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Information content of a random variable
 
(how much information is in the data?)
 

•	 Random variable X 
–	 Outcome of a random experiment 
–	 Discrete R.V. takes on values from a finite set of possible outcomes

PMF: P(X = y) = Px(y) 

•	 How much information is contained in the event X = y? 

–	 Will the sun rise today? 

Revealing the outcome of this experiment provides no information 

–	 Will the Celtics win the NBA championship?
It’s possible - but not certain

Revealing the answer to this question certainly has value - I.e., contains information

•	 Events whose outcome is certain contain less information than even 
whose outcome is in doubt 
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Measure of Information
 

• I(xi) = Amount of information revealed by an outcome X = xi 

• Desirable properties of I(x): 

1. If P(x) = 1 or P(x) = 0, then I(x) = 0 
2. If 0 < P(x) < 1, then I(x) > 0 
3. If P(x) < P(y), then I(x) > I(y) 
4. If x and y are independent events then I(x,y) = I(x)+I(y) 

• Above is satisfied by: I(x) = Log2(1/P(x)) 

• Base of Log is not critical 
– Base 2 ⇒ information measured in bits 
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Entropy
 

• A measure of the information content of a random variable 

• X ∈ {x1,…,xM} 

• H(X) = E[I(X)] = ∑P(xi) Log2(1/P(xi)) 

• Example: Binary experiment 

– X = x1 with probability p 
– X = x2 with probability (1-p) 

– H(X) = pLog2(1/p) + (1-p)Log2(1/(1-p)) = Hb(p) 

– H(X) is maximized with p=1/2, Hb(1/2) = 1 

Not surprising that the result of a binary experiment can be conveyed using
one bit 
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Simple bounds on entropy
 

• Theorem: Given a random variable with M possible values 

– 0 ≤ H(X) ≤ Log2(M) 

A) H(X) = 0 if and only if P(xi) = 1 for some i 

B) H(X) = Log2(M) if and only if P(xi) = 1/M for all i 

–	 Proof of A is obvious Y=x-1 
–	 Proof of B requires


the Log Inequality:
 

– if x > 0 then ln(x) ≤ x-1 
– Equality if x=1 Y= ln(x) 
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Proof, continued
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Consider the sum PiLog(
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Writing this in another way:
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Joint Entropy
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Joint entropy:   H(X ,Y) = p(x, y) log(
1

p(x, y)
)

x ,y
!

Conditional entropy:  H(X | Y) = uncertainty in X given Y

H(X | Y = y) = p(x | Y = y) log( 1
p(x | Y = y)

x

! )

H(X | Y) = E[H(X | Y = y)] = p(Y = y)
y
! H(X | Y = y) 

H(X | Y) = p( x, y)
x ,y
! log( 1

p(x | Y = y)
)

In General :  X1, ...,Xn  random variables

H(Xn | X1,...,Xn- 1) = p(
x1,...,xn

! x1,...,xn ) log( 1
p(xn | x1,...,xn- 1)



 
 

   

           

          

       

        

       

     

              

         
      

Rules for entropy
 

1.	 Chain rule: 

H(X1, .., Xn) = H(X1) + H(X2|X1) + H(X3|X2,X1) + …+ H(Xn|Xn-1…X1) 

2.	 H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y) 

3. If X1, .., Xn are independent then: 

H(X1, .., Xn) = H(X1) + H(X2) + …+H(Xn) 

If they are also identically distributed (i.i.d) then: 

H(X1, .., Xn) = nH(X1) 

4. H(X1, .., Xn) ≤ H(X1) + H(X2) + …+ H(Xn) (with equality iff independent) 

Proof: use chain rule and notice that H(X|Y) < H(X)
entropy is not increased by additional information 
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Mutual Information
 

• X, Y random variables 

• Definition: I(X;Y) = H(Y) - H(Y|X) 

• Notice that H(Y|X) = H(X,Y) - H(X) ⇒ I(X;Y) = H(X)+H(Y) - H(X,Y) 

• I(X;Y) = I(Y;X) = H(X) - H(X|Y) 

• Note: I(X,Y) ≥ 0 (equality iff independent) 
– Because H(Y) ≥ H(Y|X) 
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