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16.36: Communication Systems Engineering
Lecture 19: Delay Models for Data Networks

Part 1: Introduction
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Packet Switched Networks

Messages broken into
Packets that are routed
To their destination
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Queueing Systems

® Used for analyzing network performance

* |In packet networks, events are random
— Random packet arrivals
— Random packet lengths

* While at the physical layer we were concerned with bit-error-rate, at the
network layer we care about delays

— How long does a packet spend waiting in buffers ?
— How large are the buffers ?

* Applications far beyond just communication networks
— Air transportation systems, air traffic control
— Manufacturing systems
— Service centers, phone banks, etc.
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Random events

® Arrival process
— Packets arrive according to a random process
— Typically the arrival process is modeled as Poisson

®* The Poisson process
— Arrival rate of A packets per second

— Over asmall interval 9§,

P(exactly one arrival) = A
P(O arrivals) =1 -Ad
P(more than one arrival) =0

— It can be shown that:

(lT)n e—/lT

P(narrivalsininterval T) = oy
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The Poisson Process

(AT )n e—AT

P(narrivalsininterval T) = |
n!

n = number of arrivals in T
It can be shown that,

E[n] = AT

E[n’] = AT +(ATY

o= E[(n-E[n]}] = E[n?]-E[n}* = AT
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Inter-arrival times

* Time that elapses between arrivals (1A)
PIA<t) =1-P(IA>1)

=1-P(0 arrivals in time t)

=1-eM
* This is known as the Exponential distribution

— Inter-arrival CDF =F, (t) =1 - e'M

— Inter-arrival PDF = d/dt F,,(t) = Ae™M

* The Exponential distribution is often used to model the service times (l.e., the
packet length distribution)
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Markov property (Memoryless)
P(T<t, +t|T>t,)=P(T<1)

Pr oof :

P(t, <T <t, +1)
P(T>t,)

P(T<t, +t|T >t,)=

t
AL gttt o) 4 grAt)

tO
0
tO

_

=1-e" =P(T<t)

* Previous history does not help in predicting the future!

e Distribution of the time until the next arrival is independent of when the last
arrival occurred!
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Example

* Suppose a train arrives at a station according to a Poisson process with average inter-
arrival time of 20 minutes

* When a customer arrives at the station the average amount of time until the next
arrival is 20 minutes

— Regardless of when the previous train arrived
* The average amount of time since the last departure is 20 minutes!

* Paradox: Ifan average of 20 minutes passed since the last train arrived and an
average of 20 minutes until the next train, then an average of 40 minutes will elapse
between trains

— But we assumed an average inter-arrival time of 20 minutes!
—  What happened?

* Answer: You tend to arrive during long inter-arrival times
— If you don’t believe me you have not taken the T
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Properties of the Poisson process

* Merging Property 7‘*1

Let Al, A2, ... Ak be independent Poisson Processes
of rate A1, A2, ...AK

A = ) A is also Poisson of rate= ) 4,

* Splitting property
— Suppose that every arrival is randomly routed with probability P to stream 1
and (1-P) to stream 2

— Streams 1 and 2 are Poisson of rates PA and (1-P)A respectively

= AP

1-P~»  AM1-P)
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Queueing Models

Customers il

Queue/buffer

®* Model for
— Customers waiting in line
— Assembly line
— Packets in a network (transmission line)

* Want to know
— Average number of customers in the system
— Average delay experienced by a customer

® Quantities obtained in terms of
— Arrival rate of customers (average number of customers per unit time)

— Service rate (average number of customers that the server can serve per unit
time)
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Analyzing delay in networks
(queueing theory)

Little’s theorem
— Relates delay to number of users in the system
— Can be applied to any system

Simple queueing systems (single server)
- M/M/1, M/G/1, M/D/1

- M/M/m/m

_ ()LT)ne—lT

Poisson Arrivals = P(narrivasininterva T) = I
N!

— A =arrival rate in packets/second
. . . = . _ - T
Exponential service time = P(servicetime < T) = 1-e g

— M =service rate in packets/second



Little’s theorem

A packet per second —*

* N =average number of packets in system
* T =average amount of time a packet spends in the system

e A =arrival rate of packets into the system
(not necessarily Poisson)

* Little’stheorem: N=AT
— Can be applied to entire system or any part of it

— Crowded system <« long delays
On a rainy day people drive slowly and roads are more congested!
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Proof of Little’s Theorem

A(t) | T4
T2 ™ B(t)
T1 ? | >
tl1 t2 t3 t4
A(t) = number of arrivals by time t
B(t) = number of departures by time t
t. = arrival time of ith customer
T, = amount of time it customer spends in the system
N(t) = number of customers in system at time t = A(t) - B(t)
Z-A(t) _ Z-A(t) _ A
N =lim,_ £t —  T= “meTtl) =Y [ T=ANT
N2 T AT
t t 7 A(L)



Application of Little’s Theorem

* Little’s Theorem can be applied to almost any system or part of it

¢ Bame ugomers - ([ @

Queue/buffer

1) The transmitter: D+ = packet transmission time
—  Average number of packets at transmitter = AD,, = p = link utilization

2) The transmission line: D, = propagation delay
—  Average number of packets in flight =D,

3) The buffer: D, = average queueing delay
—  Average number of packets in buffer = N, = XDq

4) Transmitter + buffer
— Average number of packets = p + Nq
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