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Channel Coding

* When transmitting over a noisy channel, some of the bits are
received with errors

Example: Binary Symmetric Channel (BSC)

0 X 0
Pe Pe = Probability of error

1
1-Pe 1

* Q: How can these errors be removed?

* A: Coding: the addition of redundant bits that help us determine
what was sent with greater accuracy
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Example (Repetition code)

Repeat each bit n times (n-odd)

Input Code

0 000........ 0

1 11.......... 1
Decoder:

* If received sequence contains n/2 or more 1’s decode as a l
and O otherwise

— Max likelihood decoding

P (error|1lsent)=P (error|0sent)
= P[ more than n / 2 bit errors occur |

- > U'JP a-Ry"

i=[n/2]
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Repetition code, cont.

* For P,<1/2, P(error)is decreasing inn
— = forany g, d nlarge enough so that P (error) <e

Code Rate: ratio of data bhits to transmitted bits

— For the repetition code R = 1/n

— To send one data bit, must transmit n channel bits “bandwidth
expansion”

* In general, an (n,k) code uses n channel bits to transmit k data bits
— CoderateR=k/n

* Goal: for a desired error probability, €, find the highest rate code
that can achieve p(error) <eg
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Channel Capacity
(Discrete Memoryless Channel)

* The capacity of adiscrete memoryless channel is given by,

) C=max ,,, |(X;Y) X — Channel
Example: Binary Symmetric Channel (BSC)

Py 0

1Y) = H (Y) - H (Y[X) = H (X) - H (X]Y) p=1P, 1

H(Y[X) = Hp(pe) (why?)
H(Y)=1 (why?)

H(Y) = 1 when p, = 1/2

= C=1-Hy(pe)
Try to compute the capacity starting with H(X) - H(X]|Y).
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C=1-H,P,)

Hb(P)
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Capacity of BSC

C =1-Hp(Pe)

1

C=0 whenP_,=1/2and C=1when P,=0o0r P,=1



Capacity of AWGN channel

e Additive White Gaussian Noise channel
- r=S+N
— Nis AWGN with power spectral density N,/2

* Transmission over band-limited channel of bandwidth W
* Average input (transmit) power =P
* Band-limited equivalent noise power = WN,

C= 1Iog(1+ P ) bits per transmission
2 WN

0

R, <2W = C=WIlog(1+ WPN ) bits per second

* Notes °

— Rs =2W is implied by sampling theorem (see notes on sampling theorem)
— Capacity is a function of signal-to-noise ratio (SNR = P/WN,)
Where the signal power is measured at the receiver

— As W increases capacity approaches a limit:
Increasing W increases the symbol rate, but also the noise power

| P P P
Y S r Limity_.. Wlog(1+ = —Ilog(e) =1.44—
e WOG(LH ) = - log(e) = 144

0 0 0
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Capacity of AWGN channel
(example)

The capacity of a cooper telephone channel

— W =3000Hz
— SNR =39dB = 7943

— C=WLog(1+SNR) = 3000L0og(1+7943) = 38,867 bits/sec

Modern modems achieve a higher data rate of 56,000 bps because they
actually use digital transmission over a fiber optic backbone

— The “bottleneck” is the cooper line from the home to the telephone company’s
central office; which has less noise than the old end-to-end cooper links

DSL modems achieve much higher data rates (Mbps) by using a greater
bandwidth over the cooper link between the home and the central office

— The full bandwidth of the cooper line over such short distances can be on the
order of MHz



Channel Coding Theorem (Claude Shannon)

Theorem: For all R < C and &€ > 0; there exists a code of rate R whose
error probability <e

— g can be arbitrarily small

— Proof uses large block size n

as n —oo capacity is achieved

®* In practice codes that achieve capacity are difficult to find

— The goal is to find a code that comes as close as possible to

achieving capacity

® Converse of Coding Theorem:

— For all codes of rate R > C, 3 ¢,> 0, such that the probability of error
is always greater than g,

For code rates greater than capacity, the probability of error is bounded
away from 0
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Block diagram

Channel Coding

Source
decoder

Channel
decoder

Source
encoder

Channel
encoder

Modulator

Figure by MIT OpenCourseWare.




Approaches to coding

* Block Codes

— Datais broken up into blocks of equal length
— Each block is “mapped” onto a larger block

Example: (6,3)code,n=6,k=3,R=1/2

000 — 000000 100 — 100101
001 — 001011 101 — 101110
010 — 010111 110 — 110010
011 — 011100 111 —» 111001

* An (n,k) binary block code is a collection of 2k binary n-tuples (n>k)
— n =block length
— Kk =number of data bits
— n-k =number of checked bits
— R=k/n=coderate
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Approaches to coding

® Convolutional Codes
— The output is provided by looking at a sliding window of input

Ciak) = Uy () Uak-2), Ciake1) = Uek+1) (F) Ueky ) Upk-1

(+) mod(2) addition (1+1=0)

Figure by MIT OpenCourseWare.
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Block Codes

A block code is systematic if every codeword can be broken into a
data part and a redundant part

— Previous (6,3) code was systematic

Definitions:
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Given X € {0,1}", the Hamming Weight of X is the number of 1’s in X

Given X, Y in {0,1}", the Hamming Distance between X & Y is the
number of places in which they differ,

du(X,Y) =D X ®Y, = Weight(X +Y)
i=1

X+Y =[X ®Y;,X @Yz, e, Xy DY, ]

The minimum distance of a code is the Hamming Distance between
the two closest codewords:

dmin = min {dy (C.,C,)}
C,C,e C



Decoding

U ——m Channe > T

* r may not equal to u due to transmission errors
® Givenr how do we know which codeword was sent?

Maximum likelihood Decoding:

Map the received n-tuple r into the codeword C that maximizes,
P{r]| Cwas transmitted }

Minimum Distance Decoding (nearest neighbor)

Map r to the codeword C such that the hamming distance between
r and C is minimized (l.e., min d, (r,C))

= For most channels Min Distance Decoding is the same as Max
likelihood decoding
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Linear Block Codes

* A (nk)linear block code (LBC) is defined by 2k codewords of
length n

c={C,..C,}

e A(nk)LBCis aK-dimensional subspace of {0,1}"
— (0...0) is always a codeword
- 1fC,,C,e C,C;#C,e C

® Theorem: For a LBC the minimum distance is equal to the min
weight (W_. ) of the code

Wmin = min(over all Ci) Weight (Ci)

min

Proof: Suppose d;, = dy (C;,C)), where C;,C,e C

dy (C;,C) = Weight (C; + ),
but since Cis aLBCthen C; +C, is also a codeword
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Systematic codes

Theorem: Any (n,k) LBC can be represented in Systematic form
where: data = x,..X,, codeword = X;..X, Cy,1.-X,

— Hence we will restrict our discussion to systematic codes only

* The codewords corresponding to the information sequences:
e, = (1,0,..0), e,=(0,1,0..0), ¢, = (0,0,..,1) for a basis for the code
— Clearly, they are linearly independent

— Klinearly independent n-tuples completely define the K dimensional
subspace that forms the code

Information sequence Codeword
e, =(1,0,..0) g, = (1,0,.,0, 91 k+1) -G amy)
62:(0,1,0..0) gz - (011;--10’ g(2'k+1) "'g(z,n))
e, =(0,0,..,1) g =(0,0,..K, 9 ks1y - Ikny)

°* 0J,,0, ....0, form a basis for the code

Eytan Modiano
Slide 16



The Generator Matrix

(o] [Ou G - O
G= 9.2 _ 9.21 O2n
Ok | [ G« Okn |

* Forinput sequence x = (Xy,...,X,): C, =xG

— Every codeword is a linear combination of the rows of G
— The codeword corresponding to every input sequence can be derived
from G

— Since any input can be represented as a linear combination of the
basis (e,,e,...., &), every corresponding codeword can be
represented as a linear combination of the corresponding rows of G

* Note: x; «>»C,, X, «>»C, => Xx;+X, «>»C+C,
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Example

®* Consider the (6,3) code from earlier:

100 — 100101; 010 — 010111; 001 — 001011

1 0
G=(0 1
0O O

R O O

1
1
0

~ R O
N

Codeword for (1,0,1) = (1,0,1))G =(1,0,1,1,1,0)

G= I Pexin-1)

| . = KxK identity matrix
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The parity check matrix

— T
H= P L)

| iy =(N—K)x(n- K) identity matrix

Example: H =

b, O B
e e
N )
o O B
Ok O
~ O O

Now, if ¢, isacodework of Cthen, c¢H' =0

e “Cisinthenull space of H”
* Any codeword in C is orthogonal to the rows of H
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Decoding

* v =transmitted codeword =v, ... v,
* r=received codeword =r, ... T
°* e=error pattern=e;,... e,

n

®* r=v+e

® S=rH"=Syndrome of r
= (v+te)HT =vHT+ eHT =eHT

® Sisequalto‘Oifandonlyifee C
— l.e., error pattern is a codeword

® S #0=>error detected

e S=0=>no errors detected (they may have occurred and not
detected)

® Suppose S #0, how can we know what was the actual transmitted
Eytan Modiano C O d eWO rd ?
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Syndrome decoding

* Many error patterns may have created the same syndrome
For error pattern e; => S, = e HT

Consider error pattern e, + ¢, (c; e C)
So=(ep+Ccy)H =eqH  + c;HT =eqHT = S,
* So, for agiven error pattern, e,, all other error patterns that can be

expressed as e, + c, for some c; € C are also error patterns with
the same syndrome

* For agiven syndrome, we can not tell which error pattern actually
occurred, but the most likely is the one with minimum weight

— Minimum distance decoding

* For agiven syndrome, find the error pattern of minimum weight
(ein) that gives this syndrome and decode: r’=r +e_,

min
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Standard Array

C C, e Cy Syndrome
M — 2K & e +C, e +Cy S
& +C, & +Cy S
€xn-x) g S

* Row 1 consists of all M codewords

* Row 2 e, =min weight n-tuple not in the array
— l.e., the minimum weight error pattern

* Row i, e =min weight n-tuple not in the array

* All elements of any row have the same syndrome
— Elements of arow are called “co-sets”

* The first element of each row is the minimum weight error pattern
with that syndrome

— Called “co-set leader”
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Decoding algorithm

* Receive vectorr

1) Find S =rHT=syndrome of r

2) Find the co-set leader e, corresponding to S
3) Decode: C=r+e

* “Minimum distance decoding”
— Decode into the codeword that is closest to the received sequence
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Example (syndrome decoding)

e Simple (4,2) code

Data codeword

00 0000

01 0101

10 1010

11 1111

Standard array 0000
1000
0100
1100

0101
1101
0001
1001

010J
0 1

010
1 01

1010
0010
1110
0110

| v

1111
0111
1011
0011

Suppose 0111 is received, S = 10, co-set leader = 1000

Decode: C=0111+1000=1111

no

©S B O BB
b O - O

Syndrome
10
01
11
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Minimum distance decoding

Correctly decoded

Incorrect decoding

Undetected
error

Figure by MIT OpenCourseWare.
Minimum distance decoding maps a received sequence onto the nearest
codeword

If an error pattern maps the sent codeword onto another valid codeword,
that error will be undetected (e.g., €3)
— Any error pattern that is equal to a codeword will result in undetected errors

If an error pattern maps the sent sequence onto the sphere of another
codeword, it will be incorrectly decoded (e.g., €2)



Performance of Block Codes

* Error detection: Compute syndrome, S# 0 => error detected
— Request retransmission
— Used in packet networks

* Alinear block code will detect all error patterns that are not
codewords

® Error correction: Syndrome decoding

— All error patterns of weight < d_,,,/2 will be correctly decoded

— Thisis why it is important to design codes with large minimum
distance (d;,)

— The larger the minimum distance the smaller the probability of
incorrect decoding
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Hamming Codes

* Linear block code capable of correcting single errors
— n=2"-1,k=2M-1-m
(e.g., (3,1), (7.,4), (15,11)...)
— R=1-m/(2™-1)=>very high rate
d. i, = 3 =>single error correction

® Construction of Hamming codes
— Parity check matrix (H) consists of all non-zero binary m-tuples

Example: (7,4) hamming code (m=3)

R P O
P, o B
S S

O Fr O O
m, O O O
P, P O
N =)

I
1
o L P
o O
o +— O
— O O
)
I
o O O Bk
o O +— O
R, O KR P
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