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The Basic Pilot/Plant Feedback Loop
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Input 

• Modeling the system 
• Human modeling is notoriously problematic 

• Save for manual control, tracking tasks 
• Implications for supervisory control systems 
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Modeling & Design 
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• Models help us design the “system” to  	promote 
the best performance 
– System = human + computer 
– Performance depends... 

• Stability 
– Bounded output for bounded input 

• Maneuverability 
• Pilot skill 

• Two human models 
– Crossover 
– Optimal control 
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Modeling the Human Pilot 
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Commanded Displayed System 
er noisenoise 

YYHH YP 

input ror output 

•		One dimensional compensatory tracking example 
•		Significant assumption of linearity 

• A “correct” assumption with noise input because humans 
perform most linearly with random inputs 

•		 Or valid under stationary tracking with highly trained 
operators 

•		Operator/pilot describing function 
• Not a true transfer function due to linear approximation 
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System response to a control input
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• Attitude command 

• Attitude-rate command 
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Pilot/Plant Feedback Loop I 
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Pilot/Plant Feedback Loop II 
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Optimal Performance & the Bode Plot 
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•  Bode plot helps us see  
output/input ratios for  
signal  amplitude and  
phase shift 

• 1st order system 
(s) Kes


 (s) s

– -20db drop for each  
frequency decade increase 

– Pure integrator causes 90◦
phase shift 

–  Time delay dominates at 
high freqs 9 

Image by MIT OpenCourseWare.



 
 

  
 

 

0 

0 

-90o 

-180o 

Amplitude 
ratio 

Phase 
leg 

Zero order First order Second order 

Systems Order & the Bode Plot
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Image by MIT OpenCourseWare. 

• Each order adds a 90◦ phase lag & -20db/decade 
• Time delay exacerbates errors 
• Integrator: rate of change of control movement is 

proportional to error 10



Bode Plot Elements 
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Open Loop TF Closed Loop TF 
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Crossover Frequency Concerns
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• The range of frequencies over 
which the systems responds 
satisfactorily 
– We want to maximize, why?

• Open loop crossover frequency 

determines the bandwidth of the 
response of closed loop system


• For stability, OL gain must go 
through 0 dB before phase shift
= -180 
– Nyquist stability criterion

• Human pilot dynamics 
ultimately place upper limit on 

attainable OLTF ωc 
– Time delay adds phase lag 
– .1-.25 s is typical 
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Operator Characteristics 
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0th order system • What can we say about 
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e delay 

One operator, three systems…
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TTimime delay
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YH is dynamic & adaptive 
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YHYP 

Position (0-order) Lag + Time delay 

Gain + Time delay 

Lead + Time delay 

Velocity (1st-order) 

Acceleration (2nd-order) 

Plant Human Human + Plant 

Image by MIT OpenCourseWare.  
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Crossover Model 
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• McRuer, et al. 
• Human and plant modeled as a 

team 
• YHYP looks like a gain, a time 

delay, and an integrator (first 
order system) in the region of ωc 

• Want (relatively) high gain so
that errors can be fixed quickly
but must be below 0db prior to
phase lag of -180 
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Crossover Model, II
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Human Operator Limitations Model Strategic Parameters 
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Numerator
 
Information processing delay 


time: perception/cognition
 
Denominator
 

Action: Neuromuscular lag (< .2s)
 

Assumptions: Linearity 

& perfect attention
 

Plant dependent:
 
•0th order: YH is a apx. 

integrator/low pass filter 
•1st order: YH = pure gain 

•2nd order: YH is a 
differentiator 
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McRuer et. al (1967) 



 
 

 

 

 

 
 

 

  

Handling Qualities Rating Scale 

Adequacy for selected task 
Aircraft 

characteristics 
Demands on the pilot in selected 

task or required operation* 
Pilot 
rating 

or required operation* 

Is it satisfactory 
without improvement ? 

YES 

Deficiencies warrant NO improvement 

Is adequate 
performance attainable 

with a tolerable 
pilot workload ?

Is it controllable ? 

Pilot decision

YES

NO Deficiencies require 
improvement 

 
YES 

Improvement NO mandatory 

Excellent Pilot compensation not a factor for 
Highly desirable desired performance 1 

Good 
Negligible deficiencies 

Pilot compensation not a factor for 
desired performance 2 

Fair-some mildly 
unpleasant deficiencies 

Minor but annoying 
deficiencies 

moderately objection 
-able deficiencies 

Very objectionable but 
tolerable deficiencies 

Major deficiencies 

Major deficiencies 

Major deficiencies 

Major deficiencies 

Minimal pilot compensation required for 
desired performance 

Desired performance requires moderate 
pilot compensation 

Adequate performance requires considerable 
pilot compensation 
Adequate performance requires extensive 
pilot compensation 

Adequate performance not attainable with 
maximum tolerable pilot compensation. 
Controllability not in question. 

Considerable pilot compensation is 
required for control. 
Intense pilot compensation is 
required to retain control. 

Control will be lost during some portion of 
required operation. 
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Subjective Pilot Feedback
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• Pilots like ga in 
• Don’t like to 

have to 

generate lead
	

• Bottom line – 
2nd order and 
higher syste ms 
are poorly rat ed
(and for goo d 
reason) Image by MIT OpenCourseWare. 
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Kalman Command 
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Goals: minimize 
J = (u2τ+ e2) dt 
"cost functional" 
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Optimal Control Model
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• Crossover 

model 

limitations
	
– Model & 


parameters 

are based on 

empirical data 

(essentially 

black box the
	
human)
	

– Cannot account for operator 
Image by MIT OpenCourseWare.strategies, which are often 


dynamic
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Optimal Control Model,, II 
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• Cost functional: J=∫(Au2+Be2) dt 

•		 u = control effort 
•		 e = control precision 
•		 A & B are adjustable weights 
•		 Cost benefit analysis by operator, e.g., smooth control vs. small 

error 
• Two additional distinct operator states 

•		 Prediction 
•		 Estimation (Kalman filtering) 

• Pros & Cons 
•		 Incorporates imperfect attention 
•		 Several parameters that must be adjusted to fit the data 
•		 PREDICTIVE MODEL BUILDING WARNING!!! 
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Image by MIT OpenCourseWare. 

Hess, 1997 
23



 
 

 
  
 
 
 
 
  

 

 

 

 

 

 
 

 
 

   

(a) � 

� 

Steering wheel Heading
τ 

Lateral position 
τ 

angle 

Aileron position 
(rate of roll) 

(b) 

τ 
Bank angle 

� 

τ 

0 

Heading 
τ 

� 

Lateral 
deviation 

(c) 

Rubber plane 
τ 

Pitch rate 
τ 

Pitch angle 
τ 

Depth 
angle 

Multi-axis Control 
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• Cross-coupled 
& hierarchic al 
tasks 

• Lower order 
variables m ust 
be controlle d 
to regulate 
higher order
variables 

• Cognitive 
workload & 
design
intervention s 

Image by MIT OpenCourseWare. 
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Image by MIT OpenCourseWare. 
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