
1

A Systems-Theoretic Approach to Safety in Software-Intensive

Systems

Nancy G. Leveson
Aeronautics and Astronautics Department and Engineering Systems Division

Massachusetts Institute of Technology

Abstract: Traditional accident models were devised to explain losses caused by failures of
physical devices in relatively simple systems. They are less useful for explaining accidents in
software-intensive systems and for non-technical aspects of safety such as organizational culture
and human decision-making. This paper describes how systems theory can be used to form new
accident models that better explain system accidents (accidents arising from the interactions
among components rather than individual component failure), software-related accidents, and
the role of human decision-making. Such models consider the social and technical aspects of
systems as one integrated process and may be useful for other emergent system properties such
as security. The loss of a Milstar satellite being launched by a Titan/Centaur launch vehicle is
used as an illustration of the approach.

Keywords: software safety, system safety, accident models, software engineering

Introduction

All attempts to engineer safer systems rest upon underlying causal models of how accidents
occur, although engineers may not be consciously aware of their use of such a model. An
underlying assumption of these accident models is that there are common patterns in accidents
and that accidents are not simply random events. By defining those assumed patterns, accident
models may act as a filter and bias toward considering only certain events and conditions or
they may expand consideration of factors often omitted. The completeness and accuracy of the
model for the type of system being considered will be critical in how effective are the engineering
approaches based on it.
At the foundation of almost all causal analysis for engineered systems today is a model of

accidents that assumes they result from a chain (or tree) of failure events and human errors.
The causal relationships between the events are direct and linear, representing the notion that
the preceding event or condition must have been present for the subsequent event to occur, i.e.,
if event X had not occurred, then the following event Y would not have occurred. As such, event
chain models encourage limited notions of linear causality, and they cannot account for indirect
and non-linear relationships.
The selection of events to include in an event chain is dependent on the stopping rule used

to determine how far back the sequence of explanatory events goes. Although it is common
to isolate one or more events or conditions (usually at the beginning of chain) and call them
the cause or the proximate, direct or root cause of an accident or incident and to label the
other events or conditions as contributory, there is no basis for this distinction. Usually a root

1

cause selected from the chain of events has one or more of the following characteristics: (1) it
represents a type of event that is familiar and thus easily acceptable as an explanation for the
accident; (2) it is a deviation from a standard; (3) it is the first event in the backward chain
for which a “cure” is known1; and (4) it is politically acceptable as the identified cause. The
backward chaining may also stop because the causal path disappears due to lack of information.
Rasmussen suggests that a practical explanation for why actions by operators actively involved
in the dynamic flow of events are so often identified as the cause of an accident (and operator
actions are often selected as the stopping point in an accident event chain) is the difficulty in
continuing the backtracking “through” a human [26]. Identifying accident causes in this way
can be a hindrance in learning from and preventing future accidents.
As just one example, the accident report on a friendly fire shootdown of a helicopter over the

Iraqi No-Fly-Zone in 1994 describes the accident as a chain of events leading to the shootdown
[29]. Included in the chain of events provided is the fact that the helicopter pilots did not change
to the radio frequency required in the No-Fly-Zone when they entered it (they stayed on the
enroute frequency). Stopping at this event in the chain, it appears that the helicopter pilots were
at least partially at fault for the loss by making an important mistake. An independent account
of the accident [22], however, notes that the U.S. Commander of the operation had made an
exception about the radio frequency to be used by the helicopters in order to mitigate a different
safety concern, and therefore the pilots were simply following orders. This commanded exception
to radio procedures is not included in the chain of events included in the official government
accident report, but it provides a very different understanding of the role of the helicopter pilots
in the loss.
There are two basic reasons for conducting an accident investigation: (1) to assign blame for

the accident and (2) to understand why it happened so that future accidents can be prevented.
When the goal is to assign blame, the backward chain of events considered often stops when
someone or something appropriate to blame is found. As a result, the selected initiating event
may provide too superficial an explanation of why the accident occurred to prevent similar
losses in the future. For example, stopping at the O-ring failure in the Challenger accident
and fixing that particular design flaw would not have eliminated the systemic flaws that could
lead to accidents in the future. For Challenger, examples of those systemic problems include
flawed decision making and the pressures that led to it, poor problem reporting, lack of trend
analysis, a “silent” or ineffective safety program, communication problems, etc. None of these
are “events” (although they may be manifested in particular events) and thus do not appear
in the chain of events leading to the accident. Wisely, the authors of the Challenger accident
report used an event chain only to identify the proximate physical cause and not the reasons
those events occurred, and the report writers’ recommendations led to many important changes
at NASA or at least attempts to make such changes [28].2

Blame is not an engineering concept; it is a legal or moral one. Usually there is no objective
criterion for distinguishing one factor or several factors from other factors that contribute to an
accident. While lawyers and insurers recognize that many factors contribute to a loss event, for
practical reasons and particularly for establishing liability, they often oversimplify the causes of

1As an example, a NASA Procedures and Guidelines Document (NPG 8621 Draft 1) defined a root cause as:
“Along a chain of events leading to a mishap, the first causal action or failure to act that could have been controlled
systematically either by policy/practice/procedure or individual adherence to policy/practice/procedure.”

2Recently, another Space Shuttle has been lost. While the proximate cause for the Columbia accident (foam
hitting the wing of the orbiter) was very different than for Chal lenger, many of the systemic or root causes were
similar and reflected either inadequate fixes of these factors after the Chal lenger accident or their re-emergence
in the years between these losses [8].

2

accidents and identify what they call the proximate (immediate or direct) cause. The goal is to
determine the parties in a dispute that have the legal liability to pay damages, which may be
affected by the ability to pay or by public policy considerations, such as discouraging company
management or even an entire industry from acting in a particular way in the future.
When learning how to engineer safer systems is the goal rather than identifying who to punish

and establishing liability, then the emphasis in accident analysis needs to shift from cause (in
terms of events or errors), which has a limiting, blame orientation, to understanding accidents in
terms of reasons, i.e., why the events and errors occurred. In an analysis by the author of recent
aerospace accidents involving software in some way, most of the reports stopped after assigning
blame—usually to the operators who interacted with the software—and never got to the root of
why the accident occurred, e.g., why the operators made the errors they did and how to prevent
such errors in the future (perhaps by changing the software) or why the software requirements
specified unsafe behavior and why that error was introduced and why it was not detected and
fixed before the software was used [14].
While attempts have been made to extend traditional safety engineering techniques such as

fault tree analysis and probabilistic risk assessment, based on event-chain models of accidents
to software-intensive systems, the results have not been terribly successful. Perhaps the lack of
significant progress in dealing with software in safety-critical systems is the result of inappro-
priately attempting to extend the techniques that were successful in simpler, electromechanical
systems and were based on models of accident causation that no longer apply.
Accidents can be separated into two types: those caused by failures of individual components

and those caused by dysfunctional interactions between non-failed components. The dysfunc-
tional behavior in modern, high-tech systems is often commanded by software, such as the
command by the Mars Polar Lander descent control software to shut off the descent engines pre-
maturely while still 40 meters above the Martian surface. In this and in most software-related
accidents, the software operates exactly as specified, that is, the software, following its require-
ments, commands component behavior that violates system safety constraints or the software
design contributes to unsafe behavior by human operators. As such, the traditional event-chain
model, with its emphasis on component failure, is inappropriate for today’s software-intensive,
complex human-machine systems with distributed decision-making across both physical and
organizational boundaries.
The basic premise of this paper is that to make significant progress in dealing with safety

in complex systems, we need new models and conceptions of how accidents occur that more
accurately and completely reflect the types of accidents we are experiencing today. Simply
building more tools based on the current chain-of-events model will not result in significant
gains. This paper presents one example of such a model, but others are possible.
The new model, called STAMP (Systems-Theoretic Accident Model and Processes), uses a

systems-theoretic approach to understanding accident causation. Systems theory allows more
complex relationships between events to be considered (e.g., feedback and other indirect rela-
tionships) and also provides a way to look more deeply at why the events occurred. Accident
models based on systems theory consider accidents as arising from the interactions among sys-
tem components and usually do not specify single causal variables or factors [11]. Whereas
industrial (occupational) safety models focus on unsafe acts or conditions and reliability engi-
neering emphasizes failure events and the direct relationships between these events, a systems
approach to safety takes a broader view by focusing on what was wrong with the system’s de-
sign or operations that allowed the accident to take place. The proximal events that precede
an accident are simply symptoms of a lack of enforcement of safety in the design and operation
of the system: to prevent accidents we need to go beyond the events to understand why those

3

events occurred, i.e., the larger system and process producing the events.
The next section provides some basic background on system theory, followed by a description

of a systems-theoretic approach to safety. The basic concepts are illustrated using the loss of a
Milstar satellite.

1.1 Safety as an Emergent System Property

Event chain models rest on traditional analytic reduction: Physical systems are decomposed into
separate physical components so the parts can be examined separately, and behavior is decom-
posed into events over time. This decomposition assumes that such separation is feasible: that
is, each component or subsystem operates independently and analysis results are not distorted
when the components are considered separately. This assumption in turn implies (1) that the
components or events are not subject to feedback loops and non-linear interactions and (2) that
the behavior of the components is the same when examined alone as when they are playing
their part in the whole. A third fundamental assumption is that the principles governing the
assembly of the components into the whole are straightforward, that is, the interactions among
the subsystems are simple enough that they can be considered separate from the behavior of
the subsystems themselves [30].
These assumptions are reasonable for many properties and systems, but they start to fall

apart in complex systems. Systems theory dates from the thirties and forties and was a response
to limitations of the classic analysis techniques in coping with the increasingly complex systems
being built [4]. Norbert Weiner applied the approach to control and communications engineering
[31] while Ludwig von Bertalanffy developed similar ideas for biology [3]. It was Bertalanffy who
suggested that the emerging ideas in various fields could be combined into a general theory of
systems.
The systems approach focuses on systems taken as a whole, not on the parts examined

separately. It assumes that some properties of systems can only be treated adequately in their
entirety, taking into account all facets relating the social to the technical aspects [4]. These
system properties derive from the relationships between the parts of systems: how the parts
interact and fit together [1]. Thus the systems approach concentrates on the analysis and design
of the system as a whole as distinct from the components or the parts. While components may
be constructed in a modular fashion, the original analysis and decomposition must be performed
top down.
The foundation of systems theory rests on two pairs of ideas: (1) emergence and hierarchy

and (2) communication and control [4].

1.1.1 Emergence and Hierarchy

The first pair of basic system theory ideas are emergence and hierarchy. A general model of
complex systems can be expressed in terms of a hierarchy of levels of organization, each more
complex than the one below, where a level is characterized by having emergent properties. Emer-
gent properties do not exist at lower levels; they are meaningless in the language appropriate to
those levels. The shape of an apple, although eventually explainable in terms of the cells of the
apple, has no meaning at that lower level of description. Thus, the operation of the processes
at the lower levels of the hierarchy result in a higher level of complexity—that of the whole
apple itself—that has emergent properties, one of them being the apple’s shape. The concept of
emergence is the idea that at a given level of complexity, some properties characteristic of that
level (emergent at that level) are irreducible.

4

Safety is an emergent property of systems. Determining whether a plant is acceptably safe
is not possible by examining a single valve in the plant. In fact, statements about the “safety of
the valve” without information about the context in which that valve is used, are meaningless.
Conclusions can be reached, however, about the reliability of the valve, where reliability is
defined as “the ability of a system or component to perform its required functions under stated
conditions for a specified period of time” [9], i.e., that the behavior of the valve will satisfy its
specification over time and under given conditions. This is one of the basic distinctions between
safety and reliability: Safety can only be determined by the relationship between the valve and
the other plant components—that is, in the context of the whole. Therefore it is not possible
to take a single system component, like a software module, in isolation and assess its safety. A
component that is perfectly safe in one system may not be when used in another. Attempts to
assign safety levels to software components in isolation from a particular use, as is currently the
approach in some international safety standards, is misguided.
Event-based models of accidents, with their relatively simple cause-effect links, were cre-

ated in an era of mechanical systems and then adapted for electro-mechanical systems. The
use of software in engineered systems has removed many of the physical constraints that limit
complexity and has allowed engineers to incorporate greatly increased complexity and coupling
in systems containing large numbers of dynamically interacting components. In the simpler
systems of the past, where all the interactions between components could be predicted and
handled, component failure was the primary cause of accidents. In today’s complex systems,
made possible by the use of software, this is no longer the case. The same applies to security
and other system properties: While some vulnerabilities may be related to a single component
only, a more interesting class of vulnerability emerges in the interactions among multiple system
components. Vulnerabilities of this type are system vulnerabilities and are much more difficult
to locate and predict.
A second basic part of systems theory, hierarchy theory, deals with the fundamental dif-

ferences between levels of a hierarchy. Its ultimate aim is to explain the relationships between
different levels: what generates the levels, what separates them, and what links them. Emergent
properties associated with a set of components at one level in a hierarchy are related to con­
straints upon the degree of freedom of those components. In a systems-theoretic view of safety,
the emergent safety properties are controlled or enforced by a set of safety constraints related
to the behavior of the system components. Safety constraints specify those relationships among
system variables or components that constitute the non-hazardous or safe system states—for
example, the power must never be on when the access door to the high-voltage power source
is open; pilots in a combat zone must always be able to identify potential targets as hostile
or friendly; the public health system must prevent the exposure of the public to contaminated
water; and the spacecraft lander software must control the rate of descent of the spacecraft to
the planet’s surface. Accidents result from interactions among system components that violate
these constraints—in other words, from a lack of appropriate constraints on system behavior.

1.1.2 Communication and Control

The second pair of basic systems theory ideas is communication and control. Regulatory or
control action is the imposition of constraints upon the activity at one level of a hierarchy,
which define the “laws of behavior” at that level yielding activity meaningful at a higher level.
Hierarchies are characterized by control processes operating at the interfaces between levels.
Checkland writes:

Control is always associated with the imposition of constraints, and an account of a

5

control process necessarily requires our taking into account at least two hierarchical
levels. At a given level, it is often possible to describe the level by writing dynamical
equations, on the assumption that one particle is representative of the collection and
that the forces at other levels do not interfere. But any description of a control
process entails an upper level imposing constraints upon the lower. The upper level
is a source of an alternative (simpler) description of the lower level in terms of specific
functions that are emergent as a result of the imposition of constraints [4, p.87].

Control in open systems (those that have inputs and outputs from their environment) im-
plies the need for communication. Bertalanffy distinguished between closed systems, in which
unchanging components settle into a state of equilibrium, and open systems, which can be thrown
out of equilibrium by exchanges with their environment [3]. The notions of time lag, noise, and
bandwidth play important roles in communication between hierarchical control levels.
In systems theory, open systems are viewed as interrelated components that are kept in a

state of dynamic equilibrium by feedback loops of information and control. A system is not
treated as a static design, but as a dynamic process that is continually adapting to achieve its
ends and to react to changes in itself and its environment. To be safe, the original design must
not only enforce appropriate constraints on behavior to ensure safe operation (the enforcement
of the safety constraints), but it must continue to operate safely as changes and adaptations
occur over time [32].

1.2 Systems-Theoretic Approaches to Safety

In response to the limitations of event-chain models, systems theory has been proposed as a way
to understand accident causation (see, for example, [24, 13]). When using a systems-theoretic
accident model, accidents are viewed as the result of flawed processes involving interactions
among system components, including people, societal and organizational structures, engineering
activities, and the physical system.
Rasmussen and Svedung [24, 25] have added some features of system theory into the classic

event-chain model by adding hierarchical control levels—representing government, regulators
and associations, company, management, and staff—above the event chain (Figure 1). Informa-
tion flow is mapped at all levels and between levels. The model concentrates on the operation
of the socio-technical system: information from the system design and analysis process (the left
column in the figure) is treated as input to the operations process (the right column). At each
level, they model the factors involved using event chains, with links to the chain at the level
below. Unfortunately, retaining event chains and event decomposition at the hierarchical levels
limits the benefits that can be obtained by taking a systems approach.
Leveson has defined another accident model, called STAMP (Systems-Theoretic Accident

Modeling and Processes) based on systems theory [13]. In STAMP, accidents are conceived as
resulting not from component failures, but from inadequate control or enforcement of safety-
related constraints on the design, development, and operation of the system. In the Space
Shuttle Challenger accident, for example, the O-rings did not adequately control propellant gas
release by sealing a tiny gap in the field joint. In the Mars Polar Lander loss, the software did
not adequately control the descent speed of the spacecraft—it misinterpreted noise from a Hall
effect sensor as an indication the spacecraft had reached the surface of the planet.
Accidents such as these, involving engineering design errors, may in turn stem from in-

adequate control over the development process, i.e., risk is not adequately managed (through
communication and feedback) in the design, implementation, and manufacturing processes. Con-
trol is also imposed by the management functions in an organization—the Challenger accident

6

Protective barriers to control flow
after release of hazard. Acceptable
downtime of individual barriers
selected according to predicted
overall risk of major accidents.

Critical event:
Hazard releasecause

Root Causal
chain flow of effects

Accidental Target
victim

Public
barriers
FlowLoss of control of

major energy balance

Government

of evaluation philosophy

Staffing and management
performance as assumed for risk
analysis. Explicit priority ranking
with reference to risk analysis.

Safety reviews, accident analyses,
comparisons across branches,
international state of the art.

Regulators, Branch Associations

Industry standards, operational Incident reports, review of company
practices, organizational structure
and internal audit practice and results

Acceptance criteria, industry
standards and regulations

Documentation of system design
basis, analysis of accident scenarios,
prediction of overall risk to society.

System Operation
System Design

and Analysis

Company
Operational reviews with emphasis
on compliance with preconditions
for safe operation.staffing, and work resources

management performance, plant
Company policy with respect to

Management

Workload and plan evaluations.
and unusual occurrences.
maintenance of defenses, incidents,
Logs and work reports emphasizing

according to safety preconditions.
specifications. Work plans
work resources according to
Staffing, competence, and

maintenance.
operational practice, in particular for
respect to staffing, competency, and
Preconditions of safe operation with

Staff

and repair
test, calibration, equipment faults,
of protective systems; records of
Observations on operational state

barriers.
maintenance of safety
Test, calibration, and

and repair time.
terms of acceptable test intervals
Preconditions of safe operation in

Safety legislation, definitionPublic Opinion

specifications and constraints,
regulations

Work and Hazardous Process
Chain of Events

Figure 1: Rasmussen-Svedung Model

7

involved inadequate controls in the launch-decision process, for example—and by the social and
political system within which the organization exists.
STAMP is constructed from three basic concepts: constraints, hierarchical levels of control,

and process models. These concepts, in turn, give rise to a classification of control flaws that
can lead to accidents. Each of these is described below.

1.2.1 Constraints

The most basic concept in STAMP is not an event, but a constraint. In systems theory or control
theory, systems are viewed as hierarchical structures where each level imposes constraints on
the activity of the level beneath it—that is, constraints or lack of constraints at a higher level
allow or control lower-level behavior [4]. Safety-related constraints specify those relationships
among system variables that constitute the nonhazardous or safe system states.
Instead of viewing accidents as the result of an initiating (root cause) event in a chain of

events leading to a loss (which must somehow be broken in order to prevent them), accidents
are viewed as resulting from interactions among components that violate the system safety
constraints. The control processes that enforce these constraints must limit system behavior to
the safe changes and adaptations implied by the constraints.
Note that accidents caused by basic component failures are included in this model, as well as

those caused by interactions among components. Identifying the failure events themselves, how-
ever, does not provide enough information about why they occurred to prevent similar accidents
in the future. Component failures may result from inadequate constraints on the manufac-
turing process; inadequate engineering design such as missing or incorrectly implemented fault
tolerance; lack of correspondence between individual component capacity (including humans)
and task requirements; unhandled environmental disturbances (e.g., electromagnetic inteference
or EMI); inadequate maintenance, including preventive maintenance; physical degradation over
time (wearout); etc. Control therefore need not be imposed by a physical “controller” but may be
controlled through system design or manufacturing processes and procedures. Systems-theoretic
accident models go beyond simply blaming component failure for accidents (and perhaps then
adding redundancy to the design to handle them) and require that the reasons be identified for
why those failures occur and lead to accidents.

1.2.2 Hierarchical Levels of Control

The second concept in STAMP (and a basic concept in systems theory) is hierachical levels
of control. Figure 2 shows a generic hierarchical safety control model. Accidents result from
inadequate enforcement of constraints on behavior (e.g., the physical system, engineering design,
management, and regulatory behavior) at each level of the socio-technical system.
The model in Figure 2 has two basic hierarchical control structures—one for system devel-

opment (on the left) and one for system operation (on the right)—with interactions between
them. An aircraft manufacturer, for example, might only have system development under its
immediate control, but safety involves both development and operational use of the aircraft, and
neither can be accomplished successfully in isolation: Safety must be designed into the system,
and safety during operation depends partly on the original design and partly on effective con-
trol over operations and the changes and adaptations in the system over time. Manufacturers
must communicate to their customers the assumptions about the operational environment upon
which the safety analysis was based, as well as information about safe operating procedures.
The operational environment, in turn, provides feedback to the manufacturer about the perfor-

8

SYSTEM OPERATIONSSYSTEM DEVELOPMENT

Congress and Legislatures Congress and Legislatures
Government Reports

Legislation
Government Reports
Lobbying Legislation Lobbying

Hearings and open meetings

Accidents Accidents
Hearings and open meetings

Government Regulatory Agencies Government Regulatory Agencies
Industry Associations, Industry Associations,

User Associations, Unions, User Associations, Unions,
Insurance Companies, Courts Insurance Companies, Courts

Regulations Certification Info. Regulations Accident and incident reportsStandards Change reports Standards Operations reportsCertification Whistleblowers Certification Maintenance ReportsLegal penalties Accidents and incidents Legal penalties Change reportsCase Law Case Law WhistleblowersCompany

Management

Safety Policy Status Reports Company

Standards
 Risk Assessments

Resources
 Incident Reports Safety Policy Operations Reports

Policy, stds. Project
Standards

Resources

Management

Hazard Analyses Operations

Safety Standards Hazard Analyses Safety−Related Changes Management

Progress Reports

Design,

Documentation

Safety Constraints Test reports

Standards
 Hazard Analyses

Test Requirements
Review Results

Implementation

and assurance

Safety

Reports

Hazard Analyses

Manufacturing Documentation

Management Design Rationale

safety reports Maintenance

Problem reports

Progress Reports
Work Instructions Change requests

Audit reports

Physical

Actuator(s)

Problem Reports

Hardware replacements
Software revisions

Operating Process

Operating Assumptions
Operating Procedures

Revised
operating procedures

Sensor(s)

Human Controller(s)

Process

Automated
Controller

rocedures audits and Evolution

work logs Change Requests

inspections Incidents

Work

Manufacturing Performance Audits

Figure 2: General Form of a Model of Socio-Technical Control.

9

mance of the system during operations. Although difficult to show without excessively cluttering
the figure, interaction may occur at all levels between the development and operations control
structures.
Between the hierarchical levels of each control structure, effective communication channels

are needed, both a downward reference channel providing the information necessary to impose
constraints on the level below and a measuring channel to provide feedback about how effectively
the constraints were enforced. For example, company management in the development process
structure may provide a safety policy, standards, and resources to project management and in
return receive status reports, risk assessment, and incident reports as feedback about the status
of the project with respect to the safety constraints. As described later, time lag, noise, and
bandwidth must be considered when analyzing the performance of the communication channels.
The safety control structure often changes over time, which accounts for the observation

that accidents in complex systems frequently involve a migration of the system toward a state
where a small deviation (in the physical system or in human operator behavior) can lead to
a catastrophe. The foundation for an accident is often laid years before [27]: One event may
trigger the loss, but if that event had not happened, another one would have. Union Carbide
and the Indian government blamed the Bhopal MIC (methyl isocyanate) release (among the
worst industrial accidents in history) on human error—the improper cleaning of a pipe at the
chemical plant. However, the maintenance worker was, in fact, only a minor and somewhat
irrelevant player in the loss [12]. Instead, degradation in the safety margin occurred over time
and without any particular single decision to do so but simply as a series of decisions that moved
the plant slowly toward a situation where any slight error would lead to a major accident:

The stage for an accidental course of events very likely is prepared through time by
the normal efforts of many actors in their respective daily work context, responding
to the standing request to be more productive and less costly. Ultimately, a quite
normal variation in somebody’s behavior can then release an accident. Had this
‘root cause’ been avoided by some additional safety measure, the accident would
very likely be released by another cause at another point in time. In other words,
an explanation of the accident in terms of events, acts, and errors is not very useful
for design of improved systems [26].

Degradation of the safety-control structure over time may be related to asynchronous evo­
lution [11], where one part of a system changes without the related necessary changes in other
parts. Changes to subsystems may be carefully designed, but consideration of their effects on
other parts of the system, including the control aspects, may be neglected or inadequate. Asyn-
chronous evolution may also occur when one part of a properly designed system deteriorates. In
both these cases, the erroneous expectations of users or system components about the behavior
of the changed or degraded subsystem may lead to accidents. The Ariane 5 trajectory changed
from that of the Ariane 4, but the inertial reference system software did not [17]. One factor
in the loss of contact with the SOHO (SOlar Heliospheric Observatory) spacecraft in 1998 was
the failure to communicate to operators that a functional change had been made in a software
procedure to perform gyro spin-down [19].
For an accident model to handle system adaptation over time, it must consider the processes

involved in accidents and not simply events and conditions: Processes control a sequence of
events and describe system and human behavior as it changes and adapts over time rather than
considering individual events and human actions.

10

Model of
Interfaces

Model of
Process

Model of
Automation

Human Supervisor

Model of
Interfaces

Process Process

Process
Controlled

Automated Controller

Actuators Sensors

Measured
variables

Model of
Process

Controlled
variables

ControlsDisplays

(Controller)

outputs inputs

Disturbances

Figure 3: A standard hierarchical three-level control loop.

1.2.3 Process Models

Besides constraints and hierarchical levels of control, a third basic concept in STAMP is that
of process models. Figure 3 shows a typical process-control loop with an automated controller
supervised by a human controller. Any controller—human or automated—needs a model of
the process being controlled to effectively control it. The model may contain only one or two
state variables, such as the model required for a simple thermostat, which contains the current
temperature and the desired setpoint, or it may be very complex, such as the model of the
airspace required for air traffic control. Human controllers of automated systems must have
an additional model of the automation as well as the controlled process, and both the human
controller and the software need models of the interfaces between system components.
Whether the model is embedded in the control logic of an automated controller or in the

mental model of a human controller, it must contain the same type of information: the required
relationship among the system variables (the control laws), the current state (the current values
of the system variables), and the ways the process can change state. This model is used to
determine what control actions are needed, and it is updated through various forms of feedback.
A model of the controlled process is required at all levels of the hierarchical control structure.

11

There may, of course, be multiple human and automated controllers in the control loop, and
computers may play roles other than as a direct controller. For example, computers may act as
automated decision aids that provide information to the human controller but do not directly
issue control commands. If the computer provides decision aiding, then the software must still
contain a model of the process because it is indirectly controlling the process.
Time is an important consideration; control actions will, in general, lag in their effects on the

process because of delays in signal propagation around the control loop: an actuator may not
respond immediately to an external command signal; the process may have delays in responding
to manipulated variables; and the sensors may obtain values only a certain sampling intervals.
Time lags restrict the speed and extent with which the effects of disturbances, both within the
process itself and externally derived, can be reduced. They also impose extra requirements on
the controller, for example, the need to infer delays that are not directly observable. Accidents
can occur due to inadequate handling of these delays. Noise and bandwidth can similarly impact
performance of the control loop.

1.2.4 A Classification of Control Flaws Leading to Accidents

In basic systems theory, to effect control over a system requires four conditions [2, 5]:

•	 Goal Condition: The controller must have a goal or goals, e.g., to maintain the setpoint
or to maintain the safety constraints.

•	 Action Condition: The controller must be able to affect the state of the system in order
to keep the process operating within predefined limits or safety constraints despite internal
or external disturbances. Where there are multiple controllers and decision makers, the
actions must be coordinated to achieve the goal condition. Uncoordinated actions are
particularly likely to lead to accidents in the boundary areas between controlled processes
or when multiple controllers have overlapping control responsibilities.

•	 Model Condition: The controller must be (or contain) a model of the system, as de-
scribed above. Accidents in complex systems frequently result from inconsistencies between
the model of the process used by the controllers (both human and software) and the actual
process state; for example, the software thinks the plane is climbing when it is actually
descending and as a result applies the wrong control law or the pilot thinks a friendly
aircraft is hostile and shoots a missile at it.

•	 Observability Condition: The controller must be able to ascertain the state of the
system from information about the process state provided by feedback. Feedback is used
to update and maintain the process model used by the controller.

Using systems theory, accidents can be understood in terms of failure to adequately satisfy
these four conditions:

1. Hazards and the safety constraints to prevent them are not identified and provided to the
controllers (goal condition);

2. The controllers are not able to effectively maintain the safety constraints or they do not
make appropriate or effective control actions for some reason, perhaps because of inade-
quate coordination among multiple controllers (action condition);

12

Control Flaws Leading to Hazards

Inadequate control actions (enforcement of constraints)

Unidentified hazards

Inappropriate, ineffective, or missing control actions for identified hazards

Design of control algorithm (process) does not enforce constraints

Process models inconsistent, incomplete, or incorrect (lack of linkup)

Flaw(s) in creation process
Flaws(s) in updating process (asynchronous evolution)
Time lags and measurement inaccuracies not accounted for

Inadequate coordination among controllers and decision−makers
(boundary and overlap areas)

Inadequate Execution of Control Action

Communication flaw

Inadequate actuator operation

Time lag

Inadequate or missing feedback

Not provided in system design

Communication flaw

Time lag

Inadequate sensor operation (incorrect or no information provided)

Figure 4: A classification of control flaws leading to accidents.

3. The process models used by the software or by human controllers (usually called mental
models in the case of humans) become inconsistent with the process and with each other
(model condition); and

4. The controller is unable to ascertain the state of the system and update the process models
because feedback is missing or inadequate (observability condition).

When using a systems-theoretic accident model such as STAMP, the control flaws identified
above are mapped to the components of the control loop and used in understanding and pre-
venting accidents. Figure 4 shows a categorization of control flaws that can lead to the violation
of the four conditions above. This categorization can be used in the creation of new hazard and
accident analysis techniques (see, for example, [16, 7, 10, 6]).

Using a Systems-Theoretic Accident Model

The rest of this paper contains an extensive example that uses STAMP to understand the
reasons for a software-related accident. On April 30, 1999, at 12:30 EDT, a Titan IV B-32
booster equipped with a Centaur TC-14 upper stage was launched from Cape Canaveral. The
mission was to place a Milstar-3 satellite into geosynchronous orbit. Milstar is a joint services
satellite communications system that provides secure, jam resistant, worldwide communications
to meet wartime requirements. It was the most advanced military communications satellite
system to that date. The first Milstar satellite was launched February 7, 1994 and the second
was launched November 5, 1995. This mission was to be the third launch.

13

2

As a result of some anomalous events, the Milstar satellite was placed in an incorrect and
unusable low elliptical final orbit, as opposed to the intended geosynchronous orbit. This accident
is believed to be one of the most costly unmanned losses in the history of Cape Canaveral launch
operations. The Milstar satellite cost about $800 million and the launcher an additional $433
million.
To their credit, the accident investigation board went beyond the usual chain-of-events model

and instead interpreted the accident in terms of a complex and flawed process [20]:

Failure of the Titan IV B-32 mission is due to a failed software development, testing,
and quality assurance process for the Centaur upper stage. That failed process
did not detect and correct a human error in the manual entry of the I1(25) roll
rate filter constant entered in the Inertial Measurement System flight software file.
The value should have been entered as -1.992476, but was entered as -0.1992476.
Evidence of the incorrect I1(25) constant appeared during launch processing and
the launch countdown, but its impact was not sufficiently recognized or understood
and, consequently, not corrected before launch. The incorrect roll rate filter constant
zeroed any roll rate data, resulting in the loss of roll axis control, which then caused
loss of yaw and pitch control. The loss of attitude control caused excessive firings
of the Reaction Control system and subsequent hydrazine depletion. Erratic vehicle
flight during the Centaur main engine burns caused the Centaur to achieve an orbit
apogee and perigee much lower than desired, which resulted in the Milstar separating
in a useless low final orbit [20, p. 2].

Fully understanding this accident requires understanding why the error in the roll rate filter
constant was introduced in the load tape, why it was not found during the load tape production
process and internal review processes, why it was not found during the extensive independent
verification and validation effort applied to this software, and why it was not detected during
operations at the launch site. In other words, why the safety control structure was ineffective
in each of these instances.
Figure 5 shows the hierarchical control model of the accident, or at least those parts that

can be gleaned from the official accident report3 . Lockheed Martin Astronautics (LMA) was
the prime contractor for the mission. The Air Force Space and Missile Systems Center Launch
Directorate (SMC) was responsible for insight and administration of the LMA contract. Besides
LMA and SMC, the Defense Contract Management Command (DCMC) played an oversight role,
but the report is not clear about what exactly this role was beyond a general statement about
responsibility for contract management, software surveillance, and overseeing the development
process.
LMA designed and developed the flight control software, while Honeywell was responsible

for the IMS software. This separation of control, combined with poor coordination, accounts
for some of the problems that occurred. Analex was the independent verification and validation
(IV&V) contractor, while Aerospace Corporation provided independent monitoring and evalu-
ation. Ground launch operations at Cape Canaveral Air Station (CCAS) were managed by the
Third Space Launch Squadron (3SLS).
Starting from the physical process and working up the levels of control, an analysis based

on a systems-theoretic accident model examines each level for the flaws in the process at that
level that provided inadequate control of safety in the process level below. The process flaws

Some details of the control structure may be incorrect because they were not detailed in the report, but the
structure is close enough for the purpose of this paper.

14

3

DEVELOPMENT OPERATIONS

LMA FAST Lab

monitoring software
(Responsible for

Management Command
Defense Contract

(IMS software)

system test of INU)
(Responsible for

LMA Quality
Assurance

LMA System

and Development
Software Design

Engineering

construction of flight control system)

development and test

IV&V of flight software)

overseeing the process)

(Responsible for

LMA

Honeywell

 Software) (Responsible for

verifying design)
(Responsible for

(Flight Control

(Responsible for design and

contract administration
software surveillance

Space and Missile Systems
Center Launch Directorate (SMC)

(Responsible for administration
of LMA contract)

Squadron (3SLS)
Third Space Launch

(Responsible for ground
operations management)

Ground Operations
(CCAS)

Titan/Centaur/Milstar

Aerospace

Analex Denver

Analex−Cleveland

IV&V
Analex

Prime Contractor (LMA)

Figure 5: Hierarchical Control Structure

15

at each level are then examined and explained in terms of a potential mismatch between the
controller’s model of the process and the actual state of the process, incorrect design of the
control algorithm, lack of coordination among the control activities, deficiencies in the reference
channel, and deficiencies in the feedback or monitoring channel. When human decision-making
is involved, the analysis results must also include information about the context in which the
decision(s) was made and the information available and not available at the time the decision(s)
was made. A detailed example follows.

2.1 The Physical Process (Titan/Centaur/Milstar)

Components of the Physical Process: The Lockheed Martin Astronautics (LMA) Titan
IV B is a heavy-lift space launch vehicle used to carry government payloads such as Defense
Support Program, Milstar, and National Reconnaissance Office satellites into space. It can carry
up to 47,800 pounds into low-earth orbit and up to 12,700 pounds into a geosynchronous orbit.
The vehicle can be launched with no upper stage or with one of two optional upper stages,
providing greater and varied capability.
The LMA Centaur is a cryogenic, high-energy upper stage. It carries its own guidance, navi-

gation, and control system, which measures the Centaur’s position and velocity on a continuing
basis throughout flight. It also determines the desired orientation of the vehicle in terms of
pitch, yaw, and roll axis vectors. It then issues commands to the required control components
to orient the vehicle in the proper attitude and position, using the main engine or the Reaction
Control System (RCS) engines (Figure 6). The main engines are used to control thrust and
velocity. The RCS provides thrust for vehicle pitch, yaw, and roll control, for post-injection
separation and orientation maneuvers, and for propellant settling prior to engine restart.

System Hazards Involved: (1) The satellite does not reach a useful geosynchronous orbit;
(2) the satellite is damaged during orbit insertion maneuvers and cannot provide its intended
function.

Description of Process Controller (INU): The Inertial Navigation Unit (INU) has two
parts (Figure 6): (1) the Guidance, Navigation, and Control System (the Flight Control Software
or FCS) and (2) an Inertial Measurement System (IMS). The Flight Control Software computes
the desired orientation of the vehicle in terms of the pitch, yaw, and roll axis vectors and issues
commands to the main engines and the reaction control system to control vehicle orientation
and thrust. To accomplish this goal, the FCS uses position and velocity information provided
by the IMS. The component of the IMS involved in the loss is a roll rate filter, which is designed
to prevent the Centaur from responding to the effects of Milstar fuel sloshing and thus inducing
roll rate errors.

Safety Constraint on FCS: The FCS must provide the attitude control, separation, and
orientation maneuvering commands to the main engines and the RCS system necessary to attain
geosynchronous orbit.

Safety Constraint on IMS: The position and velocity values provided to the FCS must not
be capable of leading to a hazardous control action. The roll rate filter must prevent the Centaur
from responding to the effects of fuel sloshing and inducing roll rate errors.

16

INU (Inertial Navigation Unit)

Main Engine

Inertial Measurement System (IMS)

pitch, roll, and yaw control; for
post-injection separation and
orientation maneuvering; and for
propellant settling prior to engine

RCS Engines

Flight Control Software (FCS)

Position,
Velocity

Computes spacecraft position and velocity

sloshing and inducing roll rate errors.)

from responding to the effects of Milstar fuel

(Roll Rate Filter: designed to prevent Centaur

The RCS provides thrust for vehicle

restart.

Guidance, Navigation, and Control System:

in terms of pitch, yaw, and roll axis vectors

Computes desired orientation of vehicle

Figure 6: Technical Process Control Structure for INU

2.2 Description of the Proximal Events Leading to the Loss

There were three planned burns during the Centaur flight. The first burn was intended to put
the Centaur into a parking orbit. The second would move the Centaur into an elliptical transfer
orbit that was to carry the Centaur and the satellite to geosynchronous orbit. The third and
final burn would circularize the Centaur in its intended geosynchronous orbit. A coast phase
was planned between each burn. During the coast phase, the Centaur was to progress under
its own momentum to the proper point in the orbit for the next burn. The Centaur would also
exercise a roll sequence and an attitude control maneuver during the coast periods to provide
passive thermal control and to settle the main engine propellants in the bottom of the tanks.

First Burn: The first burn was intended to put the Centaur into a parking orbit. The
Inertial Measurement System (IMS) transmitted a zero or near zero roll rate to the Flight
Control Software (FCS), however, due to the use of an incorrect roll rate filter constant. With
no roll rate feedback, the FCS provided inappropriate control commands that caused the Centaur
to become unstable about the roll axis and not to roll to the desired first burn orientation. The
Centaur began to roll back and forth, eventually creating sloshing of the vehicle liquid fuel in
the tanks, which created unpredictable forces on the vehicle and adversely affected flow of fuel
to the engines. By the end of the first burn (approximately 11 minutes and 35 seconds after
liftoff), the roll oscillation began to affect the pitch and yaw rates of the vehicle as well. The
FCS predicted an incorrect time for main engine shutdown due to the effect on the acceleration
of the vehicle’s tumbling and fuel sloshing. The incorrect shutdown in turn resulted in the
Centaur not achieving its intended velocity during the first burn, and the vehicle was placed in
an unintended park orbit.

First Coast Phase: During the coast phases, the Centaur was to progress under its own
momentum to the proper point in the orbit for the next burn. During this coasting period, the
FCS was supposed to command a roll sequence and an attitude control maneuver to provide
passive thermal control and to settle the main engine propellants in the bottom of the tanks.

17

Intended Orbit
22,300 miles Achieved Orbit

549 x 3347 miles

Earth

Figure 7: Achieved Orbit vs. Intended Orbit

Because of the roll instability and transients created by the engine shutdown, the Centaur
entered this first coast phase tumbling. The FCS directed the RCS to stabilize the vehicle. Late
in the park orbit, the Centaur was finally stablized about the pitch and yaw axes, although it
continued to oscillate about the roll axis. In stabilizing the vehicle, however, the RCS expended
almost 85 percent of the RCS system propellant (hydrazine).

Second Burn: The FCS successfully commanded the vehicle into the proper attitude for the
second burn, which was to put the Centaur and the satellite into an elliptical transfer orbit that
would carry them to geosynchronous orbit. The FCS ignited the main engines at approximately
one hour, six minutes, and twenty-eight seconds after liftoff. Soon after entering the second burn
phase, however, inadequate FCS control commands caused the vehicle to again become unstable
about the roll axis and begin a diverging roll oscillation.
Because the second burn is longer than the first, the excess roll commands from the FCS

eventually saturated the pitch and yaw channels. At approximately two minutes into the second
burn, pitch and yaw control was lost (as well as roll), causing the vehicle to tumble for the
remainder of the burn. Due to its uncontrolled tumbling during the burn, the vehicle did not
achieve the planned acceleration for transfer orbit.

Second Coast Phase (transfer orbit): The RCS attempted to stabilize the vehicle but it
continued to tumble. The RCS depleted its remaining propellant approximately twelve minutes
after the FCS shut down the second burn.

Third Burn: The goal of the third burn was to circularize the Centaur in its intended geosyn-
chronous orbit. The FCS started the third burn at two hours, thirty-four minutes, and fifteen
seconds after liftoff. It was started earlier and was shorter than had been planned. The vehicle
tumbled throughout the third burn, but without the RCS there was no way to control it. Space
vehicle separation was commanded at approximately two hours after the third burn began, re-
sulting in the Milstar being placed in a useless low elliptical orbit, as opposed to the desired
geosynchronous orbit (Figure 7).

Post Separation: The Mission Director ordered early turn-on of the satellite in an attempt to
save it, but the ground controllers were unable to contact the satellite for approximately three
hours. Six hours and fourteen minutes after liftoff, control was acquired and various survival
and emergency actions were taken. The satellite had been damaged from the uncontrolled
vehicle pitch, yaw, and roll movements, however, and there were no possible actions the ground
controllers could have taken in response to the anomalous events that would have saved the
mission.
The mission was officially declared a failure on May 4, 1999, but personnel from LMA and

the Air Force controlled the satellite for six additional days in order to place the satellite in
a non-interfering orbit with minimum risk to operational satellites. It appears the satellite

18

NU (Inertial Navigation Unit)

Flight Control Software (FCS) Inertial Measurement System (IMS)

RCS EnginesMain Engine

zero roll
rateincorrect model.

Incorrect model of the process: Incorrect model of the process:

using incorrect model.
Zero roll rate generated by roll rate filter

Incorrect constant on the load tape

Incorrect shutdown

Commands generated based on

not match true vehicle state
Model of Centaur roll rate does

to stabilize vehicle
Incorrect commands

command

Figure 8: Control Flaws at the Physical Process and Software Controller Levels

performed as designed, despite the anomalous conditions. It was shut down by ground control
on May 10, 1999.

2.3	 Physical Process and Automated Controller Failures and Dysfunctional
Interactions

Figure 8 shows the automated controller flaws leading to the accident. The Inertial Measurement
System software used an incorrect model of the process (an incorrect roll rate filter constant in
the IMS software file) that led to a dysfunctional interaction with the flight control software.
However, the algorithm operated as designed (i.e., it did not fail).
The Flight Control Software operated correctly (i.e., according to its requirements). However,

it received incorrect input from the IMS, leading to an incorrect internal FCS software model of
the process—the roll rate was thought to be zero or near zero when it was not. Thus there was a
mismatch between the FCS internal model of the process state and the real process state. This
mismatch led to the RCS issuing incorrect control commands to the main engine (to shut down
early) and to the RCS engines. Using STAMP terminology, the loss resulted from a dysfunctional
interaction between the FCS and the IMS. Neither failed—they operated correctly with respect
to the instructions (including constants) and data provided.
The accident report does not explore whether the FCS software could have included sanity

checks on the roll rate or vehicle behavior to detect that incorrect roll rates were being provided
by the IMS or checks to determine whether inputs to the FCS software were potentially desta-
bilizing. Even if the FCS did detect it was getting anomalous roll rates, there may not have
been any recovery or fail-safe behavior that could have been designed into the system. Without
more information about the Centaur control requirements and design, it is not possible to spec-
ulate about whether the Inertial Navigation Unit software (the IMS and FCS) might have been
designed to be fault tolerant with respect to filter constant errors.
This level of explanation of the flaws in the process (the vehicle and its flight behavior) as

well as its immediate controller provides a description of the “symptom,” but does not provide
enough information about the factors involved to prevent reoccurrences. Simply fixing that
particular flight tape is not enough. We need to look at the higher levels of the control structure

19

for that. Figures 9 and 10 summarize the information in the rest of this paper.

2.4 Launch Site Operations

The function of launch site operations is to monitor launch pad behavior and tests and to detect
any critical anomalies prior to flight. Why was the roll rate error not detected during launch
operations?

Safety Constraint Violated: Critical variables (including those in software) must be moni-
tored and errors detected before launch. Potentially hazardous anomalies detected at the launch
site must be formally logged and thoroughly investigated and handled.

Context: Management had greatly reduced the number of engineers working launch opera-
tions, and those remaining were provided with few guidelines as to how they should perform
their job. The accident report says that their tasks were not defined by their management so
they used their best engineering judgment to determine which tasks they should perform, which
variables they should monitor, and how closely to analyze the data associated with each of their
monitoring tasks.

Safety Controls: The controls are not described well in the report. From what is included,
it does not appear that controls were implemented to monitor or detect software errors at the
launch site although a large number of vehicle variables were monitored.

Roles and Responsibilities: The report is also not explicit about the roles and responsi-
bilities of those involved. LMA had launch personnel at CCAS, including Product Integrity
Engineers (PIEs). 3SLS had launch personnel to control the launch process as well as software
to check process variables and to assist the operators in evaluating observed data.

Failures, Dysfunctional Interactions, Flawed Decisions, and Inadequate Control Ac­
tions: Despite clear indications of a problem with the roll rate information being produced
by the IMS, it was not detected by some launch personnel who should have and detected but
mishandled by others. Specifically:

1. One week before launch, LMA personnel at CCAS observed much lower roll rate filter
values than they expected. When they could not explain the differences at their level,
they raised their concerns to Denver LMA Guidance Product Integrity Engineers (PIEs),
who were now at CCAS. The on-site PIEs could not explain the differences either, so
they directed the CCAS personnel to call the control dynamics (CD) design engineers in
Denver. On Friday, April 23, the LMA Guidance Engineer telephoned the LMA CD lead.
The CD lead was not in his office so the Guidance Engineer left a voice mail stating she
noticed a significant change in roll rate when the latest filter rate coefficients were entered.
She requested a return call to her or to her supervisor. The Guidance Engineer also left an
email for her supervisor at CCAS explaining the situation. Her supervisor was on vacation
and was due back at the office Monday morning April 26, when the Guidance Engineer
was scheduled to work the second shift. The CD lead and the CD engineer who originally
specified the filter values listened to the voice mail from the Guidance Engineer. They
called her supervisor at CCAS who had just returned from vacation. He was initially
unable to find the email during their conversation. He said he would call back, so the

20

Space and Missile Systems
Center Launch Directorate (SMC)

Safety Constraint: Must ensure prime has created
an effective development and system safety program

Control Flaws:
No monitoring of software development process
No plan for transition from oversight to insight
No system safety standards or guidance

Mental Model Flaws: Inadequate understanding of
software development and testing process

Ineffective
Coordination?

Defense Contract Management Command

Safety Constraint: Must provide effective oversight
of development process and quality assurance

Control Flaws:
Approved an incomplete IV&V program
Provided Ineffective quality assurance

Mental Model Flaws: Inadequate understanding of
software development and testing process

Misunderstanding of software constant process
Misunderstanding of risks

Mental Model Flaws:

of all safety criticcal processes

Verified only that reports had proper signatures
Risk analysis considered only problems that had
occurred before

Control Flaws:

Safety Constraint:

evaluation

Inadequate control and monitoring of software development process

Mental Model Flaws:

No specified or documented process for creating load tape

Effective development processes must be established and monitored
System safety processes must be created to identify and manage system hazards

Control Flaws:
Approved an incomplete IV&V program

Did not create a effective system safety program

Safety Constraint:

LMA Quality Assurance

Inadequate monitoring and

Aerospace Corp.

Prime Contractor (LMA)

Inadequate understanding of testing coverage and load tape development processes

LMA System Engineering
Safety Constraint: Must reduce software risks

Control Flaws: Kept an unneeded software filter
for consistency

Must monitor quality

Software Design and Development
Safety Constraint: Safety−critical constants
must be identified and their generation controlledd
and checked.

Control Flaws:
Supervisor did not check manually entered value
CD engineer did not spot error
No hazard analysis or control process for software

Mental Model Flaws: Misunderstanding of
constant generation and testing process

Analex IV&V
Safety Constraint:

IV&V must be performed on the as−flown system
All safety−crtiical data and software must be included

Control Flaws:
Designed an IV&V process that did not include load tape
Used default values for testing software implementation
Validated design constant but not actual constant

Mental Model Flaws:
Misunderstanding about what could be tested

Misunderstainding of load tape creation process

LMA System Test Lab
Safety Constraint:

Testing must be performed on the as−flown system

Control Flaws:
Simulation fle rather than actual flight tape values
used for system test

Mental Model Flaws:
Misunderstood capability of test facility

Figure 9: STAMP model of Development Process

21

Third Space Launch Squadron (3SLS)
Safety Constraints: Processes must be established for detecting
and handling potentially hazardous conditions and behavior

Control Flaws:
No process established to monitor or plot attitude rate data
Nobody responsible for checking load tape once installed in INU
No surveillance plan to define tasks of remaining personnel
after cutbacks

LMA Denver
Safety Constraints:

Reported anomalies must be
thoroughly investigated

Control Flaws:
Inadequate investigation of

reported anomaly

No formal communication
channel for reporting

anomalies

No hardcopy about
anomaly sent

Inadequate Inadequate monintoringprocedures
provided

CCAS Ground Operations
Safe;ty Constraints:

Critical variables must be monitored for anomalies and
discrepancies investigaited

Control Flaws:
Sensed attitude rates not monitored

No checks of load tape after intalled in INU

Detected anomalies not handled adequately

Mental Model Flaws: (Shown in another figure)

Titan/Centaur/Milstar

Figure 10: STAMP model of Launch Operations Process

22

CD engineer left the CD lead’s office. The CD lead subsequently talked to the Guidance
Engineer’s supervisor after he found and read the email. The CD lead told the supervisor
at CCAS that the filter values had changed in the flight tape originally loaded on April 14,
1999, and the roll rate output should also be expected to change. Both parties believed the
difference in roll rates observed were attributable to expected changes with the delivery of
the flight tape.

2. On the day of the launch, a 3SLS INU Product Integrity Engineer (PIE) at CCAS noticed
the low roll rates and performed a rate check to see if the gyros were operating properly.
Unfortunately, the programmed rate check used a default set of I1 constants to filter
the measured rate and consequently reported that the gyros were sensing the earth rate
correctly. If the sensed attitude rates had been monitored at that time or if they had been
summed and plotted to ensure they were properly sensing the earth’s gravitational rate,
the roll rate problem could have been identified.

3. A 3SLS engineer also saw the roll rate data at the time of tower rollback, but was not
able to identify the problem with the low roll rate. He had no documented requirement or
procedures to review the data and no reference to compare to the roll rate actually being
produced.

The communication channel between LMA Denver and the LMA engineers at CCAS was
clearly flawed. There is no information about any established reporting channel from the LMA
CCAS or LMA Denver engineers to a safety organization or up the management chain. No
“alarm” system adequate to detect the problem or that it was not being adequately handled
seems to have existed. The report says there was confusion and uncertainty from the time the
roll rate anomaly was first raised by the CCAS LMA engineer in email and voice mail until it was
“resolved” as to how it should be be reported, analyzed, documented, and tracked since it was
a “concern” and not a “deviation.” There is no explanation of these terms nor any description
of a formal problem reporting and handling system in the accident report.

Inadequate Control Algorithm: The accident report says that at this point in the prelaunch
process, there was no process to monitor or plot attitude rate data, that is, to perform a check to
see if the attitude filters were properly sensing the earth’s rotation rate. Nobody was responsible
for checking the load tape constants once the tape was installed in the INU at the launch site.
Therefore, nobody was able to question the anomalous rate data recorded or correlate it to the
low roll rates observed about a week prior to launch and on the day of launch. In addition, the
LMA engineers at Denver never asked to see a hard copy of the actual data observed at CCAS,
nor did they talk to the guidance engineer or Data Station Monitor at CCAS who questioned the
low filter rates. They simply explained it away as attributable to expected changes associated
with the delivery of the flight tape.

Process Model Flaws: Five models are involved here (see Figure 11):

1. Ground rate check software: The software used to do a rate check on the day of launch
used default constants instead of the actual load tape. Thus there was a mismatch between
the model used in the rate checking software and the model used by the IMS software.

2. Ground crew models of the development process: Although the report does not delve into
this factor, it is very possible that complacency may have been involved and that the model

23

Thought discrepancies due to expected changes)
(Assumed load tape had been verified.

Incorrect model of software development process

CD Engineers

Ground Crew

Incorrect model of IMS software design (misunderstanding of roll
rate filtering)

Incorrect model of development process (assumed software had
gone through a complete test)

Incorrect model of ground check software (did not know default
values used)

match roll rate constant on flight tape)
(Used default roll rate that did not

Incorrect model of Spacecraft Attitude

Ground Check Software

Figure 11: The Flawed Process Models used by the Ground Personnel and Software

of the thoroughness of the internal quality assurance and external IV&V development
process in the minds of the ground operations personnel as well as the LMA guidance
engineers who were informed of the observed anomalies right before launch did not match
the real development process. There seemed to be no checking of the correctness of the
software after the standard testing during development. Hardware failures are usually
checked up to launch time, but often testing is assumed to have removed all software
errors and therefore further checks are not needed.

3. Ground crew models of the IMS software design: The ground launch crew had an inad-
equate understanding of how the roll rate filters worked. No one other than the control
dynamics engineers who designed the I1 roll rate constants understood their use or the
impact of filtering the roll rate to zero. So when discrepancies were found before launch,
nobody at the launch site understood the I1 roll rate filter design well enough to detect
the error.

4. Ground crew models of the rate check software: Apparently, the ground crew was unaware
that the checking software used default values for the filter constants.

5. CD engineers’ model of the flight tape change: The control dynamics lead engineer at the
launch site and her supervisor at LMA Denver thought that the roll rate anomalies were
due to known changes in the flight tape. Neither went back to the engineers themselves to
check this conclusion with those most expert in the details of the Centaur control dynamics.

Coordination: Despite several different groups being active at the launch site, nobody had
been assigned responsibility for monitoring the software behavior after it was loaded into the

24

INU. The accident report does not mention coordination problems, although it does say there
was a lack of understanding of each other’s responsibilities between the LMA launch personnel
(at CCAS) and the development personnel at LMA Denver and that this led to the concerns of
the LMA personnel at CCAS not being adequately addressed.
A more general question that might have been investigated was whether the failure to act

properly after detecting the roll rate problem involved a lack of coordination and communication
problems between LMA engineers at CCAS and 3SLS personnel. Why did several people notice
the problem with the roll rate but do nothing and why were the anomalies they noticed not
effectively communicated to those who could do something about it? Several types of coordina-
tion problems might have existed. For example, there might have been an overlap problem, with
each person who saw the problem assuming that someone else was handling it or the problem
might have occurred at the boundary between several people’s responsibilities.

Feedback: There was a missing or inadequate feedback channel from the launch personnel to
the development organization.
Tests right before launch detected the zero roll rate, but there was no formal communication

channel established for getting that information to those who could understand it. Instead voice
mail and email were used. The report is not clear, but either there was no formal anomaly
reporting and tracking system or it was not known or used by the process participants.4

The LMA (Denver) engineers requested no hardcopy information about the reported anomaly
and did not speak directly with the Guidance engineer or Data Station Monitor at CCAS.

2.5	 Air Force Launch Operations Management: Third Space Launch Squadron
(3SLS)

Safety Constraint: Processes must be established for detecting and handling potentially
hazardous conditions and behavior detected during launch preparations.

Context: 3SLS management was transitioning from an oversight role to an insight one without
a clear definition of what such a transition might mean or require.

Control Algorithm Flaws: After the ground launch personnel cutbacks, 3SLS management
did not create a master surveillance plan to define the tasks of the remaining personnel (the
formal insight plan was still in draft). In particular, there were no formal processes established
to check the validity of the I1 filter constants or to monitor attitude rates once the flight tape
was loaded into the INU at Cape Canaveral Air Station (CCAS) prior to launch. 3SLS launch
personnel were provided with no documented requirement nor procedures to review the data
and no references with which to compare the observed data in order to detect anomalies.

Process Model: It is possible that misunderstandings (an incorrect model) about the thor-
oughness of the development process led to a failure to provide requirements and processes
for performing software checks at the launch site. Complacency may also have been involved,
i.e., the common assumption that software does not fail and that software testing is exhaustive
and therefore additional software checking was not needed. However, this is speculation as the

4Several recent aerospace accidents have involved the bypassing of formal anomaly reporting channels and the
substitution of informal email and other communication—with similar results [14].

25

report does not explain why management did not provide documented requirements and proce-
dures to review the launch data nor ensure the availability of references for comparison so that
discrepancies could be discovered.

Coordination: The lack of oversight led to a process that did not assign anyone the respon-
sibility for some specific launch site tasks.

Feedback or Monitoring Channel: Apparently, launch operations management had no
“insight” plan in place to monitor the performance of the launch operations process. There is
no information included in the accident report about the process to monitor the performance of
the launch operations process or what type of feedback was used (if any) to provide insight into
the process.

2.6 Software/System Development of the Centaur Flight Control System

Too often, accident investigators stop at this point after identifying operational or sometimes
maintenance errors that, if they had not occurred, might have prevented the loss [15]. Occasion-
ally operations management is faulted. System design errors are much less likely to be identified.
As an example, in the crash of an American Airlines DC-10 at Chicago’s O’Hare Airport in 1979,
the U.S. National Transportation Safety Board blamed only a “maintenance-induced crack” and
not also a design error that allowed the slats to retract if the wing was punctured. Because of
this omission, McDonnell Douglas was not required the change the design, leading to future
accidents related to the same design error [21]. More recently, all of the Airbus A-320 accidents
have been blamed on pilot error. Almost all, however, could equally be attributed to system
and software design flaws. After the accidents, the software and sometimes the interface was
modified to reduce the likelihood of the system design contributing to a human error.
Operator errors provide a convenient place to stop in the backward chain of events from

the loss event. To their credit, the accident investigation board in the Titan/Milstar loss kept
digging. To understand why an erroneous flight tape was created in the first place (and to learn
how to prevent a similar occurrence in the future), the software and system development process
associated with generating the tape needs to be examined.

Process Description: The INU consists of two major software components developed by
different companies: LMA developed the Flight Control System software and was responsible
for overall INU testing while Honeywell developed the IMS and was partially responsible for its
software development and testing. The I1 constants are processed by the Honeywell IMS, but
were designed and tested by LMA.

Safety Constraint Violated: Safety-critical constants must be identified and their genera-
tion controlled and checked.

Dysfunctional Interactions, Flawed Decisions, and Inadequate Control Actions: A
Software Constants and Code Words Memo was generated by the LMA Control Dynamics (CD)
group and sent to the LMA Centaur Flight Software (FS) group on December 23, 1997. It
provided the intended and correct values for the first I1 constants in hardcopy form. The memo
also allocated space for 10 additional constants to be provided by the LMA Avionics group at a
later time and specified a path and file name for an electronic version of the first 30 constants.

26

The memo did not specify or direct the use of either the hardcopy or the electronic version for
creating the constants database.
In early February, 1999, the LMA Centaur FS group responsible for accumulating all the

software and constants for the flight load tape was given discretion in choosing a baseline data
file. The flight software engineer who created the database dealt with over 700 flight constants
generated by multiple sources, in differing formats, and at varying time (some with multiple
iterations) all of which had to be merged into a single database. Some constant values came
from electronic files that could be merged into the database, while others came from paper
memos manually input into the database.
When the FS engineer tried to access the electronic file specified in the Software Constants

and Code Words Memo, he found the file no longer existed at the specified location on the
electronic file folder because it was now over a year after the file had been originally generated.
The FS engineer selected a different file as a baseline that only required him to change five I1
values for the digital roll rate filter (an algorithm with five constants). The filter was designed
to prevent the Centaur from responding to the effects of Milstar fuel sloshing and inducing roll
rate errors at 4 radians/second. During manual entry of those five I1 roll rate filter values,
the LMA FS engineer incorrectly entered or missed the exponent for the I1(25) constant. The
correct value of the I1(25) filter constant was -1.992476. The exponent should have been a one
but instead was entered as a zero, making the entered constant one tenth of the intended value
or -0.1992476. The flight software engineer’s immediate supervisor did not check the manually
entered values.
The only person who checked the manually input I1 filter rate values, besides the flight

software engineer who actually input the data, was an LMA Control Dynamics engineer. The
FS engineer who developed the Flight Load tape notified the CD engineer responsible for design
of the first thirty I1 constants that the tape was completed and the printout of the constants was
ready for inspection. The CD engineer went to the FS offices and looked at the hardcopy listing
to perform the check and sign off the I1 constants. The manual and visual check consisted of
comparing a list of I1 constants from Appendix C of the Software Constants and Code Words
Memo to the paper printout from the Flight Load tape. The formats of the floating-point
numbers (the decimal and exponent formats) were different on each of these paper documents
for the three values cross-checked for each I1 constant. The CD engineer did not spot the
exponent error for I1(25) and signed off that the I1 constants on the Flight Load tape were
correct. He did not know that the design values had been inserted manually into the database
used to build the flight tapes (remember, the values had been stored electronically but the
original database no longer existed) and that they were never formally tested in any simulation
prior to launch.
The CD engineer’s immediate supervisor, the lead for the CD section, did not review the

Signoff Report nor catch the error. Once the incorrect filter constant went undetected in the
Signoff Report, there were no other formal checks in the process to ensure the I1 filter rate values
used in flight matched the designed filter.

Control Algorithm Flaws:

•	 A process input was missing (the electronic file specified in the Software Constants and
Code Words memo), so an engineer regenerated it, making a mistake in doing so.

•	 Inadequate control was exercised over the constants process. No specified or documented
software process existed for electronically merging all the inputs into a single file. There

27

was also no formal, documented process to check or verify the work of the flight software
engineer in creating the file. Procedures for creating and updating the database were left
up to the flight software engineer’s discretion.

•	 Once the incorrect filter constant went undetected in the Signoff Report, there were no
other formal checks in the process to ensure the I1 filter rate values used in flight matched
the designed filter.

•	 The hazard analysis process was inadequate, and no control was exercised over the potential
hazard of manually entering incorrect constants, a very common human error. If system
safety engineers had identified the constants as critical, then a process would have existed
for monitoring the generation of these critical variables. In fact, neither the existence of
a system safety program nor any form of hazard analysis are mentioned in the accident
report. If such a program had existed, one would think it would be mentioned.

The report does say that Quality Assurance engineers performed a risk analysis, but they
considered only those problems that had happened before:

Their risk analysis was not based on determining steps critical to mission suc-
cess, but on how often problems previously surfaced in particular areas on past
launches. They determined software constant generation was low risk because
there had not been previous problems in that area. They only verified that the
signoff report containing the constants had all the proper signatures[20].

Process Model Flaws: The accident report suggests that many of the various partners were
confused about what the other groups were doing. The LMA software personnel who were re-
sponsible for creating the database (from which the flight tapes are generated) were not aware
that IV&V testing did not use the as-flown (manually input) I1 filter constants in their verifi-
cation and validation process. The LMA Control Dynamics engineer who designed the I1 rate
filter also did not know that the design values were manually input into the database used to
build the flight tapes and that the values were never formally tested in any simulation prior to
launch.
While the failure of the LMA CD engineer who designed the I1 rate filter to find the error

during his visual check was clearly related to the difficulty of checking long lists of differently
formatted numbers, it also may have been partly due to less care being taken in the process due
to an incorrect mental model, i.e., (1) he did not know the values were manually entered into
the database (and were not from the electronic file he had created), (2) he did not know the
load tape was never formally tested in any simulation prior to launch, and (3) he was unaware
the load tape constants were not used in the IV&V process.

Coordination: The fragmentation/stovepiping in the flight software development process,
coupled with the lack of comprehensive and defined system and safety engineering processes,
resulted in poor and inadequate communication and coordination among the many partners and
subprocesses.
Because the IMS software was developed by Honeywell, most everyone (LMA control dynam-

ics engineers, flight software engineers, product integrity engineers, SQA, IV&V, and DCMC
personnel) focused on the FCS and had little knowledge of the IMS software.

28

2.7 Quality Assurance (QA)

Safety Constraint: QA must monitor the quality of all safety-critical processes.

Process Flaw: The internal LMA quality assurance processes did not detect the error in the
role rate filter constant software file.

Control Algorithm Flaws: QA verified only that the signoff report containing the load
tape constants had all the proper signatures, an obviously inadequate process. This accident
is indicative of the problems with QA as generally practiced and why it is often ineffective.
The LMA Quality Assurance Plan used was a top-level document that focused on verification of
process completion, not on how the processes were executed or implemented. It was based on the
original General Dynamics Quality Assurance Plan with recent updates to ensure compliance
with ISO 9001. According to this plan, the LMA Software Quality Assurance staff was required
only to verify that the signoff report containing the constants had all the proper signatures;
they left the I1 constant generation and validation process to the flight software and control
dynamics engineers. Software Quality Assurance involvement was limited to verification of
software checksums and placing quality assurance stamps on the software products that were
produced.

2.8 Developer Testing Process

Once the error was introduced into the load tape, it could potentially have been detected dur-
ing verification and validation. Why did the very comprehensive and thorough developer and
independent verification and validation process miss this error?

Safety Constraint Violated: Testing must be performed on the as-flown software (including
load tape constants).

Flaws in the Testing Process: The INU (FCS and IMS) was never tested using the actual
constants on the load tape:

•	 Honeywell wrote and tested the IMS software, but they did not have the actual load tape.

•	 The LMA Flight Analogous Simulation Test (FAST) lab was responsible for system test,
i.e., they tested the compatibility and functionality of the flight control software and the
Honeywell IMS. But the FAST lab testing used a 300 Hertz filter simulation data file for
IMS filters and not the flight tape values. The simulation data file was built from the
original, correctly specified values of the designed constants (specified by the LMA CS
engineer), not those entered by the software personnel in the generation of the flight load
tape. Thus the mix of actual flight software and simulated filters used in the FAST testing
did not contain the I1(25) error, and the error could not be detected by the internal LMA
testing.

Process Model Mismatch: The testing capability that the current personnel thought the
lab had did not match the real capability. The LMA FAST facility was used predominantly to
test flight control software developed by LMA. The lab had been originally constructed with
the capability to exercise the actual flight values for the I1 roll rate filter constants, but that
capability was not widely known by the current FAST software engineers until after this accident;

29

knowledge of the capability had been lost in the corporate consolidation/evolution process so the
current software engineers used a set of default roll rate filter constants. Later it was determined
that had they used the actual flight values in their simulations prior to launch, they would have
caught the error.

2.9 Independent Verification and Validation (IV&V)

Safety Constraint Violated: IV&V must be performed on the as-flown software and con-
stants. All safety-critical data and software must be included in the IV&V process.

Dysfunctional Interactions: Each component of the IV&V process performed its function
correctly, but the overall design of the process was flawed. In fact, it was designed in such a way
that it was not capable of detecting the error in the role rate filter constant.
Analex was responsible for the overall IV&V effort of the flight software. In addition to

designing the IV&V process, Analex-Denver performed the IV&V of the flight software to ensure
the autopilot design was properly implemented in the software while Analex-Cleveland verified
the design of the autopilot but not its implementation. The “truth baseline” provided by LMA,
per agreement between LMA and Analex, was generated from the constants verified in the
Signoff Report.
In testing the flight software implementation, Analex-Denver used IMS default values instead

of the actual I1 constants contained on the flight tape. Generic or default I1 constants were
used because they believed the actual I1 constants could not be adequately validated in their
rigid body simulations, i.e., the rigid body simulation of the vehicle would not exercise the filters
sufficiently5 . They found out after the mission failure that had they used the actual I1 constants
in their simulation, they would have found the order of magnitude error.
Analex-Denver also performed a range check of the program constants and the Class I flight

constants and verified that format conversions were done correctly. However the process did not
require Analex-Denver to check the accuracy of the numbers in the truth baseline, only to do
a range check and a bit-to-bit comparison against the firing tables, which contained the wrong
constant. Thus the format conversions they performed simply compared the incorrect I1(25)
value in the firing tables to the incorrect I1(25) value after the conversion, and they matched.
They did not verify that the designed I1 filter constants were the ones actually used on the flight
tape.
Analex-Cleveland had responsibility for verifying the functionality of the design constant

but not the actual constant loaded into the Centaur for flight. That is, they were validating
the design only and not the “implementation” of the design. Analex-Cleveland received the
Flight Dynamics and Control Analysis Report (FDACAR) containing the correct value for the
roll filter constant. Their function was to validate the autopilot design values provided in the
FDACAR. That does not include IV&V of the I1 constants in the flight format. The original
design work was correctly represented by the constants in the FDACAR. In other words, the
filter constant in question was listed in the FDACAR with its correct value of -1.992476, and
not the value on the flight tape (-0.1992476).

Control Algorithm Flaws: Analex developed (with LMA and government approval) an
IV&V program that did not verify or validate the I1 filter rate constants actually used in flight.

5Note that almost identical words were used in the Ariane 501 accident report [17].

30

The I1 constants file was not sent to Analex-Cleveland for autopilot validation because Analex-
Cleveland only performed design validation. Analex-Denver used default values for testing and
never validated the actual I1 constants used in flight.

Process Model Mismatches: The decision to use default values for testing (both by LMA
FAST lab and by Analex-Denver) was based on a misunderstanding about the development
and test environment and what was capable of being tested. Both the LMA FAST lab and
Analex-Denver could have used the real load tape values, but did not think they could.
In addition, Analex-Denver, in designing the IV&V process, did not understand the genera-

tion or internal verification process for all the constants in the “truth baseline” provided to them
by LMA. The Analex-Denver engineers were not aware that the I1 filter rate values provided
originated from a manual input and might not be the same as those subjected to independent
V&V by Analex-Cleveland.
None of the participants was aware that nobody was testing the software with the actual

load tape values nor that the default values they used did not match the real values.

Coordination: This was a classic case of coordination problems. Responsibility was diffused
among the various partners, without complete coverage. In the end, nobody tested the load
tape—everyone thought someone else was doing it.

2.10 Systems Engineering

System engineering at LMA was responsible for the identification and allocation of the func-
tionality to be included in the system. In fact, the software filter involved in the loss was
not needed and should have been left out instead of being retained, yet another example of
asynchronous evolution. Why was that decision made? The filter was designed to prevent the
Centaur from responding to the effects of Milstar fuel sloshing and inducing roll rate errors at 4
radians/second. Early in the design phase of the first Milstar satellite, the manufacturer asked
to filter that frequency. The satellite manufacturer subsequently determined filtering was not
required at that frequency and informed LMA. However, LMA decided to leave the filter in place
for the first and subsequent Milstar flights for consistency. 6 No further explanation is included
in the report.

2.11 LMA Project Management (as Prime Contractor)

Safety Constraint: Effective software development processes must be established and moni-
tored. System safety processes must be created to identify and manage system hazards.

Context: The Centaur software process was developed early in the Titan/Centaur program:
Many of the individuals who designed the original process were no longer involved in it due to
corporate mergers and restructuring (e.g., Lockheed, Martin Marietta, General Dynamics) and
the maturation and completion of the Titan IV design and development. Much of the system
and process history and design rationale was lost with their departure.

6This factor is similar to the Ariane 501 loss, where unnecessary software code was left in for “consistency”
[17].

31

Control Algorithm Flaws:

•	 A flawed software development process was designed. For example, no process was provided
for creating and validating the flight constants.

•	 LMA, as prime contractor, did not exert adequate control over the development process.
The Accident Investigation Board could not identify a single process owner responsible for
understanding, designing, documenting, or controlling configuration and ensuring proper
execution of the process.

•	 An effective system safety program was not created.

•	 An inadequate IV&V program (designed by Analex-Denver) was approved and instituted
that did not verify or validate the I1 filter rate constants used in flight.

Mental Model Flaws: Nobody seemed to understand the overall software development pro-
cess and apparently all had a misunderstanding about the coverage of the testing process.

2.12	 Defense Contract Management Command (DCMC)

Control Inadequacies: The report is vague about the role of DCMC, saying only that it was
responsible for contract administration, software surveillance, and overseeing the development
process. It does say that DCMC approved an IV&V process with incomplete coverage and that
there was a software quality assurance function operating at DCMC, but it operated without a
detailed understanding of the overall process or program and therefore was ineffective.

Coordination: No information was provided in the accident report although coordination
problems between SMC and DCMA may have been involved. Were each assuming the other was
monitoring the overall process? What role did Aerospace Corporation play? Were there gaps
in the responsibilities assigned to each of the many groups providing oversight here? How did
the overlapping responsibilities fit together? What kind of feedback did DCMC use to perform
their process monitoring?

2.13	 Air Force (Program Office): Space and Missile Systems Center Launch
Directorate (SMC)

Safety Constraint: SMC must ensure that the prime contractors creates an effective devel-
opment and safety assurance program.

Context: Like 3SLS, the Air Force Space and Missile System Center Launch Directorate was
transitioning from a task oversight to a process insight role and had, at the same time, undergone
personnel reductions.

Control Algorithm Flaws:

•	 The SMC Launch Programs Directorate essentially had no personnel assigned to monitor
or provide insight into the generation and verification of the software development process.
The Program Office did have support from Aerospace to monitor the software development
and test process, but that support had been cut by over 50 percent since 1994. The
Titan Program Office had no permanently assigned civil service or military personnel nor

32

full-time support to work the Titan/Centaur software. They decided that because the
Titan/Centaur software was “mature, stable, and had not experienced problems in the
past” they could best use their resources to address hardware issues.

•	 The transition from oversight to insight was not managed by a detailed plan. AF re-
sponsibilities under the insight concept had not been well defined, and requirements to
perform those responsibilities had not been communicated to the workforce. In addition,
implementation of the transition from an oversight role to an insight role was negatively
affected by the lack of documentation and understanding of the software development and
testing process. Similar flawed transitions to an “insight” role are a common factor in
many recent aerospace accidents.

•	 The Titan Program Office did not impose any standards (e.g., Mil-Std-882) or process
for safety. While one could argue about what particular safety standards and program
could or should be imposed, it is clear from the complete lack of such a program that no
guidance was provided. Effective control of safety requires that responsibility for safety be
assigned at each level of the control structure. Eliminating this control leads to accidents.
The report does not say whether responsibility for controlling safety was retained at the
program office or whether it had been delegated to the prime contractor. But even if it had
been delegated to LMA, the program office must provide overall leadership and monitoring
of the effectiveness of the efforts. Clearly there was an inadequate safety program in this
development and deployment project. Responsibility for detecting this omission lies with
the program office.

2.14 Summary

Understanding why this accident occurred and making the changes necessary to prevent future
accidents requires more than simply identifying the proximate cause—a human error in tran-
scribing long strings of digits. This type of error is well known and there should have been
controls established throughout the process to detect and fix it, including identifying the roll
rate filter data as critical through a hazard analysis process. Either these controls were missing
in the development and operations processes or they were inadequately designed and executed.
Even though this accident report was unusual in its depth of analysis of the causal factors, the

STAMP analysis identified several additional questions that might have been asked to provide
additional insight into how such accidents might be avoided in the future, particularly at the
higher levels of the development and operations control structures. Identification of coordination
problems was a common and important omission; for example, were the various process auditors
(DCMC, Aerospace Corporation, QA, etc.) all assuming that someone else was monitoring the
process?
The result of a STAMP accident analysis is an understanding of the role each component

played in the accident process. This information (summarized in Figures 9 and 10) provides
guidance in creating recommendations for preventing future accidents. In the case of this ac-
cident, better development and verification, system safety engineering, management, and over-
sight processes are needed. For example, looking at the Prime Contractor, recommendations
for redesign of the IV&V process, better specified processes for load tape creation, design of a
comprehensive system safety program that identifies hazards and critical data and then insti-
tutes special controls for them, and more oversight and monitoring of the software development
process seem appropriate. Operations management needs to clarify launch personnel roles, to

33

3

provide tools and information for monitoring software behavior at the launch site, create better
problem reporting and resolution processes, augment personnel training programs, etc.
In addition to investigating and analyzing accidents, a systems-theoretic accident model

can be used to prevent accidents and to accumulate the information necessary to design for
safety during system design and development. Hazard analysis is essentially the investigation
of an accident before it occurs. A proactive accident investigation, i.e., hazard analysis, using
STAMP rather than the traditional analysis techniques based on event-chain models (e.g., fault
tree analysis, event tree analysis, and failure modes and effects criticality analysis) can provide
the information necessary to design an integrated socio-technical system, including development
and operations, to prevent accidents in software-intensive systems [7].

Conclusions

Accident models provide the basis for safety engineering—both in the analysis of accidents
that have occurred and in the development of techniques to prevent accidents. This paper has
suggested that dealing with safety in software-intensive systems will require more sophisticated
accident models than those currently in use, which were developed for electromechanical systems.
A proposal was made that models based on systems theory would be appropriate. One such
model was described and illustrated using a software-related accident. Other types of models
are possible.
A major difference between a systems-theoretic accident model and a chain-of-events model

is that the former does not identify a root cause of an accident. Instead, the entire safety control
structure is examined and the accident process to determine what role each part of the process
played in the loss. While a possible drawback of the systems-theoretic approach is that it is less
satisfying in terms of assigning blame, the analysis provides more information in terms of how
to prevent future accidents.

References

[1] Russell L. Ackoff.	 Towards a system of systems concepts. Management Science,
17(11):661–671, July 1971.

[2] Ashby, W.R., 1956. An Introduction to Cybernetics. Chapman and Hall, London.

[3] Bertalanffy, L. General Systems Theory: Foundations, Development, and Applications. G.
Braziller, New York, 1969.

[4] Peter Checkland.	 Systems Thinking, Systems Practice. John Wiley & Sons, New York,
1981.

[5] R.C. Conant and W.R. Ashby. Every good regulator of a system must be a model of that
system. International Journal of System Science, 1, ppg. 89-97, 1970.

[6] Ildeberto Muniz de Almeida and C.W. Johnson. Extending the borders of accident investi-
gation: Applying novel analysis techniques to the loss of the Brazilian Space Programme’s
launch vehicle VLS-1 V03. submitted for publication.

[7] Nicolas Dulac and Nancy Leveson. An approach to design for safety in complex systems.
Int. Symposium on Systems Engineering (INCOSE), Toulouse, France, June 2004,

34

[8] Harold Gehman (Chair). Columbia Accident Investigation Report. August 2003.

[9] Institute of Electrical and Electronics Engineers.	 IEEE Standard Computer Dictionary.
New York, NY 1990.

[10] C.W. Johnson and C.M. Holloway. The ESA/SOHO mission interruption: Using STAMP
accident analysis technique for a software related mishap. Software Practice and Experi­
ence, 33:1117-1198, 2003.

[11] Jacques Leplat. Occupational accident research and systems approach. In Jens Rasmussen,
Keith Duncan, and Jacques Leplat, editors, New Technology and Human Error, pages 181–
191, John Wiley & Sons, New York, 1987.

[12] Nancy G. Leveson. Safeware: System Safety and Computers. Addison-Wesley, 1995.

[13] Nancy G. Leveson. A New Accident Model for Engineering Safer Systems. Safety Science,
Vol. 42, No. 4, Elsevier, April 2004.

[14] Nancy G. Leveson. The role of software in spacecraft accidents. AIAA Journal of Spacecraft
and Rockets, July 2004.

[15] Nancy G. Leveson. A New Approach to System Safety Engineering. Manuscript in prepa-
ration, draft can be viewed at http://sunnyday.mit.edu/book2.pdf.

[16] Nancy Leveson, Mirna Daouk, Nicolas Dulac, and Karen Marais. Applying STAMP in Ac-
cident Analysis. 2nd Workshop on the Investigation and Reporting of Accidents, Williams-
burg, Virginia, September, 2003.

[17] J.L. Lions. Ariane 501 Failure: Report by the Inquiry Board. European Space Agency, 19
July 1996.

[18] Ralph F. Miles Jr. Introduction. In Ralph F. Miles Jr., editor, Systems Concepts: Lectures
on Contemporary Approaches to Systems, pages 1–12, John F. Wiley & Sons, New York,
1973.

[19] NASA/ESA Investigation Board. SOHO Mission Interruption. NASA, 31 August 1998.

[20] Pavlovich, J.G. Formal Report of Investigation of the 30 April 1999 Titan IV B/Centaur
TC-14/Milstar-3 (B-32) Space Launch Mishap. U.S. Air Force, 1999.

[21] Charles Perrow. Normal Accidents. Basic Books, 1984 (republished by Princeton Univer-
sity Press, 1999).

[22] Joan L. Piper.	 Chain of Events: The Government Cover-Up of the Black Hawk Incident
and the Friendly Fire Death of Lt. Laura Piper. Brasseys Inc., 2001.

[23] Simon Ramo.	 The systems approach. In Ralph F. Miles Jr., editor, Systems Concepts:
Lectures on Contemporary Approaches to Systems, pages 13–32, John F. Wiley & Sons,
New York, 1973.

[24] Jens Rasmussen. Risk Management in a Dynamic Society: A Modelling Problem.	 Safety
Science, vol. 27, No. 2/3, Elsevier Science Ltd., 1997, pages 183-213.

35

[25] Jens Rasmussen and Inge Svedung. Proactive Risk Management in a Dynamic Society,
Swedish Rescue Services Agency, 2000.

[26] Jens Rasmussen.	 Human error and the problem of causality in analysis of accidents.
In D.E. Broadbent, J. Reason, and A. Baddeley, editors, Human Factors in Hazardous
Situations, pages 1–12, Clarendon Press, Oxford, 1990.

[27] Jens Rasmussen, Annelise Mark Pejtersen, and L.P. Goodstein.	 Cognitive System Engi­
neering. John Wiley & Sons, 1994.

[28] William P. Rogers. Report of the Presidential Commission on the Space Shuttle Challenger
Accident. U.S. Government Accounting Office, Washington, D.C., 1986.

[29] U.S. Government Accounting Office, Office of Special Investigations. Operation Provide
Comfort: Review of Air Force Investigation of Black Hawk Fratricide Incident (GAO/T-
OSI-98-13). U.S. Government Printing Office, Washington, D.C. 1997.

[30] Gerald Weinberg. An Introduction to General Systems Thinking. John Wiley & Sons, New
York, 1975.

[31] Norbert Weiner. Cybernetics: or the Control and Communication in the Animal and the
Machine. The MIT Press, 2nd Edition, 1965.

[32] David D. Woods. Lessons from beyond human error: Designing for resilience in the face of
change and surprise. Design for Safety Workshop, NASA Ames Research Center, October
8-10, 2000.

36

