
Massachusetts Institute of Technology

16.410 Principles of Automated Reasoning
and Decision Making

Problem Set #4

Background for Problems 1 and 2
In Problems 1 and 2, you will implement backtracking algorithms for solving CSPs.

The implementation will be general so that it will be usable for a wide variety of problem
types. However, you will test your implementation on a specific kind of CSP: the N-
queens problem.

You are provided with several Java classes that will help you get started. The class
CSP is used to represent the CSP problem, and includes skeleton methods for the
backtracking algorithms that you are responsible for implementing. The Java class CSP
is supported by the classes CSP_Variable, CSP_Domain, and CSP_Constraint. These
classes, along with CSP, provide a general CSP solver framework. Aspects of these
classes are then specialized for particular problem types, such as N-queens. We
summarize the function of each of these classes below:

Class CSP

This class is used to represent a CSP problem, and includes methods for solving the
CSP. Recall that a CSP is represented by a set of variables, a domain for the variables,
and a set of constraints. Thus, the CSP class has elements variables, domain, and
constraints. The class also includes constructor, initialize, and print methods, which
must be overridden by a class that inherits from CSP. Finally, the class provides methods
backtrack and backtrack_fc for solving the CSP; these implement backtrack search, and
backtrack search with forward checking, respectively.

In Problem 2 you will implement the method backtrack, and in Problem 3 you will

implement the method backtrack_fc. Note that these methods should be written to apply
to any CSP; they are to be implemented at the level of the CSP abstraction, in terms of
the classes CSP, CSP_Variable, CSP_Domain, and CSP_Constraint. The implementation
of these methods should not contain code specific to a particular type of CSP, such as N-
queens.

Class CSP_Variable
The class CSP_Variable represents a single variable in a CSP. The class has elements

domain, from_arcs, and to_arcs. In this problem, we will limit ourselves to binary
constraints that are directional. Thus, from_arcs is the set of constraints that have the
variable as its “input” variable, and to_arcs is the set of constraints that have the variable
as its “output” variable. The class also defines basic methods for accessing and
modifying domain values, and for checking consistency.

Class CSP_Constraint

The class CSP_Constraint represents a single CSP constraint. It has elements for
input variable and output variable. It also has a constructor that initializes these elements.

Class CSP_Domain
The class CSP_Domain represents a domain for a variable. It has a list of domain values,
and an accessor method that retrieves them.

The N-Queens Problem
You will test your backtrack algorithm implementations on an N-Queens problem.

Although the backtrack and backtrack_fc methods will be coded in a problem-
independent manner, you will need to implement some code specific to the N-Queens
problem. In particular, you will implement an arc consistency check method that is
specific to an N-Queens problem constraint.

For this problem, the goal is to place N queens on an NxN chess board so that no
queen can capture another. Thus, no two queens can share a common row, column, or
diagonal. We will use the following representation for this type of problem.

- Each variable specifies the row on which a particular queen is placed. Each

queen is identified with a column of the board. This automatically ensures that
the queens will not share columns.

- The variable domains are the available row indices.
- The constraints between the variables specify that the corresponding queens do

not share a row or diagonal.

Class NQueens
The class NQueens, which extends CSP, represents an NQueens CSP. It contains

initialize and print methods, which we provide. These will help you get started, and will
provide guidance for other aspects of the implementation that are specific to the NQueens
problem.

Class NqueensVariable
 The class NQueensVariable, which extends CSP_Variable contains element col,
which indicates the (constant) column position for the variable. The constructor
initializes this element and the domain.

Class NQueensDomain
The class NQueensDomain, which extends CSP_Domain, has a constructor that

initializes the domain elements.

Class NQueensConstraint
For the class NQueensConstraint, which extends CSP_Constraint, you will provide the
implementation for the method consistent, which checks whether the constraint is
consistent. This method should retrieve the current domains of the input and output
variables of the constraint. If it cannot find any combination of input and output values
that are consistent, the method should return false. Otherwise, it should return true.

Problem 1: Backtracking Implementation (40 points)

Implementation
 Please implement the backtrack method of the CSP class. As stated previously,
these methods are to be implemented at the level of the CSP abstraction, in terms of the
classes CSP, CSP_Variable, CSP_Domain, and CSP_Constraint.

 To support the backtrack method, please implement the consistent method of the
NQueensConstraint class. As stated previously, this method should retrieve the current
domains of the input and output variables of the constraint. If it cannot find any
combination of input and output values that are consistent, the method should return
false; otherwise, it should return true.

 The lecture slides provide a description of the backtrack search algorithms. Please
refer to these slides when implementing the backtrack method.

Testing
The class CSPTop provides a main method as an entry point. This initializes an

NQueens problem of specified size and solves it, printing out the domains before and
after the solution.

Test your implementation of backtrack for sizes 5, 10, and 15. What is the number of
consistency checks for each? What is the largest problem size that can be solved in about
a minute?

Problem 2: Backtracking with Forward Checking
Implementation (30 points)

Implementation
In this problem, you will augment your backtrack algorithm with forward checking,

by implementing the algorithm backtrack_fc (in CSP_rep.java) and
select_from_domain_values_copy_fc (in CSP_Variable.java). The classes and
algorithms should be similar to those for the backtrack algorithm. The primary change
should be to add a call to a forward checking method from the backtrack method. This

will require management of variable domain pruning and restoration during backtracking,
as described in the lecture notes.

Testing
Test your implementation of backtrack_fc on problems with sizes 5, 10, 20, and 30.

What is the number of consistency checks for each? What is the largest problem size that
can be solved in about a minute?

Problem 3: Using GraphPlan (30 points)
The spare tire problem is a well-known benchmark problem for planning algorithms

(see Russell and Norvig, Ch. 11, for description of this problem).

In this exercise, you will use Graphplan to generate plans that solve the spare tire

problem from an existing problem formulation. The formulation for the spare tire
problem is in the files fixit_ops, fixit_facts1, and fixit_facts2, which are available on the
course web site, on the page for this problem set.

Graphplan and the problem formulation are also available at:

http://www.cs.cmu.edu/~avrim/graphplan.html

See the Graphplan web site, at the above url, for detailed information on how to run this
software. For MS Windows users, the source code has been compiled for you. You can
run graphplan.exe from a DOS command prompt. For Mac OS or Unix/Linux users, you
can compile the source code yourselves simply by typing “make” on a terminal. Refer the
the link above for more detail.

Part A. Solve this problem using the Graphplan software. Provide the generated plan;
that is, the sequence of operators output by Graphplan.

Part B. Hypothesize a change to the problem formulation that will make the problem
substantially more difficult for the Graphplan algorithm. Describe this change and the
reason why it will be more difficult for Graphplan to solve. Check whether or not your
hypothesis is true by testing the change with Graphplan. List the modified problem,
report the change in runtime performance, and list the generated plan.

http://www.cs.cmu.edu/%7Eavrim/graphplan.html

MIT OpenCourseWare
http://ocw.mit.edu

16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Problem Set #4
	 Due in class: Wed. 10/06/10
	Background for Problems 1 and 2
	The N-Queens Problem
	Problem 1: Backtracking Implementation (40 points)
	Implementation
	Testing

	Problem 2: Backtracking with Forward Checking Implementation (30 points)
	Implementation
	Testing

	Problem 3: Using GraphPlan (30 points)

