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Source coding
 

Source Encode Channel 
Alphabet Alphabet
{a1..aN} {c1..cN} 

• Source symbols 
– Letters of alphabet, ASCII symbols, English dictionary, etc... 
– Quantized voice 

• Channel symbols 
–	 In general can have an arbitrary number of channel symbols

Typically {0,1} for a binary channel 
• Objectives of source coding 

– Unique decodability 
– Compression

Encode the alphabet using the smallest average number of channel
symbols 
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Compression
 

•	 Lossless compression 
–	 Enables error free decoding 
–	 Unique decodability without ambiguity 

•	 Lossy compression 
–	 Code may not be uniquely decodable, but with very high probability

can be decoded correctly 
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Prefix (free) codes
 

•	 A prefix code is a code in which no codeword is a prefix of any
other codeword 

–	 Prefix codes are uniquely decodable 
–	 Prefix codes are instantaneously decodable 

•	 The following important inequality applies to prefix codes and in
general to all uniquely decodable codes 

Kraft Inequality 
Let n1…nk be the lengths of codewords in a prefix (or any
 
Uniquely decodable) code. Then,
 

2! n
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Proof of Kraft Inequality
 

•	 Proof only for prefix codes 
–	 Can be extended for all uniquely decodable codes 

•	 Map codewords onto a binary tree 
–	 Codewords must be leaves on the tree 
–	 A codeword of length ni is a leaf at depth ni 

•	 Let nk ≥ nk-1 … ≥ n1 ⇒ depth of tree = nk 
–	 In a binary tree of depth nk, up to 2nk leaves are possible (if all leaves 

are at depth nk) 
–	 Each leaf at depth ni < nk eliminates a fraction 1/2ni of the leaves at 

depth nk ⇒ eliminates 2nk -ni of the leaves at depth nk 
–	 Hence, 
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Kraft Inequality - converse
 

•	 If a set of integers {n1..nk} satisfies the Kraft inequality the a prefix
code can be found with codeword lengths {n1..nk} 

–	 Hence the Kraft inequality is a necessary and sufficient condition for the
existence of a uniquely decodable code 

•	 Proof is by construction of a code 
– Given {n1..nk}, starting with n1 assign node at level ni for codeword of 

length ni. Kraft inequality guarantees that assignment can be made 

Example:  n = {2,2,2,3,3}, (verify that Kraft inequality holds!) 

n1n2 
n3 

n5 n4
 

Eytan Modiano
Slide 6 



 
 

  

Average codeword length
 

•	 Kraft inequality does not tell us anything about the average length
of a codeword. The following theorem gives a tight lower bound 

Theorem: 	Given a source with alphabet {a1..ak}, probabilities {p1..pk}, 
and entropy H(X), the average length of a uniquely decodable
binary code satisfies: 

n ≥ H(X)
Proof: 

H(X) ! n = p
i
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Average codeword length
 

• Can we construct codes that come close to H(X)? 

Theorem: Given a source with alphabet {a1..ak}, probabilities {p1..pk}, 
and entropy H(X), it is possible to construct a prefix (hence
uniquely decodable) code of average length satisfying: 

n < H(X) + 1
 

Proof (Shannon-fano codes): 

Let ni = log( 1
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H(X)(n < H (X)+ 1
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Getting Closer to H(X)
 

•	 Consider blocks of N source letters 
–	 There are KN possible N letter blocks (N-tuples) 
– Let Y be the “new” source alphabet of N letter blocks 
– If each of the letters is independently generated, 

H(Y) = H(x1..xN) = N*H(X) 

• Encode Y using the same procedure as before to obtain, 

H(Y) !n y < H(Y) + 1
" N * H(X)!n y< N * H(X) + 1
" H(X) ! n < H(X) + 1/ N

Where the last inequality is obtained because each letter of Y corresponds to
N letters of the original source 

•	 We can now take the block length (N) to be arbitrarily large and
get arbitrarily close to H(X) 
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Huffman codes
 

• Huffman codes are special prefix codes that can be shown to be optimal
(minimize average codeword length) 

H(X) Huffman Shannon/ H(X)+1 
codes Fano codes 

Huffman Algorithm: 
1) Arrange source letters in decreasing order of probability (p1 ≥ p2 .. ≥ pk) 

2) Assign ‘0’ to the last digit of Xk and ‘1’ to the last digit of Xk-1 

3) Combine pk and pk-1 to form a new set of probabilities 

{p1, p2 ,.., pk-2,(pk-1+ pk)} 

4) If left with just one letter then done, otherwise go to step 1 and repeat 
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Huffman code example


 A = {a1,a2,a3, a4, a5} and p = {0.3, 0.25,0.25, 0.1, 0.1} 

a1 0.3 0.3 0.3 1 
0.55 1
0.25 0.25 0.25 

+

a2
 0
 1.0
0.25 0.25 
0.2 

0.45 
+ 

+ 
0 

1 

0 

1 
0.45
 

+

a3
 

a4
 

0

0.1
 
0.1
 a5
 

n = 2 ! 0.8 + 3 ! 0.2 = 2.2 bits / symbol

H(X) = p
i" log( 1

p
i

) = 2.1855

Shannon # Fanocodes $ n
i

= log( 1
p

i

)
% 

& 

& 
& 

' 

( 

( 
( 

n1 = n2 = n3 = 2, n4 = n5 = 4

$ n = 2.4 bits / symbol < H (X) + 1

Letter Codeword 
a1 11 
a2 10 
a3 01 
a4 001 
a5 000 
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Lempel-Ziv Source coding
 

•	 Source statistics are often not known 

•	 Most sources are not independent 
–	 Letters of alphabet are highly correlated


E.g., E often follows I, H often follows G, etc.
 
•	 One can code “blocks” of letters, but that would require a very

large and complex code 

•	 Lempel-Ziv Algorithm 
–	 “Universal code” - works without knowledge of source statistics 
–	 Parse input file into unique phrases 
–	 Encode phrases using fixed length codewords
 

Variable to fixed length encoding
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Lempel-Ziv Algorithm
 

•	 Parse input file into phrases that have not yet appeared 
–	 Input phrases into a dictionary 
–	 Number their location 

•	 Notice that each new phrase must be an older phrase followed by 
a ‘0’ or a ‘1’ 

–	 Can encode the new phrase using the dictionary location of the
previous phrase followed by the ‘0’ or ‘1’ 
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Lempel-Ziv Example
 

Input: 0010110111000101011110 

Parsed phrases: 0, 01, 011, 0111, 00, 010, 1, 01111 

Dictionary 

Loc binary rep phrase Codeword comment
 
0 0000 null
 
1 0001 0 0000 0 loc-0 + ‘0’
 
2 0010 01 0001 1 loc-1 + ‘1’
 
3 0011 011 0010 1 loc-2 + ‘1’
 
4 0100 0111 0011 1 loc-3 + ‘1’
 
5 0101 00 0001 0 loc-1 +’0’
 
6 0110 010 0010 0 loc-2 + ‘0’
 
7 0111 1 0000 1 loc-0 + ‘1’
 
8 1000 01111 0100 1 loc-4 + ‘1’
 

Sent sequence: 00000 00011 00101 00111 00010 00100 00001 01001
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Notes about Lempel-Ziv
 

•	 Decoder can uniquely decode the sent sequence 

•	 Algorithm clearly inefficient for short sequences (input data) 

•	 Code rate approaches the source entropy for large sequences 

•	 Dictionary size must be chosen in advance so that the length of
the codeword can be established 

•	 Lempel-Ziv is widely used for encoding binary/text files 
–	 Compress/uncompress under unix 
–	 Similar compression software for PCs and MACs 
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