
MIT OpenCourseWare
http://ocw.mit.edu

16.36 Communication Systems Engineering
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

16.36: Communication Systems Engineering

Lecture 5: Source Coding

Eytan Modiano

Eytan Modiano
Slide 1

Source coding

Source Encode Channel
Alphabet Alphabet
{a1..aN} {c1..cN}

• Source symbols
– Letters of alphabet, ASCII symbols, English dictionary, etc...
– Quantized voice

• Channel symbols
–	 In general can have an arbitrary number of channel symbols

Typically {0,1} for a binary channel
• Objectives of source coding

– Unique decodability
– Compression

Encode the alphabet using the smallest average number of channel
symbols

Eytan Modiano
Slide 2

Compression

•	 Lossless compression
–	 Enables error free decoding
–	 Unique decodability without ambiguity

•	 Lossy compression
–	 Code may not be uniquely decodable, but with very high probability

can be decoded correctly

Eytan Modiano

Slide 3

Prefix (free) codes

•	 A prefix code is a code in which no codeword is a prefix of any
other codeword

–	 Prefix codes are uniquely decodable
–	 Prefix codes are instantaneously decodable

•	 The following important inequality applies to prefix codes and in
general to all uniquely decodable codes

Kraft Inequality
Let n1…nk be the lengths of codewords in a prefix (or any

Uniquely decodable) code. Then,

2! n
i

i =1

k

" #1

Eytan Modiano
Slide 4

Proof of Kraft Inequality

•	 Proof only for prefix codes
–	 Can be extended for all uniquely decodable codes

•	 Map codewords onto a binary tree
–	 Codewords must be leaves on the tree
–	 A codeword of length ni is a leaf at depth ni

•	 Let nk ≥ nk-1 … ≥ n1 ⇒ depth of tree = nk
–	 In a binary tree of depth nk, up to 2nk leaves are possible (if all leaves

are at depth nk)
–	 Each leaf at depth ni < nk eliminates a fraction 1/2ni of the leaves at

depth nk ⇒ eliminates 2nk -ni of the leaves at depth nk
–	 Hence,

2n
k
! n

i

i =1

k

" #2n
k $ 2!n

i

i =1

k

" # 1

Eytan Modiano

Slide 5

Kraft Inequality - converse

•	 If a set of integers {n1..nk} satisfies the Kraft inequality the a prefix
code can be found with codeword lengths {n1..nk}

–	 Hence the Kraft inequality is a necessary and sufficient condition for the
existence of a uniquely decodable code

•	 Proof is by construction of a code
– Given {n1..nk}, starting with n1 assign node at level ni for codeword of

length ni. Kraft inequality guarantees that assignment can be made

Example: n = {2,2,2,3,3}, (verify that Kraft inequality holds!)

n1n2
n3

n5 n4

Eytan Modiano
Slide 6

Average codeword length

•	 Kraft inequality does not tell us anything about the average length
of a codeword. The following theorem gives a tight lower bound

Theorem: 	Given a source with alphabet {a1..ak}, probabilities {p1..pk},
and entropy H(X), the average length of a uniquely decodable
binary code satisfies:

n ≥ H(X)
Proof:

H(X) ! n = p
i
log 1

p
ii =1

i = k

" ! p
i
n

i

i =1

i = k

" = p
i
log 2! ni

p
ii =1

i = k

"

log inequality =>log(X) # X !1 = >

H(X) ! n # p
i

2!ni

p
i

!1
$

%

&
&

'

(

)
)

=

i =1

i= k

" 2! n
i ! 1

i =1

i = k

" # 0

Eytan Modiano
Slide 7

Average codeword length

• Can we construct codes that come close to H(X)?

Theorem: Given a source with alphabet {a1..ak}, probabilities {p1..pk},
and entropy H(X), it is possible to construct a prefix (hence
uniquely decodable) code of average length satisfying:

n < H(X) + 1

Proof (Shannon-fano codes):

Let ni = log(1
p

i

)
!

"

"
"

$

$
$
%ni & log(1

p
i

)% 2'ni (p
i

% 2'ni (
i =1

k

) p
i
(1

i =1

k

)

%Kraftinequality satisfied!

%Can find a prefix code with lengths,

ni = log(1
p

i

)
!

"

"
"

$

$
$

< log(1
p

i

)+ 1

ni = log(1
p

i

)
!

"

"
"

$

$
$

< log(1
p

i

)+ 1,

Now,

n = p
i
n

i

i =1

k

% < p
i

log(1
p

i

)+ 1
!

&

"
"

'

$
$

i =1

k

% = H(X) + 1.

Hence,

H(X)(n < H (X)+ 1

Eytan Modiano
Slide 8

Getting Closer to H(X)

•	 Consider blocks of N source letters
–	 There are KN possible N letter blocks (N-tuples)
– Let Y be the “new” source alphabet of N letter blocks
– If each of the letters is independently generated,

H(Y) = H(x1..xN) = N*H(X)

• Encode Y using the same procedure as before to obtain,

H(Y) !n y < H(Y) + 1
" N * H(X)!n y< N * H(X) + 1
" H(X) ! n < H(X) + 1/ N

Where the last inequality is obtained because each letter of Y corresponds to
N letters of the original source

•	 We can now take the block length (N) to be arbitrarily large and
get arbitrarily close to H(X)

Eytan Modiano
Slide 9

Huffman codes

• Huffman codes are special prefix codes that can be shown to be optimal
(minimize average codeword length)

H(X) Huffman Shannon/ H(X)+1
codes Fano codes

Huffman Algorithm:
1) Arrange source letters in decreasing order of probability (p1 ≥ p2 .. ≥ pk)

2) Assign ‘0’ to the last digit of Xk and ‘1’ to the last digit of Xk-1

3) Combine pk and pk-1 to form a new set of probabilities

{p1, p2 ,.., pk-2,(pk-1+ pk)}

4) If left with just one letter then done, otherwise go to step 1 and repeat

Eytan Modiano
Slide 10

Huffman code example

 A = {a1,a2,a3, a4, a5} and p = {0.3, 0.25,0.25, 0.1, 0.1}

a1 0.3 0.3 0.3 1
0.55 1
0.25 0.25 0.25

+

a2
 0
 1.0
0.25 0.25
0.2

0.45
+

+
0

1

0

1
0.45

+

a3

a4

0

0.1

0.1
 a5

n = 2 ! 0.8 + 3 ! 0.2 = 2.2 bits / symbol

H(X) = p
i" log(1

p
i

) = 2.1855

Shannon # Fanocodes $ n
i

= log(1
p

i

)
%

&

&
&

'

(

(
(

n1 = n2 = n3 = 2, n4 = n5 = 4

$ n = 2.4 bits / symbol < H (X) + 1

Letter Codeword
a1 11
a2 10
a3 01
a4 001
a5 000

Eytan Modiano
Slide 11

Lempel-Ziv Source coding

•	 Source statistics are often not known

•	 Most sources are not independent
–	 Letters of alphabet are highly correlated

E.g., E often follows I, H often follows G, etc.

•	 One can code “blocks” of letters, but that would require a very

large and complex code

•	 Lempel-Ziv Algorithm
–	 “Universal code” - works without knowledge of source statistics
–	 Parse input file into unique phrases
–	 Encode phrases using fixed length codewords

Variable to fixed length encoding

Eytan Modiano

Slide 12

Lempel-Ziv Algorithm

•	 Parse input file into phrases that have not yet appeared
–	 Input phrases into a dictionary
–	 Number their location

•	 Notice that each new phrase must be an older phrase followed by
a ‘0’ or a ‘1’

–	 Can encode the new phrase using the dictionary location of the
previous phrase followed by the ‘0’ or ‘1’

Eytan Modiano

Slide 13

Lempel-Ziv Example

Input: 0010110111000101011110

Parsed phrases: 0, 01, 011, 0111, 00, 010, 1, 01111

Dictionary

Loc binary rep phrase Codeword comment

0 0000 null

1 0001 0 0000 0 loc-0 + ‘0’

2 0010 01 0001 1 loc-1 + ‘1’

3 0011 011 0010 1 loc-2 + ‘1’

4 0100 0111 0011 1 loc-3 + ‘1’

5 0101 00 0001 0 loc-1 +’0’

6 0110 010 0010 0 loc-2 + ‘0’

7 0111 1 0000 1 loc-0 + ‘1’

8 1000 01111 0100 1 loc-4 + ‘1’

Sent sequence: 00000 00011 00101 00111 00010 00100 00001 01001

Eytan Modiano
Slide 14

Notes about Lempel-Ziv

•	 Decoder can uniquely decode the sent sequence

•	 Algorithm clearly inefficient for short sequences (input data)

•	 Code rate approaches the source entropy for large sequences

•	 Dictionary size must be chosen in advance so that the length of
the codeword can be established

•	 Lempel-Ziv is widely used for encoding binary/text files
–	 Compress/uncompress under unix
–	 Similar compression software for PCs and MACs

Eytan Modiano

Slide 15

