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Information content of a random variable
(how much information is in the data?)

* Random variable X
— Outcome of arandom experiment

— Discrete R.V. takes on values from a finite set of possible outcomes
PMF: P(X =y) =P,(y)

* How much information is contained in the event X =y?

— Will the sun rise today?

Revealing the outcome of this experiment provides no information

— Will the Celtics win the NBA championship?
It’s possible - but not certain
Revealing the answer to this question certainly has value - l.e., contains information
* Events whose outcome is certain contain less information than even
whose outcome is in doubt
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Measure of Information

* I(x;) = Amount of information revealed by an outcome X = x;
* Desirable properties of I(x):

If P(x) =1or P(x) =0, then I(x) =0

If 0 <P(x)<1,thenlI(x)>0

If P(x) < P(y), then I(x) > I(y)

If x and y are independent events then I(x,y) = I(X)+I(y)

e\

* Above is satisfied by: I(x) = Log,(1/P(x))

* Base of Log is not critical
— Base 2 = information measured in bits
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Entropy

* A measure of the information content of a random variable
* Xe {Xy.... Xy}

* H(X) = E[I(X)] = ZP(x;) Log,(1/P(x,))

e Example: Binary experiment

— X=X, with probability p
— X =X, with probability (1-p)

—  H(X) = pLog,(1/p) + (1-p)Log,(1/(1-p)) = Hy(p)
— H(X) is maximized with p=1/2, H,(1/2) = 1

Not surprising that the result of a binary experiment can be conveyed using
one bit
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Simple bounds on entropy

* Theorem: Given a random variable with M possible values
— 0=sH(X)=Log,(M)
A) H(X) =0if and only if P(x;) =1 for some i

B) H(X)=Log,(M) if and only if P(x;) = 1/M for all i

— Proof of A is obvious Y=x-1

— Proof of B requires
the Log Inequality:

— if x>0then In(x) = x-1
— Equality if x=1 Y= |n(X)
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Proof, continued

M
Consider the sum 2 P Log(
=1

MPI T (Z)ZPLH( ——), by log inequality:

1
: In(2) 2 '(_pi_ )‘ﬁz(——P) 0, equality when P, =

Writing this in another way:

ZPLog ) 2P.Log( )+ZPLog(—)<OequaI|tywhenH:%
1I=1 { I=1

Thatis ZPLog(—)< ZP Log(M) = Log(M)
1=1 =1
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Joint Entropy

Joint entropy. H(X,Y) = z p(X, y) log( )

=y P(X.y)

Conditional entropy. H(X | Y) = uncertainty in X given Y

1
H(X|Y=y)= Y =yl
(X]Y=Yy) gpm L vy

H(XTY) = E[H(X Y= Y)]:ZIO(Y =Y)H(X]|Y =y)

H(XY) = Zp(xy)l g(p( IY y))

In General : X,,....X,, random variables

1
HOX [ Xy X 1) = Zp(xl, X109
Eytan Modiano n 1P ""'""n-1
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Rules for entropy

1. Chain rule:
H(X1, . X5) = H(Xy) + HX,[X;) + HX5 X5, Xy) + ..o+ HOX [ X1 Xy)
2. H(X)Y) = H(X) + H(Y|X) = H(Y) + H(X]Y)
3. If X4, .., X, are independent then:
H(Xy, .., X,) = H(X) + H(X,) + ...+H(X,)

If they are also identically distributed (i.i.d) then:

H(Xy, .., X.) = nH(X,)
4. H(Xy, .., X)) = H(X)) + H(X,) + ...+ H(X,) (with equality /ffindependent)

Proof: use chain rule and notice that H(X|Y) < H(X)
entropy is not increased by additional information
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Mutual Information

* X, Y random variables

e Definition: I(X;Y) = H(Y) - H(Y|X)

* Notice that H(Y|X) = H(X,Y) - H(X) = I(X;Y) = H(X)+H(Y) - H(X,Y)
o I(X;Y) = I(Y;X) = H(X) - H(X]Y)

* Note: I(X,Y) =0 (equality /ffindependent)
— Because H(Y) = H(Y|X)
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