MIT OpenCourseWare
http://ocw.mit.edu

16.36 Communication Systems Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu/terms
http://ocw.mit.edu

16.36: Communication Systems Engineering

Lecture 5: Source Coding

Eytan Modiano

Eytan Modiano
Slide 1



Source coding

Encode

® Source symbols
— Letters of alphabet, ASCIl symbols, English dictionary, etc...
— Quantized voice
* Channel symbols
— In general can have an arbitrary number of channel symbols
Typically {0,1} for a binary channel
* Objectives of source coding
— Unique decodability

— Compression

Encode the alphabet using the smallest average number of channel
symbols

Eytan Modiano
Slide 2



Compression

® |Lossless compression
— Enables error free decoding
— Unique decodability without ambiguity

* Lossy compression

— Code may not be uniquely decodable, but with very high probability
can be decoded correctly

Eytan Modiano
Slide 3



Prefix (free) codes

e A prefix codeis acode in which no codeword is a prefix of any
other codeword

— Prefix codes are uniquely decodable
— Prefix codes are instantaneously decodable

* The following important inequality applies to prefix codes and in
general to all uniquely decodable codes

Kraft Inequality

Let n,...n, be the lengths of codewords in a prefix (or any
Uniquely decodable) code. Then,

Kk
Yo
=1

Eytan Modiano
Slide 4



Proof of Kraft Inequality

* Proof only for prefix codes
— Can be extended for all uniquely decodable codes

* Map codewords onto a binary tree
— Codewords must be leaves on the tree
— A codeword of length n; is a leaf at depth n,

® Letn ., 2n_, ...2n,= depth of tree =n
k k-1 1 k

— In abinary tree of depth n,, up to 2"k leaves are possible (if all leaves
are at depth n,)

— Each leaf at depth n; < n,eliminates a fraction 1/2" of the leaves at
depth n, = eliminates 2"k -" of the leaves at depth n,

— Hence,
K Kk
Y2 <M= Y2 <]
=1 i =1

Eytan Modiano
Slide 5



Kraft Inequality - converse

* If asetofintegers {n,..n.} satisfies the Kraft inequality the a prefix
code can be found with codeword lengths {n,..n,}

— Hence the Kraft inequality is a necessary and sufficient condition for the
existence of a uniquely decodable code

* Proofis by construction of a code

— Given {n,;..n}, starting with n, assign node at level n, for codeword of
length n,. Kraft inequality guarantees that assignment can be made

Example: n ={2,2,2,3,3}, (verify that Kraft inequality holds!)

Eytan Modiano
Slide 6



Average codeword length

e Kraft inequality does not tell us anything about the average length
of a codeword. The following theorem gives atight lower bound

Theorem: Given a source with alphabet {a,..a,}, probabilities {p,..p,},
and entropy H(X), the average length of a uniquely decodable
binary code satisfies:

N >HX)
Proof:

9-n
P

=k 1 i=k =k
H(X) -7 =;n IogE—Z_l pn =Z_ln log

loginequality =>log( X) < X-1=>

=k —n; I =Kk

Eytan Modiano
Slide 7



Average codeword length

® (Can we construct codes that come close to H(X)?

Theorem: Given a source with alphabet {a,..a,}, probabilities {p,..p.},
and entropy H(X), it is possible to construct a prefix (hence
uniquely decodable) code of average length satisfying:

N <HX) +1

Proof (Shannon-fano codes):

Letn, = Iog(i)‘ =n, 2Iog(i):> 2" <p 1 1
R R n; =|log(—) | <log(—)+1,
) ) P A
=y2"<y p<1 Now,
i=1 i=1
Kk Kk
=Kraftinequality satisfied! A=Y pn < .[Io 1 +1}: H(X) +1.
2.pn < 2, p| log(—) (X)

=Can find a prefix code with lengths,
Hence,

n, :{Iog(%)—‘ < Iog(%)+1 H(X)<m<H(X)+1

Eytan Modiano
Slide 8



Getting Closer to H(X)

® Consider blocks of N source letters
— There are KN possible N letter blocks (N-tuples)
— Let Y be the “new” source alphabet of N letter blocks
— If each of the letters is independently generated,

H(Y) = H(X1..Xy) = N*H(X)

* Encode Y using the same procedure as before to obtain,

H(Y)<n, <H(Y) +1
= N*H(X)<i < N* H(X) +1
= H(X)<m <H(X)+1/N

Where the last inequality is obtained because each letter of Y corresponds to
N letters of the original source

* We can now take the block length (N) to be arbitrarily large and
get arbitrarily close to H(X)

Eytan Modiano
Slide 9



Huffman codes

* Huffman codes are special prefix codes that can be shown to be optimal
(minimize average codeword length)

o ® ® ®
H(X) Huffman  Shannon/ H(X)+1
codes Fano codes

Huffman Algorithm:
1) Arrange source letters in decreasing order of probability (p, 2 p, .. 2 p,)

2) Assign ‘0’ to the last digit of X, and ‘1’ to the last digit of X, ,

3) Combine pk and pk-1to form a new set of probabilities
{P1, P2 ooy Prr(Prst P}

4) If left with just one letter then done, otherwise go to step 1 and repeat

Eytan Modiano
Slide 10



an Modi
Slide 11

Huffman code example

A ={a,,a,,a; a, a5} and p ={0.3, 0.25,0.25, 0.1, 0.1}

S L PP

L etter Codeword

03 — 03 —» 03 -
0.25 —— 0.25 - 0.25 ——*® 0.95
()25—>()25/@ 0.45 N ()45\‘@ 1.0
0.1 0.2

0.1-0 .
m=2x0.8+3x0.2=2.2hits/symbol

KL PP

H(X) = p, |og(pi) =2.1855

11

10 _{ 1 w
01 Shannon — Fanocodes= n = IOQ(E)
001 n=n=n=2n=n=4

000

= N =2.4bits/symbol <H (X) +1



Lempel-Ziv Source coding

® Source statistics are often not known

®* Most sources are not independent

— Letters of alphabet are highly correlated
E.g., E often follows I, H often follows G, etc.

® One can code “blocks” of letters, but that would require a very
large and complex code

* Lempel-Ziv Algorithm
— “Universal code” - works without knowledge of source statistics
— Parse input file into unique phrases

— Encode phrases using fixed length codewords
Variable to fixed length encoding

Eytan Modiano
Slide 12



Lempel-Ziv Algorithm

®* Parseinput file into phrases that have not yet appeared
— Input phrases into a dictionary
— Number their location

* Notice that each new phrase must be an older phrase followed by
a‘Oora‘l
— Can encode the new phrase using the dictionary location of the
previous phrase followed by the ‘0’ or ‘1’

Eytan Modiano
Slide 13



Lempel-Ziv Example
Input: 0010110111000101011110

Parsed phrases: 0, 01, 011, 0111, 00, 010, 1, 01111

Dictionary

Loc binary rep phrase Codeword comment
0 0000 null

1 0001 0 00000 loc-0 + ‘0O’
2 0010 01 00011 loc-1 + ‘1’
3 0011 011 00101 loc-2 + ‘1’
4 0100 0111 00111 loc-3 + ‘1’
5 0101 00 0001 0 loc-1 +’0’
6 0110 010 00100 loc-2 + ‘0’
7 0111 1 0000 1 loc-0 + ‘1’
8 1000 01111 0100 1 loc-4 + ‘1’

Sent sequence: 00000 00011 00101 00111 00010 00100 00001 01001

Eytan Modiano
Slide 14



Eytan Modiano
Slide 15

Notes about Lempel-Ziv

Decoder can uniquely decode the sent sequence
Algorithm clearly inefficient for short sequences (input data)
Code rate approaches the source entropy for large sequences

Dictionary size must be chosen in advance so that the length of
the codeword can be established

Lempel-Ziv is widely used for encoding binary/text files
— Compress/uncompress under unix
— Similar compression software for PCs and MACs





