size of the original.
.

» r -
ve L [
: -
S0 ¥
AT " Vel
> <

m.)/1 'Il i

A T

‘\i \[

Clearly, this contradicts our geometric intuition!

Image by Benjamin D. Esham, in the public domain.

9/20/10

41

http://en.wikipedia.org/wiki/File:Banach-Tarski_Paradox.svg

Back to the Axiomatic Method
Does it really work?

Images of Godel, Turing, and Einstein removed due to copyright restrictions.

Back to the Axiomatic Method
Does it really work?

On the fundamental limits of mathematics
* Godel showed in 1930 that there are some propositions that
are true, but do not logically follow from the axioms.

¢ The axioms are not enough!

¢ But, Godel also showed that simply adding more axioms
does not eliminate this problem. Any set of axioms that is
not contradictory will have the same problem!

e Godel’s results are directly related to computation. These
results were later used by Alan Turing in 1950s to invent a
revolutionary idea: computer...

9/20/10

42

What you should know

The definitions of a proposition, proof,
theorem, lemma, and corollary.

Proof techniques such as proof by

contradiction, induction, invariance proofs.

Notions of soundness and completeness.

Proving soundness and completeness of
search algorithms.

9/20/10

43

MIT OpenCourseWare
http://ocw.mit.edu

16.410/ 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

