
1 

A Systems-Theoretic Approach to Safety in Software-Intensive 

Systems 

Nancy G. Leveson 
Aeronautics and Astronautics Department and Engineering Systems Division 

Massachusetts Institute of Technology 

Abstract: Traditional accident models were devised to explain losses caused by failures of 
physical devices in relatively simple systems. They are less useful for explaining accidents in 
software-intensive systems and for non-technical aspects of safety such as organizational culture 
and human decision-making. This paper describes how systems theory can be used to form new 
accident models that better explain system accidents (accidents arising from the interactions 
among components rather than individual component failure), software-related accidents, and 
the role of human decision-making. Such models consider the social and technical aspects of 
systems as one integrated process and may be useful for other emergent system properties such 
as security. The loss of a Milstar satellite being launched by a Titan/Centaur launch vehicle is 
used as an illustration of the approach. 
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Introduction 

All attempts to engineer safer systems rest upon underlying causal models of how accidents 
occur, although engineers may not be consciously aware of their use of such a model. An 
underlying assumption of these accident models is that there are common patterns in accidents 
and that accidents are not simply random events. By defining those assumed patterns, accident 
models may act as a filter and bias toward considering only certain events and conditions or 
they may expand consideration of factors often omitted. The completeness and accuracy of the 
model for the type of system being considered will be critical in how effective are the engineering 
approaches based on it. 
At the foundation of almost all causal analysis for engineered systems today is a model of 

accidents that assumes they result from a chain (or tree) of failure events and human errors. 
The causal relationships between the events are direct and linear, representing the notion that 
the preceding event or condition must have been present for the subsequent event to occur, i.e., 
if event X had not occurred, then the following event Y would not have occurred. As such, event 
chain models encourage limited notions of linear causality, and they cannot account for indirect 
and non-linear relationships. 
The selection of events to include in an event chain is dependent on the stopping rule used 

to determine how far back the sequence of explanatory events goes. Although it is common 
to isolate one or more events or conditions (usually at the beginning of chain) and call them 
the cause or the proximate, direct or root cause of an accident or incident and to label the 
other events or conditions as contributory, there is no basis for this distinction. Usually a root 
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cause selected from the chain of events has one or more of the following characteristics: (1) it 
represents a type of event that is familiar and thus easily acceptable as an explanation for the 
accident; (2) it is a deviation from a standard; (3) it is the first event in the backward chain 
for which a “cure” is known1; and (4) it is politically acceptable as the identified cause. The 
backward chaining may also stop because the causal path disappears due to lack of information. 
Rasmussen suggests that a practical explanation for why actions by operators actively involved 
in the dynamic flow of events are so often identified as the cause of an accident (and operator 
actions are often selected as the stopping point in an accident event chain) is the difficulty in 
continuing the backtracking “through” a human [26]. Identifying accident causes in this way 
can be a hindrance in learning from and preventing future accidents. 
As just one example, the accident report on a friendly fire shootdown of a helicopter over the 

Iraqi No-Fly-Zone in 1994 describes the accident as a chain of events leading to the shootdown 
[29]. Included in the chain of events provided is the fact that the helicopter pilots did not change 
to the radio frequency required in the No-Fly-Zone when they entered it (they stayed on the 
enroute frequency). Stopping at this event in the chain, it appears that the helicopter pilots were 
at least partially at fault for the loss by making an important mistake. An independent account 
of the accident [22], however, notes that the U.S. Commander of the operation had made an 
exception about the radio frequency to be used by the helicopters in order to mitigate a different 
safety concern, and therefore the pilots were simply following orders. This commanded exception 
to radio procedures is not included in the chain of events included in the official government 
accident report, but it provides a very different understanding of the role of the helicopter pilots 
in the loss. 
There are two basic reasons for conducting an accident investigation: (1) to assign blame for 

the accident and (2) to understand why it happened so that future accidents can be prevented. 
When the goal is to assign blame, the backward chain of events considered often stops when 
someone or something appropriate to blame is found. As a result, the selected initiating event 
may provide too superficial an explanation of why the accident occurred to prevent similar 
losses in the future. For example, stopping at the O-ring failure in the Challenger accident 
and fixing that particular design flaw would not have eliminated the systemic flaws that could 
lead to accidents in the future. For Challenger, examples of those systemic problems include 
flawed decision making and the pressures that led to it, poor problem reporting, lack of trend 
analysis, a “silent” or ineffective safety program, communication problems, etc. None of these 
are “events” (although they may be manifested in particular events) and thus do not appear 
in the chain of events leading to the accident. Wisely, the authors of the Challenger accident 
report used an event chain only to identify the proximate physical cause and not the reasons 
those events occurred, and the report writers’ recommendations led to many important changes 
at NASA or at least attempts to make such changes [28].2 

Blame is not an engineering concept; it is a legal or moral one. Usually there is no objective 
criterion for distinguishing one factor or several factors from other factors that contribute to an 
accident. While lawyers and insurers recognize that many factors contribute to a loss event, for 
practical reasons and particularly for establishing liability, they often oversimplify the causes of 

1As an example, a NASA Procedures and Guidelines Document (NPG 8621 Draft 1) defined a root cause as: 
“Along a chain of events leading to a mishap, the first causal action or failure to act that could have been controlled 
systematically either by policy/practice/procedure or individual adherence to policy/practice/procedure.” 

2Recently, another Space Shuttle has been lost. While the proximate cause for the Columbia accident (foam 
hitting the wing of the orbiter) was very different than for Chal lenger, many of the systemic or root causes were 
similar and reflected either inadequate fixes of these factors after the Chal lenger accident or their re-emergence 
in the years between these losses [8]. 
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accidents and identify what they call the proximate (immediate or direct) cause. The goal is to 
determine the parties in a dispute that have the legal liability to pay damages, which may be 
affected by the ability to pay or by public policy considerations, such as discouraging company 
management or even an entire industry from acting in a particular way in the future. 
When learning how to engineer safer systems is the goal rather than identifying who to punish 

and establishing liability, then the emphasis in accident analysis needs to shift from cause (in 
terms of events or errors), which has a limiting, blame orientation, to understanding accidents in 
terms of reasons, i.e., why the events and errors occurred. In an analysis by the author of recent 
aerospace accidents involving software in some way, most of the reports stopped after assigning 
blame—usually to the operators who interacted with the software—and never got to the root of 
why the accident occurred, e.g., why the operators made the errors they did and how to prevent 
such errors in the future (perhaps by changing the software) or why the software requirements 
specified unsafe behavior and why that error was introduced and why it was not detected and 
fixed before the software was used [14]. 
While attempts have been made to extend traditional safety engineering techniques such as 

fault tree analysis and probabilistic risk assessment, based on event-chain models of accidents 
to software-intensive systems, the results have not been terribly successful. Perhaps the lack of 
significant progress in dealing with software in safety-critical systems is the result of inappro-
priately attempting to extend the techniques that were successful in simpler, electromechanical 
systems and were based on models of accident causation that no longer apply. 
Accidents can be separated into two types: those caused by failures of individual components 

and those caused by dysfunctional interactions between non-failed components. The dysfunc-
tional behavior in modern, high-tech systems is often commanded by software, such as the 
command by the Mars Polar Lander descent control software to shut off the descent engines pre-
maturely while still 40 meters above the Martian surface. In this and in most software-related 
accidents, the software operates exactly as specified, that is, the software, following its require-
ments, commands component behavior that violates system safety constraints or the software 
design contributes to unsafe behavior by human operators. As such, the traditional event-chain 
model, with its emphasis on component failure, is inappropriate for today’s software-intensive, 
complex human-machine systems with distributed decision-making across both physical and 
organizational boundaries. 
The basic premise of this paper is that to make significant progress in dealing with safety 

in complex systems, we need new models and conceptions of how accidents occur that more 
accurately and completely reflect the types of accidents we are experiencing today. Simply 
building more tools based on the current chain-of-events model will not result in significant 
gains. This paper presents one example of such a model, but others are possible. 
The new model, called STAMP (Systems-Theoretic Accident Model and Processes), uses a 

systems-theoretic approach to understanding accident causation. Systems theory allows more 
complex relationships between events to be considered (e.g., feedback and other indirect rela-
tionships) and also provides a way to look more deeply at why the events occurred. Accident 
models based on systems theory consider accidents as arising from the interactions among sys-
tem components and usually do not specify single causal variables or factors [11]. Whereas 
industrial (occupational) safety models focus on unsafe acts or conditions and reliability engi-
neering emphasizes failure events and the direct relationships between these events, a systems 
approach to safety takes a broader view by focusing on what was wrong with the system’s de-
sign or operations that allowed the accident to take place. The proximal events that precede 
an accident are simply symptoms of a lack of enforcement of safety in the design and operation 
of the system: to prevent accidents we need to go beyond the events to understand why those 
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events occurred, i.e., the larger system and process producing the events. 
The next section provides some basic background on system theory, followed by a description 

of a systems-theoretic approach to safety. The basic concepts are illustrated using the loss of a 
Milstar satellite. 

1.1 Safety as an Emergent System Property 

Event chain models rest on traditional analytic reduction: Physical systems are decomposed into 
separate physical components so the parts can be examined separately, and behavior is decom-
posed into events over time. This decomposition assumes that such separation is feasible: that 
is, each component or subsystem operates independently and analysis results are not distorted 
when the components are considered separately. This assumption in turn implies (1) that the 
components or events are not subject to feedback loops and non-linear interactions and (2) that 
the behavior of the components is the same when examined alone as when they are playing 
their part in the whole. A third fundamental assumption is that the principles governing the 
assembly of the components into the whole are straightforward, that is, the interactions among 
the subsystems are simple enough that they can be considered separate from the behavior of 
the subsystems themselves [30]. 
These assumptions are reasonable for many properties and systems, but they start to fall 

apart in complex systems. Systems theory dates from the thirties and forties and was a response 
to limitations of the classic analysis techniques in coping with the increasingly complex systems 
being built [4]. Norbert Weiner applied the approach to control and communications engineering 
[31] while Ludwig von Bertalanffy developed similar ideas for biology [3]. It was Bertalanffy who 
suggested that the emerging ideas in various fields could be combined into a general theory of 
systems. 
The systems approach focuses on systems taken as a whole, not on the parts examined 

separately. It assumes that some properties of systems can only be treated adequately in their 
entirety, taking into account all facets relating the social to the technical aspects [4]. These 
system properties derive from the relationships between the parts of systems: how the parts 
interact and fit together [1]. Thus the systems approach concentrates on the analysis and design 
of the system as a whole as distinct from the components or the parts. While components may 
be constructed in a modular fashion, the original analysis and decomposition must be performed 
top down. 
The foundation of systems theory rests on two pairs of ideas: (1) emergence and hierarchy 

and (2) communication and control [4]. 

1.1.1 Emergence and Hierarchy 

The first pair of basic system theory ideas are emergence and hierarchy. A general model of 
complex systems can be expressed in terms of a hierarchy of levels of organization, each more 
complex than the one below, where a level is characterized by having emergent properties. Emer-
gent properties do not exist at lower levels; they are meaningless in the language appropriate to 
those levels. The shape of an apple, although eventually explainable in terms of the cells of the 
apple, has no meaning at that lower level of description. Thus, the operation of the processes 
at the lower levels of the hierarchy result in a higher level of complexity—that of the whole 
apple itself—that has emergent properties, one of them being the apple’s shape. The concept of 
emergence is the idea that at a given level of complexity, some properties characteristic of that 
level (emergent at that level) are irreducible. 
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Safety is an emergent property of systems. Determining whether a plant is acceptably safe 
is not possible by examining a single valve in the plant. In fact, statements about the “safety of 
the valve” without information about the context in which that valve is used, are meaningless. 
Conclusions can be reached, however, about the reliability of the valve, where reliability is 
defined as “the ability of a system or component to perform its required functions under stated 
conditions for a specified period of time” [9], i.e., that the behavior of the valve will satisfy its 
specification over time and under given conditions. This is one of the basic distinctions between 
safety and reliability: Safety can only be determined by the relationship between the valve and 
the other plant components—that is, in the context of the whole. Therefore it is not possible 
to take a single system component, like a software module, in isolation and assess its safety. A 
component that is perfectly safe in one system may not be when used in another. Attempts to 
assign safety levels to software components in isolation from a particular use, as is currently the 
approach in some international safety standards, is misguided. 
Event-based models of accidents, with their relatively simple cause-effect links, were cre-

ated in an era of mechanical systems and then adapted for electro-mechanical systems. The 
use of software in engineered systems has removed many of the physical constraints that limit 
complexity and has allowed engineers to incorporate greatly increased complexity and coupling 
in systems containing large numbers of dynamically interacting components. In the simpler 
systems of the past, where all the interactions between components could be predicted and 
handled, component failure was the primary cause of accidents. In today’s complex systems, 
made possible by the use of software, this is no longer the case. The same applies to security 
and other system properties: While some vulnerabilities may be related to a single component 
only, a more interesting class of vulnerability emerges in the interactions among multiple system 
components. Vulnerabilities of this type are system vulnerabilities and are much more difficult 
to locate and predict. 
A second basic part of systems theory, hierarchy theory, deals with the fundamental dif-

ferences between levels of a hierarchy. Its ultimate aim is to explain the relationships between 
different levels: what generates the levels, what separates them, and what links them. Emergent 
properties associated with a set of components at one level in a hierarchy are related to con­
straints upon the degree of freedom of those components. In a systems-theoretic view of safety, 
the emergent safety properties are controlled or enforced by a set of safety constraints related 
to the behavior of the system components. Safety constraints specify those relationships among 
system variables or components that constitute the non-hazardous or safe system states—for 
example, the power must never be on when the access door to the high-voltage power source 
is open; pilots in a combat zone must always be able to identify potential targets as hostile 
or friendly; the public health system must prevent the exposure of the public to contaminated 
water; and the spacecraft lander software must control the rate of descent of the spacecraft to 
the planet’s surface. Accidents result from interactions among system components that violate 
these constraints—in other words, from a lack of appropriate constraints on system behavior. 

1.1.2 Communication and Control 

The second pair of basic systems theory ideas is communication and control. Regulatory or 
control action is the imposition of constraints upon the activity at one level of a hierarchy, 
which define the “laws of behavior” at that level yielding activity meaningful at a higher level. 
Hierarchies are characterized by control processes operating at the interfaces between levels. 
Checkland writes: 

Control is always associated with the imposition of constraints, and an account of a 
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control process necessarily requires our taking into account at least two hierarchical 
levels. At a given level, it is often possible to describe the level by writing dynamical 
equations, on the assumption that one particle is representative of the collection and 
that the forces at other levels do not interfere. But any description of a control 
process entails an upper level imposing constraints upon the lower. The upper level 
is a source of an alternative (simpler) description of the lower level in terms of specific 
functions that are emergent as a result of the imposition of constraints [4, p.87]. 

Control in open systems (those that have inputs and outputs from their environment) im-
plies the need for communication. Bertalanffy distinguished between closed systems, in which 
unchanging components settle into a state of equilibrium, and open systems, which can be thrown 
out of equilibrium by exchanges with their environment [3]. The notions of time lag, noise, and 
bandwidth play important roles in communication between hierarchical control levels. 
In systems theory, open systems are viewed as interrelated components that are kept in a 

state of dynamic equilibrium by feedback loops of information and control. A system is not 
treated as a static design, but as a dynamic process that is continually adapting to achieve its 
ends and to react to changes in itself and its environment. To be safe, the original design must 
not only enforce appropriate constraints on behavior to ensure safe operation (the enforcement 
of the safety constraints), but it must continue to operate safely as changes and adaptations 
occur over time [32].  

1.2 Systems-Theoretic Approaches to Safety 

In response to the limitations of event-chain models, systems theory has been proposed as a way 
to understand accident causation (see, for example, [24, 13]). When using a systems-theoretic 
accident model, accidents are viewed as the result of flawed processes involving interactions 
among system components, including people, societal and organizational structures, engineering 
activities, and the physical system. 
Rasmussen and Svedung [24, 25] have added some features of system theory into the classic 

event-chain model by adding hierarchical control levels—representing government, regulators 
and associations, company, management, and staff—above the event chain (Figure 1). Informa-
tion flow is mapped at all levels and between levels. The model concentrates on the operation 
of the socio-technical system: information from the system design and analysis process (the left 
column in the figure) is treated as input to the operations process (the right column). At each 
level, they model the factors involved using event chains, with links to the chain at the level 
below. Unfortunately, retaining event chains and event decomposition at the hierarchical levels 
limits the benefits that can be obtained by taking a systems approach. 
Leveson has defined another accident model, called STAMP (Systems-Theoretic Accident 

Modeling and Processes) based on systems theory [13]. In STAMP, accidents are conceived as 
resulting not from component failures, but from inadequate control or enforcement of safety-
related constraints on the design, development, and operation of the system. In the Space 
Shuttle Challenger accident, for example, the O-rings did not adequately control propellant gas 
release by sealing a tiny gap in the field joint. In the Mars Polar Lander loss, the software did 
not adequately control the descent speed of the spacecraft—it misinterpreted noise from a Hall 
effect sensor as an indication the spacecraft had reached the surface of the planet. 
Accidents such as these, involving engineering design errors, may in turn stem from in-

adequate control over the development process, i.e., risk is not adequately managed (through 
communication and feedback) in the design, implementation, and manufacturing processes. Con-
trol is also imposed by the management functions in an organization—the Challenger accident 
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involved inadequate controls in the launch-decision process, for example—and by the social and 
political system within which the organization exists. 
STAMP is constructed from three basic concepts: constraints, hierarchical levels of control, 

and process models. These concepts, in turn, give rise to a classification of control flaws that 
can lead to accidents. Each of these is described below. 

1.2.1 Constraints 

The most basic concept in STAMP is not an event, but a constraint. In systems theory or control 
theory, systems are viewed as hierarchical structures where each level imposes constraints on 
the activity of the level beneath it—that is, constraints or lack of constraints at a higher level 
allow or control lower-level behavior [4]. Safety-related constraints specify those relationships 
among system variables that constitute the nonhazardous or safe system states. 
Instead of viewing accidents as the result of an initiating (root cause) event in a chain of 

events leading to a loss (which must somehow be broken in order to prevent them), accidents 
are viewed as resulting from interactions among components that violate the system safety 
constraints. The control processes that enforce these constraints must limit system behavior to 
the safe changes and adaptations implied by the constraints. 
Note that accidents caused by basic component failures are included in this model, as well as 

those caused by interactions among components. Identifying the failure events themselves, how-
ever, does not provide enough information about why they occurred to prevent similar accidents 
in the future. Component failures may result from inadequate constraints on the manufac-
turing process; inadequate engineering design such as missing or incorrectly implemented fault 
tolerance; lack of correspondence between individual component capacity (including humans) 
and task requirements; unhandled environmental disturbances (e.g., electromagnetic inteference 
or EMI); inadequate maintenance, including preventive maintenance; physical degradation over 
time (wearout); etc. Control therefore need not be imposed by a physical “controller” but may be 
controlled through system design or manufacturing processes and procedures. Systems-theoretic 
accident models go beyond simply blaming component failure for accidents (and perhaps then 
adding redundancy to the design to handle them) and require that the reasons be identified for 
why those failures occur and lead to accidents. 

1.2.2 Hierarchical Levels of Control 

The second concept in STAMP (and a basic concept in systems theory) is hierachical levels 
of control. Figure 2 shows a generic hierarchical safety control model. Accidents result from 
inadequate enforcement of constraints on behavior (e.g., the physical system, engineering design, 
management, and regulatory behavior) at each level of the socio-technical system. 
The model in Figure 2 has two basic hierarchical control structures—one for system devel-

opment (on the left) and one for system operation (on the right)—with interactions between 
them. An aircraft manufacturer, for example, might only have system development under its 
immediate control, but safety involves both development and operational use of the aircraft, and 
neither can be accomplished successfully in isolation: Safety must be designed into the system, 
and safety during operation depends partly on the original design and partly on effective con-
trol over operations and the changes and adaptations in the system over time. Manufacturers 
must communicate to their customers the assumptions about the operational environment upon 
which the safety analysis was based, as well as information about safe operating procedures. 
The operational environment, in turn, provides feedback to the manufacturer about the perfor-
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mance of the system during operations. Although difficult to show without excessively cluttering 
the figure, interaction may occur at all levels between the development and operations control 
structures. 
Between the hierarchical levels of each control structure, effective communication channels 

are needed, both a downward reference channel providing the information necessary to impose 
constraints on the level below and a measuring channel to provide feedback about how effectively 
the constraints were enforced. For example, company management in the development process 
structure may provide a safety policy, standards, and resources to project management and in 
return receive status reports, risk assessment, and incident reports as feedback about the status 
of the project with respect to the safety constraints. As described later, time lag, noise, and 
bandwidth must be considered when analyzing the performance of the communication channels. 
The safety control structure often changes over time, which accounts for the observation 

that accidents in complex systems frequently involve a migration of the system toward a state 
where a small deviation (in the physical system or in human operator behavior) can lead to 
a catastrophe. The foundation for an accident is often laid years before [27]: One event may 
trigger the loss, but if that event had not happened, another one would have. Union Carbide 
and the Indian government blamed the Bhopal MIC (methyl isocyanate) release (among the 
worst industrial accidents in history) on human error—the improper cleaning of a pipe at the 
chemical plant. However, the maintenance worker was, in fact, only a minor and somewhat 
irrelevant player in the loss [12]. Instead, degradation in the safety margin occurred over time 
and without any particular single decision to do so but simply as a series of decisions that moved 
the plant slowly toward a situation where any slight error would lead to a major accident: 

The stage for an accidental course of events very likely is prepared through time by 
the normal efforts of many actors in their respective daily work context, responding 
to the standing request to be more productive and less costly. Ultimately, a quite 
normal variation in somebody’s behavior can then release an accident. Had this 
‘root cause’ been avoided by some additional safety measure, the accident would 
very likely be released by another cause at another point in time. In other words, 
an explanation of the accident in terms of events, acts, and errors is not very useful 
for design of improved systems [26]. 

Degradation of the safety-control structure over time may be related to asynchronous evo­
lution [11], where one part of a system changes without the related necessary changes in other 
parts. Changes to subsystems may be carefully designed, but consideration of their effects on 
other parts of the system, including the control aspects, may be neglected or inadequate. Asyn-
chronous evolution may also occur when one part of a properly designed system deteriorates. In 
both these cases, the erroneous expectations of users or system components about the behavior 
of the changed or degraded subsystem may lead to accidents. The Ariane 5 trajectory changed 
from that of the Ariane 4, but the inertial reference system software did not [17]. One factor 
in the loss of contact with the SOHO (SOlar Heliospheric Observatory) spacecraft in 1998 was 
the failure to communicate to operators that a functional change had been made in a software 
procedure to perform gyro spin-down [19]. 
For an accident model to handle system adaptation over time, it must consider the processes 

involved in accidents and not simply events and conditions: Processes control a sequence of 
events and describe system and human behavior as it changes and adapts over time rather than 
considering individual events and human actions. 
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1.2.3 Process Models 

Besides constraints and hierarchical levels of control, a third basic concept in STAMP is that 
of process models. Figure 3 shows a typical process-control loop with an automated controller 
supervised by a human controller. Any controller—human or automated—needs a model of 
the process being controlled to effectively control it. The model may contain only one or two 
state variables, such as the model required for a simple thermostat, which contains the current 
temperature and the desired setpoint, or it may be very complex, such as the model of the 
airspace required for air traffic control. Human controllers of automated systems must have 
an additional model of the automation as well as the controlled process, and both the human 
controller and the software need models of the interfaces between system components. 
Whether the model is embedded in the control logic of an automated controller or in the 

mental model of a human controller, it must contain the same type of information: the required 
relationship among the system variables (the control laws), the current state (the current values 
of the system variables), and the ways the process can change state. This model is used to 
determine what control actions are needed, and it is updated through various forms of feedback. 
A model of the controlled process is required at all levels of the hierarchical control structure. 
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There may, of course, be multiple human and automated controllers in the control loop, and 
computers may play roles other than as a direct controller. For example, computers may act as 
automated decision aids that provide information to the human controller but do not directly 
issue control commands. If the computer provides decision aiding, then the software must still 
contain a model of the process because it is indirectly controlling the process. 
Time is an important consideration; control actions will, in general, lag in their effects on the 

process because of delays in signal propagation around the control loop: an actuator may not 
respond immediately to an external command signal; the process may have delays in responding 
to manipulated variables; and the sensors may obtain values only a certain sampling intervals. 
Time lags restrict the speed and extent with which the effects of disturbances, both within the 
process itself and externally derived, can be reduced. They also impose extra requirements on 
the controller, for example, the need to infer delays that are not directly observable. Accidents 
can occur due to inadequate handling of these delays. Noise and bandwidth can similarly impact 
performance of the control loop. 

1.2.4 A Classification of Control Flaws Leading to Accidents 

In basic systems theory, to effect control over a system requires four conditions [2, 5]: 

•	 Goal Condition: The controller must have a goal or goals, e.g., to maintain the setpoint 
or to maintain the safety constraints. 

•	 Action Condition: The controller must be able to affect the state of the system in order 
to keep the process operating within predefined limits or safety constraints despite internal 
or external disturbances. Where there are multiple controllers and decision makers, the 
actions must be coordinated to achieve the goal condition. Uncoordinated actions are 
particularly likely to lead to accidents in the boundary areas between controlled processes 
or when multiple controllers have overlapping control responsibilities. 

•	 Model Condition: The controller must be (or contain) a model of the system, as de-
scribed above. Accidents in complex systems frequently result from inconsistencies between 
the model of the process used by the controllers (both human and software) and the actual 
process state; for example, the software thinks the plane is climbing when it is actually 
descending and as a result applies the wrong control law or the pilot thinks a friendly 
aircraft is hostile and shoots a missile at it. 

•	 Observability Condition: The controller must be able to ascertain the state of the 
system from information about the process state provided by feedback. Feedback is used 
to update and maintain the process model used by the controller. 

Using systems theory, accidents can be understood in terms of failure to adequately satisfy 
these four conditions: 

1. Hazards and the safety constraints to prevent them are not identified and provided to the 
controllers (goal condition); 

2. The controllers are not able to effectively maintain the safety constraints or they do not 
make appropriate or effective control actions for some reason, perhaps because of inade-
quate coordination among multiple controllers (action condition); 
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Control Flaws Leading to Hazards 

Inadequate control actions (enforcement of constraints) 

Unidentified hazards 

Inappropriate, ineffective, or missing control actions for identified hazards 

Design of control algorithm (process) does not enforce constraints 

Process models inconsistent, incomplete, or incorrect (lack of linkup) 

Flaw(s) in creation process 
Flaws(s) in updating process (asynchronous evolution) 
Time lags and measurement inaccuracies not accounted for 

Inadequate coordination among controllers and decision−makers 
(boundary and overlap areas) 

Inadequate Execution of Control Action 

Communication flaw 

Inadequate actuator operation 

Time lag 

Inadequate or missing feedback 

Not provided in system design 

Communication flaw 

Time lag 

Inadequate sensor operation (incorrect or no information provided) 

Figure 4: A classification of control flaws leading to accidents. 

3. The process models used by the software or by human controllers (usually called mental 
models in the case of humans) become inconsistent with the process and with each other 
(model condition); and 

4. The controller is unable to ascertain the state of the system and update the process models 
because feedback is missing or inadequate (observability condition). 

When using a systems-theoretic accident model such as STAMP, the control flaws identified 
above are mapped to the components of the control loop and used in understanding and pre-
venting accidents. Figure 4 shows a categorization of control flaws that can lead to the violation 
of the four conditions above. This categorization can be used in the creation of new hazard and 
accident analysis techniques (see, for example, [16, 7, 10, 6]). 

Using a Systems-Theoretic Accident Model 

The rest of this paper contains an extensive example that uses STAMP to understand the 
reasons for a software-related accident. On April 30, 1999, at 12:30 EDT, a Titan IV B-32 
booster equipped with a Centaur TC-14 upper stage was launched from Cape Canaveral. The 
mission was to place a Milstar-3 satellite into geosynchronous orbit. Milstar is a joint services 
satellite communications system that provides secure, jam resistant, worldwide communications 
to meet wartime requirements. It was the most advanced military communications satellite 
system to that date. The first Milstar satellite was launched February 7, 1994 and the second 
was launched November 5, 1995. This mission was to be the third launch. 
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As a result of some anomalous events, the Milstar satellite was placed in an incorrect and 
unusable low elliptical final orbit, as opposed to the intended geosynchronous orbit. This accident 
is believed to be one of the most costly unmanned losses in the history of Cape Canaveral launch 
operations. The Milstar satellite cost about $800 million and the launcher an additional $433 
million. 
To their credit, the accident investigation board went beyond the usual chain-of-events model 

and instead interpreted the accident in terms of a complex and flawed process [20]: 

Failure of the Titan IV B-32 mission is due to a failed software development, testing, 
and quality assurance process for the Centaur upper stage. That failed process 
did not detect and correct a human error in the manual entry of the I1(25) roll 
rate filter constant entered in the Inertial Measurement System flight software file. 
The value should have been entered as -1.992476, but was entered as -0.1992476. 
Evidence of the incorrect I1(25) constant appeared during launch processing and 
the launch countdown, but its impact was not sufficiently recognized or understood 
and, consequently, not corrected before launch. The incorrect roll rate filter constant 
zeroed any roll rate data, resulting in the loss of roll axis control, which then caused 
loss of yaw and pitch control. The loss of attitude control caused excessive firings 
of the Reaction Control system and subsequent hydrazine depletion. Erratic vehicle 
flight during the Centaur main engine burns caused the Centaur to achieve an orbit 
apogee and perigee much lower than desired, which resulted in the Milstar separating 
in a useless low final orbit [20, p. 2]. 

Fully understanding this accident requires understanding why the error in the roll rate filter 
constant was introduced in the load tape, why it was not found during the load tape production 
process and internal review processes, why it was not found during the extensive independent 
verification and validation effort applied to this software, and why it was not detected during 
operations at the launch site. In other words, why the safety control structure was ineffective 
in each of these instances. 
Figure 5 shows the hierarchical control model of the accident, or at least those parts that 

can be gleaned from the official accident report3 . Lockheed Martin Astronautics (LMA) was 
the prime contractor for the mission. The Air Force Space and Missile Systems Center Launch 
Directorate (SMC) was responsible for insight and administration of the LMA contract. Besides 
LMA and SMC, the Defense Contract Management Command (DCMC) played an oversight role, 
but the report is not clear about what exactly this role was beyond a general statement about 
responsibility for contract management, software surveillance, and overseeing the development 
process. 
LMA designed and developed the flight control software, while Honeywell was responsible 

for the IMS software. This separation of control, combined with poor coordination, accounts 
for some of the problems that occurred. Analex was the independent verification and validation 
(IV&V) contractor, while Aerospace Corporation provided independent monitoring and evalu-
ation. Ground launch operations at Cape Canaveral Air Station (CCAS) were managed by the 
Third Space Launch Squadron (3SLS). 
Starting from the physical process and working up the levels of control, an analysis based 

on a systems-theoretic accident model examines each level for the flaws in the process at that 
level that provided inadequate control of safety in the process level below. The process flaws 

Some details of the control structure may be incorrect because they were not detailed in the report, but the 
structure is close enough for the purpose of this paper. 
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at each level are then examined and explained in terms of a potential mismatch between the 
controller’s model of the process and the actual state of the process, incorrect design of the 
control algorithm, lack of coordination among the control activities, deficiencies in the reference 
channel, and deficiencies in the feedback or monitoring channel. When human decision-making 
is involved, the analysis results must also include information about the context in which the 
decision(s) was made and the information available and not available at the time the decision(s) 
was made. A detailed example follows. 

2.1 The Physical Process (Titan/Centaur/Milstar) 

Components of the Physical Process: The Lockheed Martin Astronautics (LMA) Titan 
IV B is a heavy-lift space launch vehicle used to carry government payloads such as Defense 
Support Program, Milstar, and National Reconnaissance Office satellites into space. It can carry 
up to 47,800 pounds into low-earth orbit and up to 12,700 pounds into a geosynchronous orbit. 
The vehicle can be launched with no upper stage or with one of two optional upper stages, 
providing greater and varied capability. 
The LMA Centaur is a cryogenic, high-energy upper stage. It carries its own guidance, navi-

gation, and control system, which measures the Centaur’s position and velocity on a continuing 
basis throughout flight. It also determines the desired orientation of the vehicle in terms of 
pitch, yaw, and roll axis vectors. It then issues commands to the required control components 
to orient the vehicle in the proper attitude and position, using the main engine or the Reaction 
Control System (RCS) engines (Figure 6). The main engines are used to control thrust and 
velocity. The RCS provides thrust for vehicle pitch, yaw, and roll control, for post-injection 
separation and orientation maneuvers, and for propellant settling prior to engine restart. 

System Hazards Involved: (1) The satellite does not reach a useful geosynchronous orbit; 
(2) the satellite is damaged during orbit insertion maneuvers and cannot provide its intended 
function. 

Description of Process Controller (INU): The Inertial Navigation Unit (INU) has two 
parts (Figure 6): (1) the Guidance, Navigation, and Control System (the Flight Control Software 
or FCS) and (2) an Inertial Measurement System (IMS). The Flight Control Software computes 
the desired orientation of the vehicle in terms of the pitch, yaw, and roll axis vectors and issues 
commands to the main engines and the reaction control system to control vehicle orientation 
and thrust. To accomplish this goal, the FCS uses position and velocity information provided 
by the IMS. The component of the IMS involved in the loss is a roll rate filter, which is designed 
to prevent the Centaur from responding to the effects of Milstar fuel sloshing and thus inducing 
roll rate errors. 

Safety Constraint on FCS: The FCS must provide the attitude control, separation, and 
orientation maneuvering commands to the main engines and the RCS system necessary to attain 
geosynchronous orbit. 

Safety Constraint on IMS: The position and velocity values provided to the FCS must not 
be capable of leading to a hazardous control action. The roll rate filter must prevent the Centaur 
from responding to the effects of fuel sloshing and inducing roll rate errors. 

16 



INU (Inertial Navigation Unit) 

Main Engine 

Inertial Measurement System (IMS) 

pitch, roll, and yaw control; for 
post-injection separation and 
orientation maneuvering; and for 
propellant settling prior to engine 

RCS Engines 

Flight Control Software (FCS) 

Position, 
Velocity 

Computes spacecraft position and velocity 

sloshing and inducing roll rate errors.) 

from responding to the effects of Milstar fuel 

(Roll Rate Filter: designed to prevent Centaur 

The RCS provides thrust for vehicle 

restart. 

Guidance, Navigation, and Control System: 

in terms of pitch, yaw, and roll axis vectors 

Computes desired orientation of vehicle 

Figure 6: Technical Process Control Structure for INU 

2.2 Description of the Proximal Events Leading to the Loss 

There were three planned burns during the Centaur flight. The first burn was intended to put 
the Centaur into a parking orbit. The second would move the Centaur into an elliptical transfer 
orbit that was to carry the Centaur and the satellite to geosynchronous orbit. The third and 
final burn would circularize the Centaur in its intended geosynchronous orbit. A coast phase 
was planned between each burn. During the coast phase, the Centaur was to progress under 
its own momentum to the proper point in the orbit for the next burn. The Centaur would also 
exercise a roll sequence and an attitude control maneuver during the coast periods to provide 
passive thermal control and to settle the main engine propellants in the bottom of the tanks. 

First Burn: The first burn was intended to put the Centaur into a parking orbit. The 
Inertial Measurement System (IMS) transmitted a zero or near zero roll rate to the Flight 
Control Software (FCS), however, due to the use of an incorrect roll rate filter constant. With 
no roll rate feedback, the FCS provided inappropriate control commands that caused the Centaur 
to become unstable about the roll axis and not to roll to the desired first burn orientation. The 
Centaur began to roll back and forth, eventually creating sloshing of the vehicle liquid fuel in 
the tanks, which created unpredictable forces on the vehicle and adversely affected flow of fuel 
to the engines. By the end of the first burn (approximately 11 minutes and 35 seconds after 
liftoff ), the roll oscillation began to affect the pitch and yaw rates of the vehicle as well. The 
FCS predicted an incorrect time for main engine shutdown due to the effect on the acceleration 
of the vehicle’s tumbling and fuel sloshing. The incorrect shutdown in turn resulted in the 
Centaur not achieving its intended velocity during the first burn, and the vehicle was placed in 
an unintended park orbit. 

First Coast Phase: During the coast phases, the Centaur was to progress under its own 
momentum to the proper point in the orbit for the next burn. During this coasting period, the 
FCS was supposed to command a roll sequence and an attitude control maneuver to provide 
passive thermal control and to settle the main engine propellants in the bottom of the tanks. 

17




Intended Orbit 
22,300 miles Achieved Orbit 

549 x 3347 miles 

Earth 

Figure 7: Achieved Orbit vs. Intended Orbit 

Because of the roll instability and transients created by the engine shutdown, the Centaur 
entered this first coast phase tumbling. The FCS directed the RCS to stabilize the vehicle. Late 
in the park orbit, the Centaur was finally stablized about the pitch and yaw axes, although it 
continued to oscillate about the roll axis. In stabilizing the vehicle, however, the RCS expended 
almost 85 percent of the RCS system propellant (hydrazine). 

Second Burn: The FCS successfully commanded the vehicle into the proper attitude for the 
second burn, which was to put the Centaur and the satellite into an elliptical transfer orbit that 
would carry them to geosynchronous orbit. The FCS ignited the main engines at approximately 
one hour, six minutes, and twenty-eight seconds after liftoff. Soon after entering the second burn 
phase, however, inadequate FCS control commands caused the vehicle to again become unstable 
about the roll axis and begin a diverging roll oscillation. 
Because the second burn is longer than the first, the excess roll commands from the FCS 

eventually saturated the pitch and yaw channels. At approximately two minutes into the second 
burn, pitch and yaw control was lost (as well as roll), causing the vehicle to tumble for the 
remainder of the burn. Due to its uncontrolled tumbling during the burn, the vehicle did not 
achieve the planned acceleration for transfer orbit. 

Second Coast Phase (transfer orbit): The RCS attempted to stabilize the vehicle but it 
continued to tumble. The RCS depleted its remaining propellant approximately twelve minutes 
after the FCS shut down the second burn. 

Third Burn: The goal of the third burn was to circularize the Centaur in its intended geosyn-
chronous orbit. The FCS started the third burn at two hours, thirty-four minutes, and fifteen 
seconds after liftoff. It was started earlier and was shorter than had been planned. The vehicle 
tumbled throughout the third burn, but without the RCS there was no way to control it. Space 
vehicle separation was commanded at approximately two hours after the third burn began, re-
sulting in the Milstar being placed in a useless low elliptical orbit, as opposed to the desired 
geosynchronous orbit (Figure 7). 

Post Separation: The Mission Director ordered early turn-on of the satellite in an attempt to 
save it, but the ground controllers were unable to contact the satellite for approximately three 
hours. Six hours and fourteen minutes after liftoff, control was acquired and various survival 
and emergency actions were taken. The satellite had been damaged from the uncontrolled 
vehicle pitch, yaw, and roll movements, however, and there were no possible actions the ground 
controllers could have taken in response to the anomalous events that would have saved the 
mission. 
The mission was officially declared a failure on May 4, 1999, but personnel from LMA and 

the Air Force controlled the satellite for six additional days in order to place the satellite in 
a non-interfering orbit with minimum risk to operational satellites. It appears the satellite 
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Figure 8: Control Flaws at the Physical Process and Software Controller Levels 

performed as designed, despite the anomalous conditions. It was shut down by ground control 
on May 10, 1999. 

2.3	 Physical Process and Automated Controller Failures and Dysfunctional 
Interactions 

Figure 8 shows the automated controller flaws leading to the accident. The Inertial Measurement 
System software used an incorrect model of the process (an incorrect roll rate filter constant in 
the IMS software file) that led to a dysfunctional interaction with the flight control software. 
However, the algorithm operated as designed (i.e., it did not fail). 
The Flight Control Software operated correctly (i.e., according to its requirements). However, 

it received incorrect input from the IMS, leading to an incorrect internal FCS software model of 
the process—the roll rate was thought to be zero or near zero when it was not. Thus there was a 
mismatch between the FCS internal model of the process state and the real process state. This 
mismatch led to the RCS issuing incorrect control commands to the main engine (to shut down 
early) and to the RCS engines. Using STAMP terminology, the loss resulted from a dysfunctional 
interaction between the FCS and the IMS. Neither failed—they operated correctly with respect 
to the instructions (including constants) and data provided. 
The accident report does not explore whether the FCS software could have included sanity 

checks on the roll rate or vehicle behavior to detect that incorrect roll rates were being provided 
by the IMS or checks to determine whether inputs to the FCS software were potentially desta-
bilizing. Even if the FCS did detect it was getting anomalous roll rates, there may not have 
been any recovery or fail-safe behavior that could have been designed into the system. Without 
more information about the Centaur control requirements and design, it is not possible to spec-
ulate about whether the Inertial Navigation Unit software (the IMS and FCS) might have been 
designed to be fault tolerant with respect to filter constant errors. 
This level of explanation of the flaws in the process (the vehicle and its flight behavior) as 

well as its immediate controller provides a description of the “symptom,” but does not provide 
enough information about the factors involved to prevent reoccurrences. Simply fixing that 
particular flight tape is not enough. We need to look at the higher levels of the control structure 
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for that. Figures 9 and 10 summarize the information in the rest of this paper. 

2.4 Launch Site Operations 

The function of launch site operations is to monitor launch pad behavior and tests and to detect 
any critical anomalies prior to flight. Why was the roll rate error not detected during launch 
operations? 

Safety Constraint Violated: Critical variables (including those in software) must be moni-
tored and errors detected before launch. Potentially hazardous anomalies detected at the launch 
site must be formally logged and thoroughly investigated and handled. 

Context: Management had greatly reduced the number of engineers working launch opera-
tions, and those remaining were provided with few guidelines as to how they should perform 
their job. The accident report says that their tasks were not defined by their management so 
they used their best engineering judgment to determine which tasks they should perform, which 
variables they should monitor, and how closely to analyze the data associated with each of their 
monitoring tasks. 

Safety Controls: The controls are not described well in the report. From what is included, 
it does not appear that controls were implemented to monitor or detect software errors at the 
launch site although a large number of vehicle variables were monitored. 

Roles and Responsibilities: The report is also not explicit about the roles and responsi-
bilities of those involved. LMA had launch personnel at CCAS, including Product Integrity 
Engineers (PIEs). 3SLS had launch personnel to control the launch process as well as software 
to check process variables and to assist the operators in evaluating observed data. 

Failures, Dysfunctional Interactions, Flawed Decisions, and Inadequate Control Ac­
tions: Despite clear indications of a problem with the roll rate information being produced 
by the IMS, it was not detected by some launch personnel who should have and detected but 
mishandled by others. Specifically: 

1. One week before launch, LMA personnel at CCAS observed much lower roll rate filter 
values than they expected. When they could not explain the differences at their level, 
they raised their concerns to Denver LMA Guidance Product Integrity Engineers (PIEs), 
who were now at CCAS. The on-site PIEs could not explain the differences either, so 
they directed the CCAS personnel to call the control dynamics (CD) design engineers in 
Denver. On Friday, April 23, the LMA Guidance Engineer telephoned the LMA CD lead. 
The CD lead was not in his office so the Guidance Engineer left a voice mail stating she 
noticed a significant change in roll rate when the latest filter rate coefficients were entered. 
She requested a return call to her or to her supervisor. The Guidance Engineer also left an 
email for her supervisor at CCAS explaining the situation. Her supervisor was on vacation 
and was due back at the office Monday morning April 26, when the Guidance Engineer 
was scheduled to work the second shift. The CD lead and the CD engineer who originally 
specified the filter values listened to the voice mail from the Guidance Engineer. They 
called her supervisor at CCAS who had just returned from vacation. He was initially 
unable to find the email during their conversation. He said he would call back, so the 
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CD engineer left the CD lead’s office. The CD lead subsequently talked to the Guidance 
Engineer’s supervisor after he found and read the email. The CD lead told the supervisor 
at CCAS that the filter values had changed in the flight tape originally loaded on April 14, 
1999, and the roll rate output should also be expected to change. Both parties believed the 
difference in roll rates observed were attributable to expected changes with the delivery of 
the flight tape. 

2. On the day of the launch, a 3SLS INU Product Integrity Engineer (PIE) at CCAS noticed 
the low roll rates and performed a rate check to see if the gyros were operating properly. 
Unfortunately, the programmed rate check used a default set of I1 constants to filter 
the measured rate and consequently reported that the gyros were sensing the earth rate 
correctly. If the sensed attitude rates had been monitored at that time or if they had been 
summed and plotted to ensure they were properly sensing the earth’s gravitational rate, 
the roll rate problem could have been identified. 

3. A 3SLS engineer also saw the roll rate data at the time of tower rollback, but was not 
able to identify the problem with the low roll rate. He had no documented requirement or 
procedures to review the data and no reference to compare to the roll rate actually being 
produced. 

The communication channel between LMA Denver and the LMA engineers at CCAS was 
clearly flawed. There is no information about any established reporting channel from the LMA 
CCAS or LMA Denver engineers to a safety organization or up the management chain. No 
“alarm” system adequate to detect the problem or that it was not being adequately handled 
seems to have existed. The report says there was confusion and uncertainty from the time the 
roll rate anomaly was first raised by the CCAS LMA engineer in email and voice mail until it was 
“resolved” as to how it should be be reported, analyzed, documented, and tracked since it was 
a “concern” and not a “deviation.” There is no explanation of these terms nor any description 
of a formal problem reporting and handling system in the accident report. 

Inadequate Control Algorithm: The accident report says that at this point in the prelaunch 
process, there was no process to monitor or plot attitude rate data, that is, to perform a check to 
see if the attitude filters were properly sensing the earth’s rotation rate. Nobody was responsible 
for checking the load tape constants once the tape was installed in the INU at the launch site. 
Therefore, nobody was able to question the anomalous rate data recorded or correlate it to the 
low roll rates observed about a week prior to launch and on the day of launch. In addition, the 
LMA engineers at Denver never asked to see a hard copy of the actual data observed at CCAS, 
nor did they talk to the guidance engineer or Data Station Monitor at CCAS who questioned the 
low filter rates. They simply explained it away as attributable to expected changes associated 
with the delivery of the flight tape. 

Process Model Flaws: Five models are involved here (see Figure 11): 

1. Ground rate check software: The software used to do a rate check on the day of launch 
used default constants instead of the actual load tape. Thus there was a mismatch between 
the model used in the rate checking software and the model used by the IMS software. 

2. Ground crew models of the development process: Although the report does not delve into 
this factor, it is very possible that complacency may have been involved and that the model 
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Figure 11: The Flawed Process Models used by the Ground Personnel and Software 

of the thoroughness of the internal quality assurance and external IV&V development 
process in the minds of the ground operations personnel as well as the LMA guidance 
engineers who were informed of the observed anomalies right before launch did not match 
the real development process. There seemed to be no checking of the correctness of the 
software after the standard testing during development. Hardware failures are usually 
checked up to launch time, but often testing is assumed to have removed all software 
errors and therefore further checks are not needed. 

3. Ground crew models of the IMS software design: The ground launch crew had an inad-
equate understanding of how the roll rate filters worked. No one other than the control 
dynamics engineers who designed the I1 roll rate constants understood their use or the 
impact of filtering the roll rate to zero. So when discrepancies were found before launch, 
nobody at the launch site understood the I1 roll rate filter design well enough to detect 
the error. 

4. Ground crew models of the rate check software: Apparently, the ground crew was unaware 
that the checking software used default values for the filter constants. 

5. CD engineers’ model of the flight tape change: The control dynamics lead engineer at the 
launch site and her supervisor at LMA Denver thought that the roll rate anomalies were 
due to known changes in the flight tape. Neither went back to the engineers themselves to 
check this conclusion with those most expert in the details of the Centaur control dynamics. 

Coordination: Despite several different groups being active at the launch site, nobody had 
been assigned responsibility for monitoring the software behavior after it was loaded into the 
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INU. The accident report does not mention coordination problems, although it does say there 
was a lack of understanding of each other’s responsibilities between the LMA launch personnel 
(at CCAS) and the development personnel at LMA Denver and that this led to the concerns of 
the LMA personnel at CCAS not being adequately addressed. 
A more general question that might have been investigated was whether the failure to act 

properly after detecting the roll rate problem involved a lack of coordination and communication 
problems between LMA engineers at CCAS and 3SLS personnel. Why did several people notice 
the problem with the roll rate but do nothing and why were the anomalies they noticed not 
effectively communicated to those who could do something about it? Several types of coordina-
tion problems might have existed. For example, there might have been an overlap problem, with 
each person who saw the problem assuming that someone else was handling it or the problem 
might have occurred at the boundary between several people’s responsibilities. 

Feedback: There was a missing or inadequate feedback channel from the launch personnel to 
the development organization. 
Tests right before launch detected the zero roll rate, but there was no formal communication 

channel established for getting that information to those who could understand it. Instead voice 
mail and email were used. The report is not clear, but either there was no formal anomaly 
reporting and tracking system or it was not known or used by the process participants.4 

The LMA (Denver) engineers requested no hardcopy information about the reported anomaly 
and did not speak directly with the Guidance engineer or Data Station Monitor at CCAS. 

2.5	 Air Force Launch Operations Management: Third Space Launch Squadron 
(3SLS) 

Safety Constraint: Processes must be established for detecting and handling potentially 
hazardous conditions and behavior detected during launch preparations. 

Context: 3SLS management was transitioning from an oversight role to an insight one without 
a clear definition of what such a transition might mean or require. 

Control Algorithm Flaws: After the ground launch personnel cutbacks, 3SLS management 
did not create a master surveillance plan to define the tasks of the remaining personnel (the 
formal insight plan was still in draft). In particular, there were no formal processes established 
to check the validity of the I1 filter constants or to monitor attitude rates once the flight tape 
was loaded into the INU at Cape Canaveral Air Station (CCAS) prior to launch. 3SLS launch 
personnel were provided with no documented requirement nor procedures to review the data 
and no references with which to compare the observed data in order to detect anomalies. 

Process Model: It is possible that misunderstandings (an incorrect model) about the thor-
oughness of the development process led to a failure to provide requirements and processes 
for performing software checks at the launch site. Complacency may also have been involved, 
i.e., the common assumption that software does not fail and that software testing is exhaustive 
and therefore additional software checking was not needed. However, this is speculation as the 

4Several recent aerospace accidents have involved the bypassing of formal anomaly reporting channels and the 
substitution of informal email and other communication—with similar results [14]. 
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report does not explain why management did not provide documented requirements and proce-
dures to review the launch data nor ensure the availability of references for comparison so that 
discrepancies could be discovered. 

Coordination: The lack of oversight led to a process that did not assign anyone the respon-
sibility for some specific launch site tasks. 

Feedback or Monitoring Channel: Apparently, launch operations management had no 
“insight” plan in place to monitor the performance of the launch operations process. There is 
no information included in the accident report about the process to monitor the performance of 
the launch operations process or what type of feedback was used (if any) to provide insight into 
the process. 

2.6 Software/System Development of the Centaur Flight Control System 

Too often, accident investigators stop at this point after identifying operational or sometimes 
maintenance errors that, if they had not occurred, might have prevented the loss [15]. Occasion-
ally operations management is faulted. System design errors are much less likely to be identified. 
As an example, in the crash of an American Airlines DC-10 at Chicago’s O’Hare Airport in 1979, 
the U.S. National Transportation Safety Board blamed only a “maintenance-induced crack” and 
not also a design error that allowed the slats to retract if the wing was punctured. Because of 
this omission, McDonnell Douglas was not required the change the design, leading to future 
accidents related to the same design error [21]. More recently, all of the Airbus A-320 accidents 
have been blamed on pilot error. Almost all, however, could equally be attributed to system 
and software design flaws. After the accidents, the software and sometimes the interface was 
modified to reduce the likelihood of the system design contributing to a human error. 
Operator errors provide a convenient place to stop in the backward chain of events from 

the loss event. To their credit, the accident investigation board in the Titan/Milstar loss kept 
digging. To understand why an erroneous flight tape was created in the first place (and to learn 
how to prevent a similar occurrence in the future), the software and system development process 
associated with generating the tape needs to be examined. 

Process Description: The INU consists of two major software components developed by 
different companies: LMA developed the Flight Control System software and was responsible 
for overall INU testing while Honeywell developed the IMS and was partially responsible for its 
software development and testing. The I1 constants are processed by the Honeywell IMS, but 
were designed and tested by LMA. 

Safety Constraint Violated: Safety-critical constants must be identified and their genera-
tion controlled and checked. 

Dysfunctional Interactions, Flawed Decisions, and Inadequate Control Actions: A 
Software Constants and Code Words Memo was generated by the LMA Control Dynamics (CD) 
group and sent to the LMA Centaur Flight Software (FS) group on December 23, 1997. It 
provided the intended and correct values for the first I1 constants in hardcopy form. The memo 
also allocated space for 10 additional constants to be provided by the LMA Avionics group at a 
later time and specified a path and file name for an electronic version of the first 30 constants. 
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The memo did not specify or direct the use of either the hardcopy or the electronic version for 
creating the constants database. 
In early February, 1999, the LMA Centaur FS group responsible for accumulating all the 

software and constants for the flight load tape was given discretion in choosing a baseline data 
file. The flight software engineer who created the database dealt with over 700 flight constants 
generated by multiple sources, in differing formats, and at varying time (some with multiple 
iterations) all of which had to be merged into a single database. Some constant values came 
from electronic files that could be merged into the database, while others came from paper 
memos manually input into the database. 
When the FS engineer tried to access the electronic file specified in the Software Constants 

and Code Words Memo, he found the file no longer existed at the specified location on the 
electronic file folder because it was now over a year after the file had been originally generated. 
The FS engineer selected a different file as a baseline that only required him to change five I1 
values for the digital roll rate filter (an algorithm with five constants). The filter was designed 
to prevent the Centaur from responding to the effects of Milstar fuel sloshing and inducing roll 
rate errors at 4 radians/second. During manual entry of those five I1 roll rate filter values, 
the LMA FS engineer incorrectly entered or missed the exponent for the I1(25) constant. The 
correct value of the I1(25) filter constant was -1.992476. The exponent should have been a one 
but instead was entered as a zero, making the entered constant one tenth of the intended value 
or -0.1992476. The flight software engineer’s immediate supervisor did not check the manually 
entered values. 
The only person who checked the manually input I1 filter rate values, besides the flight 

software engineer who actually input the data, was an LMA Control Dynamics engineer. The 
FS engineer who developed the Flight Load tape notified the CD engineer responsible for design 
of the first thirty I1 constants that the tape was completed and the printout of the constants was 
ready for inspection. The CD engineer went to the FS offices and looked at the hardcopy listing 
to perform the check and sign off the I1 constants. The manual and visual check consisted of 
comparing a list of I1 constants from Appendix C of the Software Constants and Code Words 
Memo to the paper printout from the Flight Load tape. The formats of the floating-point 
numbers (the decimal and exponent formats) were different on each of these paper documents 
for the three values cross-checked for each I1 constant. The CD engineer did not spot the 
exponent error for I1(25) and signed off that the I1 constants on the Flight Load tape were 
correct. He did not know that the design values had been inserted manually into the database 
used to build the flight tapes (remember, the values had been stored electronically but the 
original database no longer existed) and that they were never formally tested in any simulation 
prior to launch. 
The CD engineer’s immediate supervisor, the lead for the CD section, did not review the 

Signoff Report nor catch the error. Once the incorrect filter constant went undetected in the 
Signoff Report, there were no other formal checks in the process to ensure the I1 filter rate values 
used in flight matched the designed filter. 

Control Algorithm Flaws: 

•	 A process input was missing (the electronic file specified in the Software Constants and 
Code Words memo), so an engineer regenerated it, making a mistake in doing so. 

•	 Inadequate control was exercised over the constants process. No specified or documented 
software process existed for electronically merging all the inputs into a single file. There 
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was also no formal, documented process to check or verify the work of the flight software 
engineer in creating the file. Procedures for creating and updating the database were left 
up to the flight software engineer’s discretion. 

•	 Once the incorrect filter constant went undetected in the Signoff Report, there were no 
other formal checks in the process to ensure the I1 filter rate values used in flight matched 
the designed filter. 

•	 The hazard analysis process was inadequate, and no control was exercised over the potential 
hazard of manually entering incorrect constants, a very common human error. If system 
safety engineers had identified the constants as critical, then a process would have existed 
for monitoring the generation of these critical variables. In fact, neither the existence of 
a system safety program nor any form of hazard analysis are mentioned in the accident 
report. If such a program had existed, one would think it would be mentioned. 

The report does say that Quality Assurance engineers performed a risk analysis, but they 
considered only those problems that had happened before: 

Their risk analysis was not based on determining steps critical to mission suc-
cess, but on how often problems previously surfaced in particular areas on past 
launches. They determined software constant generation was low risk because 
there had not been previous problems in that area. They only verified that the 
signoff report containing the constants had all the proper signatures[20]. 

Process Model Flaws: The accident report suggests that many of the various partners were 
confused about what the other groups were doing. The LMA software personnel who were re-
sponsible for creating the database (from which the flight tapes are generated) were not aware 
that IV&V testing did not use the as-flown (manually input) I1 filter constants in their verifi-
cation and validation process. The LMA Control Dynamics engineer who designed the I1 rate 
filter also did not know that the design values were manually input into the database used to 
build the flight tapes and that the values were never formally tested in any simulation prior to 
launch. 
While the failure of the LMA CD engineer who designed the I1 rate filter to find the error 

during his visual check was clearly related to the difficulty of checking long lists of differently 
formatted numbers, it also may have been partly due to less care being taken in the process due 
to an incorrect mental model, i.e., (1) he did not know the values were manually entered into 
the database (and were not from the electronic file he had created), (2) he did not know the 
load tape was never formally tested in any simulation prior to launch, and (3) he was unaware 
the load tape constants were not used in the IV&V process. 

Coordination: The fragmentation/stovepiping in the flight software development process, 
coupled with the lack of comprehensive and defined system and safety engineering processes, 
resulted in poor and inadequate communication and coordination among the many partners and 
subprocesses. 
Because the IMS software was developed by Honeywell, most everyone (LMA control dynam-

ics engineers, flight software engineers, product integrity engineers, SQA, IV&V, and DCMC 
personnel) focused on the FCS and had little knowledge of the IMS software. 
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2.7 Quality Assurance (QA) 

Safety Constraint: QA must monitor the quality of all safety-critical processes. 

Process Flaw: The internal LMA quality assurance processes did not detect the error in the 
role rate filter constant software file. 

Control Algorithm Flaws: QA verified only that the signoff report containing the load 
tape constants had all the proper signatures, an obviously inadequate process. This accident 
is indicative of the problems with QA as generally practiced and why it is often ineffective. 
The LMA Quality Assurance Plan used was a top-level document that focused on verification of 
process completion, not on how the processes were executed or implemented. It was based on the 
original General Dynamics Quality Assurance Plan with recent updates to ensure compliance 
with ISO 9001. According to this plan, the LMA Software Quality Assurance staff was required 
only to verify that the signoff report containing the constants had all the proper signatures; 
they left the I1 constant generation and validation process to the flight software and control 
dynamics engineers. Software Quality Assurance involvement was limited to verification of 
software checksums and placing quality assurance stamps on the software products that were 
produced. 

2.8 Developer Testing Process 

Once the error was introduced into the load tape, it could potentially have been detected dur-
ing verification and validation. Why did the very comprehensive and thorough developer and 
independent verification and validation process miss this error? 

Safety Constraint Violated: Testing must be performed on the as-flown software (including 
load tape constants). 

Flaws in the Testing Process: The INU (FCS and IMS) was never tested using the actual 
constants on the load tape: 

•	 Honeywell wrote and tested the IMS software, but they did not have the actual load tape. 

•	 The LMA Flight Analogous Simulation Test (FAST) lab was responsible for system test, 
i.e., they tested the compatibility and functionality of the flight control software and the 
Honeywell IMS. But the FAST lab testing used a 300 Hertz filter simulation data file for 
IMS filters and not the flight tape values. The simulation data file was built from the 
original, correctly specified values of the designed constants (specified by the LMA CS 
engineer), not those entered by the software personnel in the generation of the flight load 
tape. Thus the mix of actual flight software and simulated filters used in the FAST testing 
did not contain the I1(25) error, and the error could not be detected by the internal LMA 
testing. 

Process Model Mismatch: The testing capability that the current personnel thought the 
lab had did not match the real capability. The LMA FAST facility was used predominantly to 
test flight control software developed by LMA. The lab had been originally constructed with 
the capability to exercise the actual flight values for the I1 roll rate filter constants, but that 
capability was not widely known by the current FAST software engineers until after this accident; 
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knowledge of the capability had been lost in the corporate consolidation/evolution process so the 
current software engineers used a set of default roll rate filter constants. Later it was determined 
that had they used the actual flight values in their simulations prior to launch, they would have 
caught the error. 

2.9 Independent Verification and Validation (IV&V) 

Safety Constraint Violated: IV&V must be performed on the as-flown software and con-
stants. All safety-critical data and software must be included in the IV&V process. 

Dysfunctional Interactions: Each component of the IV&V process performed its function 
correctly, but the overall design of the process was flawed. In fact, it was designed in such a way 
that it was not capable of detecting the error in the role rate filter constant. 
Analex was responsible for the overall IV&V effort of the flight software. In addition to 

designing the IV&V process, Analex-Denver performed the IV&V of the flight software to ensure 
the autopilot design was properly implemented in the software while Analex-Cleveland verified 
the design of the autopilot but not its implementation. The “truth baseline” provided by LMA, 
per agreement between LMA and Analex, was generated from the constants verified in the 
Signoff Report. 
In testing the flight software implementation, Analex-Denver used IMS default values instead 

of the actual I1 constants contained on the flight tape. Generic or default I1 constants were 
used because they believed the actual I1 constants could not be adequately validated in their 
rigid body simulations, i.e., the rigid body simulation of the vehicle would not exercise the filters 
sufficiently5 . They found out after the mission failure that had they used the actual I1 constants 
in their simulation, they would have found the order of magnitude error. 
Analex-Denver also performed a range check of the program constants and the Class I flight 

constants and verified that format conversions were done correctly. However the process did not 
require Analex-Denver to check the accuracy of the numbers in the truth baseline, only to do 
a range check and a bit-to-bit comparison against the firing tables, which contained the wrong 
constant. Thus the format conversions they performed simply compared the incorrect I1(25) 
value in the firing tables to the incorrect I1(25) value after the conversion, and they matched. 
They did not verify that the designed I1 filter constants were the ones actually used on the flight 
tape. 
Analex-Cleveland had responsibility for verifying the functionality of the design constant 

but not the actual constant loaded into the Centaur for flight. That is, they were validating 
the design only and not the “implementation” of the design. Analex-Cleveland received the 
Flight Dynamics and Control Analysis Report (FDACAR) containing the correct value for the 
roll filter constant. Their function was to validate the autopilot design values provided in the 
FDACAR. That does not include IV&V of the I1 constants in the flight format. The original 
design work was correctly represented by the constants in the FDACAR. In other words, the 
filter constant in question was listed in the FDACAR with its correct value of -1.992476, and 
not the value on the flight tape (-0.1992476). 

Control Algorithm Flaws: Analex developed (with LMA and government approval) an 
IV&V program that did not verify or validate the I1 filter rate constants actually used in flight. 

5Note that almost identical words were used in the Ariane 501 accident report [17]. 
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The I1 constants file was not sent to Analex-Cleveland for autopilot validation because Analex-
Cleveland only performed design validation. Analex-Denver used default values for testing and 
never validated the actual I1 constants used in flight. 

Process Model Mismatches: The decision to use default values for testing (both by LMA 
FAST lab and by Analex-Denver) was based on a misunderstanding about the development 
and test environment and what was capable of being tested. Both the LMA FAST lab and 
Analex-Denver could have used the real load tape values, but did not think they could. 
In addition, Analex-Denver, in designing the IV&V process, did not understand the genera-

tion or internal verification process for all the constants in the “truth baseline” provided to them 
by LMA. The Analex-Denver engineers were not aware that the I1 filter rate values provided 
originated from a manual input and might not be the same as those subjected to independent 
V&V by Analex-Cleveland. 
None of the participants was aware that nobody was testing the software with the actual 

load tape values nor that the default values they used did not match the real values. 

Coordination: This was a classic case of coordination problems. Responsibility was diffused 
among the various partners, without complete coverage. In the end, nobody tested the load 
tape—everyone thought someone else was doing it. 

2.10 Systems Engineering 

System engineering at LMA was responsible for the identification and allocation of the func-
tionality to be included in the system. In fact, the software filter involved in the loss was 
not needed and should have been left out instead of being retained, yet another example of 
asynchronous evolution. Why was that decision made? The filter was designed to prevent the 
Centaur from responding to the effects of Milstar fuel sloshing and inducing roll rate errors at 4 
radians/second. Early in the design phase of the first Milstar satellite, the manufacturer asked 
to filter that frequency. The satellite manufacturer subsequently determined filtering was not 
required at that frequency and informed LMA. However, LMA decided to leave the filter in place 
for the first and subsequent Milstar flights for consistency. 6 No further explanation is included 
in the report. 

2.11 LMA Project Management (as Prime Contractor) 

Safety Constraint: Effective software development processes must be established and moni-
tored. System safety processes must be created to identify and manage system hazards. 

Context: The Centaur software process was developed early in the Titan/Centaur program: 
Many of the individuals who designed the original process were no longer involved in it due to 
corporate mergers and restructuring (e.g., Lockheed, Martin Marietta, General Dynamics) and 
the maturation and completion of the Titan IV design and development. Much of the system 
and process history and design rationale was lost with their departure. 

6This factor is similar to the Ariane 501 loss, where unnecessary software code was left in for “consistency” 
[17]. 

31 



Control Algorithm Flaws: 

•	 A flawed software development process was designed. For example, no process was provided 
for creating and validating the flight constants. 

•	 LMA, as prime contractor, did not exert adequate control over the development process. 
The Accident Investigation Board could not identify a single process owner responsible for 
understanding, designing, documenting, or controlling configuration and ensuring proper 
execution of the process. 

•	 An effective system safety program was not created. 

•	 An inadequate IV&V program (designed by Analex-Denver) was approved and instituted 
that did not verify or validate the I1 filter rate constants used in flight. 

Mental Model Flaws: Nobody seemed to understand the overall software development pro-
cess and apparently all had a misunderstanding about the coverage of the testing process. 

2.12	 Defense Contract Management Command (DCMC) 

Control Inadequacies: The report is vague about the role of DCMC, saying only that it was 
responsible for contract administration, software surveillance, and overseeing the development 
process. It does say that DCMC approved an IV&V process with incomplete coverage and that 
there was a software quality assurance function operating at DCMC, but it operated without a 
detailed understanding of the overall process or program and therefore was ineffective. 

Coordination: No information was provided in the accident report although coordination 
problems between SMC and DCMA may have been involved. Were each assuming the other was 
monitoring the overall process? What role did Aerospace Corporation play? Were there gaps 
in the responsibilities assigned to each of the many groups providing oversight here? How did 
the overlapping responsibilities fit together? What kind of feedback did DCMC use to perform 
their process monitoring? 

2.13	 Air Force (Program Office): Space and Missile Systems Center Launch 
Directorate (SMC) 

Safety Constraint: SMC must ensure that the prime contractors creates an effective devel-
opment and safety assurance program. 

Context: Like 3SLS, the Air Force Space and Missile System Center Launch Directorate was 
transitioning from a task oversight to a process insight role and had, at the same time, undergone 
personnel reductions. 

Control Algorithm Flaws: 

•	 The SMC Launch Programs Directorate essentially had no personnel assigned to monitor 
or provide insight into the generation and verification of the software development process. 
The Program Office did have support from Aerospace to monitor the software development 
and test process, but that support had been cut by over 50 percent since 1994. The 
Titan Program Office had no permanently assigned civil service or military personnel nor 

32




full-time support to work the Titan/Centaur software. They decided that because the 
Titan/Centaur software was “mature, stable, and had not experienced problems in the 
past” they could best use their resources to address hardware issues. 

•	 The transition from oversight to insight was not managed by a detailed plan. AF re-
sponsibilities under the insight concept had not been well defined, and requirements to 
perform those responsibilities had not been communicated to the workforce. In addition, 
implementation of the transition from an oversight role to an insight role was negatively 
affected by the lack of documentation and understanding of the software development and 
testing process. Similar flawed transitions to an “insight” role are a common factor in 
many recent aerospace accidents. 

•	 The Titan Program Office did not impose any standards (e.g., Mil-Std-882) or process 
for safety. While one could argue about what particular safety standards and program 
could or should be imposed, it is clear from the complete lack of such a program that no 
guidance was provided. Effective control of safety requires that responsibility for safety be 
assigned at each level of the control structure. Eliminating this control leads to accidents. 
The report does not say whether responsibility for controlling safety was retained at the 
program office or whether it had been delegated to the prime contractor. But even if it had 
been delegated to LMA, the program office must provide overall leadership and monitoring 
of the effectiveness of the efforts. Clearly there was an inadequate safety program in this 
development and deployment project. Responsibility for detecting this omission lies with 
the program office. 

2.14 Summary 

Understanding why this accident occurred and making the changes necessary to prevent future 
accidents requires more than simply identifying the proximate cause—a human error in tran-
scribing long strings of digits. This type of error is well known and there should have been 
controls established throughout the process to detect and fix it, including identifying the roll 
rate filter data as critical through a hazard analysis process. Either these controls were missing 
in the development and operations processes or they were inadequately designed and executed. 
Even though this accident report was unusual in its depth of analysis of the causal factors, the 

STAMP analysis identified several additional questions that might have been asked to provide 
additional insight into how such accidents might be avoided in the future, particularly at the 
higher levels of the development and operations control structures. Identification of coordination 
problems was a common and important omission; for example, were the various process auditors 
(DCMC, Aerospace Corporation, QA, etc.) all assuming that someone else was monitoring the 
process? 
The result of a STAMP accident analysis is an understanding of the role each component 

played in the accident process. This information (summarized in Figures 9 and 10) provides 
guidance in creating recommendations for preventing future accidents. In the case of this ac-
cident, better development and verification, system safety engineering, management, and over-
sight processes are needed. For example, looking at the Prime Contractor, recommendations 
for redesign of the IV&V process, better specified processes for load tape creation, design of a 
comprehensive system safety program that identifies hazards and critical data and then insti-
tutes special controls for them, and more oversight and monitoring of the software development 
process seem appropriate. Operations management needs to clarify launch personnel roles, to 
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provide tools and information for monitoring software behavior at the launch site, create better 
problem reporting and resolution processes, augment personnel training programs, etc. 
In addition to investigating and analyzing accidents, a systems-theoretic accident model 

can be used to prevent accidents and to accumulate the information necessary to design for 
safety during system design and development. Hazard analysis is essentially the investigation 
of an accident before it occurs. A proactive accident investigation, i.e., hazard analysis, using 
STAMP rather than the traditional analysis techniques based on event-chain models (e.g., fault 
tree analysis, event tree analysis, and failure modes and effects criticality analysis) can provide 
the information necessary to design an integrated socio-technical system, including development 
and operations, to prevent accidents in software-intensive systems [7]. 

Conclusions 

Accident models provide the basis for safety engineering—both in the analysis of accidents 
that have occurred and in the development of techniques to prevent accidents. This paper has 
suggested that dealing with safety in software-intensive systems will require more sophisticated 
accident models than those currently in use, which were developed for electromechanical systems. 
A proposal was made that models based on systems theory would be appropriate. One such 
model was described and illustrated using a software-related accident. Other types of models 
are possible. 
A major difference between a systems-theoretic accident model and a chain-of-events model 

is that the former does not identify a root cause of an accident. Instead, the entire safety control 
structure is examined and the accident process to determine what role each part of the process 
played in the loss. While a possible drawback of the systems-theoretic approach is that it is less 
satisfying in terms of assigning blame, the analysis provides more information in terms of how 
to prevent future accidents. 
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