Intent Specifications: An Approach to Building
Human-Centered Specifications *

Nancy G. Leveson
Dept. of Computer Science and Engineering
University of Washington

Abstract. This paper examines and proposes an ap-
proach to writing software specifications, based on re-
search in systems theory, cognitive psychology, and
human-machine interaction. The goal is to provide spec-
ifications that support human problem solving and the
tasks that humans must perform in software develop-
ment and evolution. A type of specification, called in-
tent specifications, is constructed upon this underlying
foundation.

1 The Problem

Software is a human product and specification languages
are used to help humans perform the various problem-
solving activities involved in requirements analysis, soft-
ware design, review for correctness (verification and val-
idation), debugging, maintenance and evolution, and
reengineering. This paper describes an approach, called
intent specifications, to designing system and software
specifications that potentially enhances human process-
ing and use by grounding specification design on psy-
chological principles of how humans use specifications
to solve problems as well as on basic system engineering
principles. Using such an approach allows us to design
specification languages with some confidence that they
will be usable and effective.

A second goal of intent specifications is to integrate for-
mal and informal aspects of software development and
enhance their interaction. While mathematical tech-
niques are useful in some parts of the development pro-
cess and are crucial in developing software for critical
systems, informal techniques will always be a large part
(if not most) of any complex software development ef-
fort: Our models have limits in that the actual sys-
tem has properties beyond the model, and mathemati-
cal methods cannot handle all aspects of system devel-
opment. To be used widely in industry, our approach to
specification must be driven by the need (1) to system-
atically and realistically balance and integrate math-

*This work was partially supported by NASA Grant NAG-1-
1495 and by NSF Grant CCR-9396181.

ematical and nonmathematical aspects of software de-
velopment and (2) to make the formal parts of the spec-
ification easily readable, understandable, and usable by
everyone involved in the development and maintenance
process.

Specifications should also enhance our ability to engi-
neer for quality and to build evolvable and changable
systems. Essential system-level properties (such as
safety and security) must be built into the design from
the beginning; they cannot be added on or simply mea-
sured afterward. Up-front planning and changes to the
development process are needed to achieve particular
objectives. These changes include using notations and
techniques for reasoning about particular properties,
constructing the system and the software in it to achieve
them, and validating (at each step, starting from the
very beginning of system development) that the evolv-
ing system has the desired qualities. Our specifications
must reflect and support this process. In addition, sys-
tems and software are continually changing and evolv-
ing; they must be designed to be changeable and the
specifications must support evolution without compro-
mising the confidence in the properties that were ini-
tially verified.

Many of the ideas in this paper are derived from at-
tempts by cognitive psychologists, engineers, and hu-
man factors experts to design and specify human-—
machine interfaces. The human-machine interface pro-
vides a representation of the state of the system that the
operator can use to solve problems and perform control,
monitoring, and diagnosis tasks. Just as the control
panel in a plant is the interface between the operator
and the plant, system and software requirements and de-
sign specifications are the interface between the system
designers and builders or builders and maintainers. The
specifications help the designer, builder, tester, debug-
ger, or maintainer understand the system well enough to
create a physical form or to find problems in or change
the physical form.

The paper is divided into two parts. The first part
describes some basic ideas in systems theory and cog-

nitive engineering!. The second part describes a type
of specification method called intent specifications built
upon these basic ideas that is designed to satisfy the
goals listed above, i.e., to enhance human processing
and problem solving, to integrate formal and informal
aspects of software development, and to enhance our
ability to engineer for quality and to build evolvable
and changeable systems.

2 Specifications and Human

Problem Solving

To be useful to and usable by humans to solve prob-
lems, specification language and system design should
be based on an understanding of the problem or task
that the user is solving. The systems we design and
the specifications we use impose demands on humans.
We need to understand those demands and how humans
use specifications to solve problems if we are to design
specifications that reflect reasonable demands and that
assist humans in carrying out their tasks.

Not only does the language in which we specify problems
have an effect on our problem-solving ability, it also
affects the errors we make while solving those problems.
Our specification language design needs to reflect what
is known about human limitations and capabilities.

A problem-solving activity involves achieving a goal by
selecting and using strategies to move from the cur-
rent state to the goal state. Success depends on se-
lecting an effective strategy or set of strategies and
obtaining the information necessary to carry out that
strategy successfully. Specifications used in problem-
solving tasks are constructed to provide assistance in
this process. Cognitive psychology has firmly estab-
lished that the representation of the problem provided
to problem solvers can affect their performance (see Nor-
man [Nor93] for a survey of this research). In fact,
Woods claims that there are no neutral representations
[Wo0095]: The representations available to the problem
solver either degrade or support performance. To pro-
vide assistance for problem solving, then, requires that
we develop a theoretical basis for deciding which rep-
resentations support effective problem-solving strate-
gies. For example, problem-solving performance can be
improved by providing representations that reduce the
problem solver’s memory load [KHS85] and that display

1 Cognitive engineering is a term that has come to denote the
combination of ideas from systems engineering, cognitive psychol-
ogy, and humans factors to cope with the challenges of build-
ing high-tech systems composed of humans and machines. These
challenges have necessitated augmenting traditional human fac-
tors approaches to consider the capabilities and limitations of the
human element in complex systems.

the critical attributes needed to solve the problem in a
perceptually salient way [KS90].

A problem-solving strategy is an abstraction describ-
ing one consistent reasoning approach characterized by
a particular mental representation and interpretation of
observations [RP95]. Examples of strategies are hypoth-
esis and test, pattern recognition, decision tree search,
reasoning by analogy, and topological search.

Some computer science researchers have proposed the-
ories about the mental models and strategies used in
program understanding tasks (examples of such mod-
els are [Bro83, Let86, Pen87, SM79, SE84]). Although
this approach seems useful, it may turn out to be more
difficult than appears on the surface. Each of the
users of a specification may (and probably will) have
different mental models of the system, depending on
such factors as prior experience, the task for which
the model is being used, and their role in the system
[AT90, Dun87, Luc87, Rea90]. The same person may
have multiple mental models of a system, and even hav-
ing two contradictory models of the same system does
not seem to constitute a problem for people [Luc87]

Strategies also seem to be highly variable. A study
that used protocol analysis to determine the trouble-
shooting strategies of professional technicians working
on electronic equipment found that no two sequences
of actions were identical, even though the technicians
were performing the same task every time (i.e., finding
a faulty electronic component) [Ras86]. Not only do
search strategies vary among individuals for the same
problem, but a person may vary his or her strategy
dynamically during a problem-solving activity: Effec-
tive problem solvers change strategies frequently to cir-
cumvent local difficulties encountered along the solution
path and to respond to new information that changes
the objectives and subgoals or the mental workload
needed to achieve a particular subgoal.

It appears, therefore, that to allow for multiple users
and for effective problem solving (including shifting
among strategies), specifications should support all pos-
sible strategies that may be needed for a task to allow
for multiple users of the representation, for shedding
mental workload by shifting strategies during problem
solving, and for different cognitive and problem-solving
styles. We need to design specifications such that users
can easily find or infer the information they need regard-
less of their mental model or preferred problem-solving
strategies. That is, the specification design should be
related to the general tasks users need to perform with
the information but not be limited to specific predefined
ways of carrying out those tasks.

One reason why many software engineering tools and
environments are not readily accepted or easily used is

that they imply a particular mental model and force
potential users to work through problems using only
one or a very limited number of strategies, usually the
strategy or strategies preferred by the designer of the
tool. The goal of specification language design should
be to make it easy for users to extract and focus on
the important information for the specific task at hand
without assuming particular mental models or limiting
the problem-solving strategies employed by the users
of the document. The rest of this paper describes an
approach to achieve this goal.

3 Components of a Specifica-
tion Methodology to Support
Problem-Solving

Underlying any methodology is an assumed process. In
our case, the process must support the basic system
and software engineering tasks. A choice of an under-
lying system engineering process is the first component
of a specification methodology. In addition, cognitive
psychologists suggest that three aspects of interface de-
sign must be addressed if the interface is to serve as
an effective medium: (1) content (what semantic infor-
mation should be contained in the representation given
the goals and tasks of the users, (2) structure (how to
design the representation so that the user can extract
the needed information), and (3) form (the notation or
format of the interface) [VR90]. The next sections ex-
amine each of these four aspects of specification design
in turn.

3.1 Process

Any system specification method should support the
systems engineering process. This process provides a
logical structure for problem solving (see Figure 1).
First a need or problem is specified in terms of objec-
tives that the system must satisfy and criteria that can
be used to rank alternative designs. Then a process
of system synthesis takes place that results in a set of
alternative designs. Each of these alternatives is ana-
lyzed and evaluated in terms of the stated objectives
and design criteria, and one alternative is selected to be
implemented. In practice, the process is highly itera-
tive: The results from later stages are fed back to early
stages to modify objectives, criteria, design alternatives,
and so on.

Design alternatives are generated through a process of
system architecture development and analysis. The sys-
tem engineers break down the system into a set of sub-

Identify objectives and criteria

Generate alternative designs,

identifying subsystem functions
and constraints, major system
interfaces, and subsystem

interface topology

Evaluate alternatives against
objectives and criteria

Select one alternative
for implementation

Figure 1: The basic systems engineering process.

systems, together with the functions and constraints im-
posed upon the individual subsystem designs, the major
system interfaces, and the subsystem interface topology.
These aspects are analyzed with respect to desired sys-
tem performance characteristics and constraints, and
the process is iterated until an acceptable system de-
sign results. The preliminary design at the end of this
process must be described in sufficient detail that sub-
system implementation can proceed independently.

The software requirements and design process are sim-
ply subsets of the larger system engineering process.
System engineering views each system as an integrated
whole even though it is composed of diverse, special-
ized components, which may be physical, logical (soft-
ware), or human. The objective is to design subsystems
that when integrated into the whole provide the most
effective system possible to achieve the overall objec-
tives. The most challenging problems in building com-
plex systems today arise in the interfaces between com-
ponents. One example is the new highly automated
aircraft where most incidents and accidents have been
blamed on human error, but more properly reflect diffi-
culties in the collateral design of the aircraft, the avion-
ics systems, the cockpit displays and controls, and the
demands placed on the pilots.

What types of specifications are needed to support hu-
mans in this system engineering process and to spec-
ify the results? Design decisions at each stage must
be mapped into the goals and constraints they are de-
rived to satisfy, with earlier decisions mapped (traced)
to later stages of the process, resulting in a seamless
(gapless) record of the progression from high-level sys-
tem requirements down to component requirements and

designs. The specifications must also support the vari-
ous types of formal and informal analysis used to decide
between alternative designs and to verify the results of
the design process. Finally, they must assist in the co-
ordinated design of the components and the interfaces
between them.

3.2 Content

The second component of a specification methodology
is the content of the specifications. Determining ap-
propriate content requires considering what the spec-
ifications will be used for, that is, the problems that
humans are trying to solve when they use specifica-
tions. Previously, we looked at a narrow slice of this
problem—what should be contained in blackbox re-
quirements specifications for process control software to
ensure that the resulting implementations are internally
complete [JLHM91, Lev95]. This paper again considers
the question of specification content, but within a larger
context.

This question is critical because cognitive psychologists
have determined that people tend to ignore information
during problem solving that is not represented in the
specification of the problem. In experiments where some
problem solvers were given incomplete representations
while others were not given any representation at all,
those with no representation did better [FSL78, Smi89).
An incomplete problem representation actually impaired
performance because the subjects tended to rely on it
as a comprehensive and truthful representation—they
failed to consider important factors deliberately omitted
from the representations. Thus, being provided with an
incomplete problem representation (specification) can
actually lead to worse performance than having no rep-
resentation at all [VR92].

One possible explanation for these results is that some
problem solvers did worse because they were unaware of
important omitted information. However, both novices
and experts failed to use information left out of the dia-
grams with which they were presented, even though the
experts could be expected to be aware of this informa-
tion. Fischoff, who did such an experiment involving
fault tree diagrams, attributed it to an “out of sight,
out of mind” phenomenon [FSL78].

One place to start in deciding what should be in a sys-
tem specification is with basic systems theory, which de-
fines a system as a set of components that act together
as a whole to achieve some common goal, objective, or
end. The components are all interrelated and are ei-
ther directly or indirectly connected to each other. This
concept of a system relies on the assumptions that the
system goals can be defined and that systems are atom-

istic, that is, capable of being separated into component
entities such that their interactive behavior mechanisms
can be described.

The system state at any point in time is the set of rele-
vant properties describing the system at that time. The
system environment is a set of components (and their
properties) that are not part of the system but whose
behavior can affect the system state. The existence of a
boundary between the system and its environment im-
plicitly defines as inputs or outputs anything that crosses
that boundary.

It is very important to understand that a system is al-
ways a model—an abstraction conceived by the analyst.
For the same man-made system, an observer may see
a different purpose than the designer and may also fo-
cus on different relevant properties. Thus, there may
be multiple “correct” system models or specifications.
To ensure consistency and enhance communication, a
common specification is required that defines the:

System boundary,

Inputs and outputs,

Components,

Structure,

Relevant interactions between components and the
means by which the system retains its integrity (the
behavior of the components and their effect on the
overall system state), and

e Purpose or goals of the system that makes it reason-
able to consider it to be a coherent entity [Che81].

All of these properties need to be included in a complete
system model or specification along with a description
of the aspects of the environment that can affect the
system state. Most of these aspects are already included
in our current specification languages. However, the
last, information about purpose or intent, is often not.

One of the most important limitations of the models un-
derlying most current specification languages, both for-
mal and informal, is that they cannot allow us to infer
what is not explicitly represented in the model, includ-
ing the intention of doing something a particular way.
This intentional information is critical in the design and
evolution of software. As Harman has said, practical
reasoning is concerned with what to intend while formal
reasoning with what to believe [Har82]. “Formal logic
arguments are a priori true or false with reference to an
explicitly defined model, whereas functional reasoning
deals with relationships between models, and truth de-
pends on correspondence with the state of affairs in the
real world” [Har82].

In the conclusions to our paper describing our experi-
ences specifying the requirements for TCAS II (an air-
craft collision avoidance system), we wrote:

In reverse engineering TCAS, we found it im-
possible to derive the requirements specifica-
tion strictly from the pseudocode and an ac-
companying English language description. Al-
though the basic information was all there, the
intent was largely missing and often the map-
ping from goals or constraints to specific design
decisions. Therefore, distinguishing between
requirements and artifacts of the implementa-
tion was not possible in all cases. As has been
discovered by most people attempting to main-
tain such systems, an audit trail of the deci-
sions and the reasons why decisions were made
is absolutely essential. This was not done by
TCAS over the 15 years of its development,
and those responsible for the system today are
currently attempting to reconstruct decision-
making information from old memos and cor-
porate memory. For the most part, only one
person is able to explain why some decisions
were made or why things were designed in a
particular way [LHHR94].

There is widespread agreement about the need for de-
sign rationale (intent) information in order to under-
stand complex software or to correctly and efficiently
change or analyze the impact of changes to it. Without
a record of intent, important decisions can be undone
during maintenance: Many serious accidents and losses
can be traced to the fact that a system did not oper-
ate as intended because of changes that were not fully
coordinated or fully analyzed to determine their effects
[Lev95]. What is not so clear is the content and struc-
ture of the information that is needed.

Simply keeping an audit trail of decisions and the rea-
sons behind them as they are made is not practical. The
number of decisions made in any large project is enor-
mous. Even if it were possible to write them all down,
finding the proper information when needed seems to be
a hopeless task if not structured appropriately. What is
needed is a specification of the intent (goals, constraints,
and design rationale) from the beginning, and it must
be specified in a usable and perceptually salient manner.
That is, we need a framework within which to select and
specify the design decisions that are needed to develop
and maintain software.

3.3 Structure

The third aspect of specifications, structure, is the ba-
sis for organizing information in the specification. The
information may all be included somewhere, but it may
be hard to find or to determine the relationship to in-
formation specified elsewhere.

Problem solving in technological systems takes place
within the context of a complex causal network of rela-
tionships [Dor87, Ras86, Rea90, VR92], and those rela-
tionships need to be reflected in the specification. The
information needed to solve a problem may all be in-
cluded somewhere in the assorted documentation used
in large projects, but it may be hard to find when needed
or to determine the relationship to information specified
elsewhere. Psychological experiments in problem solv-
ing find that people attend primarily to perceptually
salient information [KS90]. The goal of specification
language design should be to make it easy for users to
extract and focus on the important information for the
specific task at hand, which includes all potential tasks
related to use of the specification.

Cognitive engineers speak of this problem as “informa-
tion pickup” [Wo0095]. Just because the information is
in the interface does not mean that the operator can
find it easily. The same is true for specifications. The
problem of information pickup is compounded by the
fact that there is so much information in system and
software specifications while only a small subset of it
may be relevant in any given context.

3.3.1 Complexity

The problems in building and interacting with systems
correctly are rooted in complexity and intellectual man-
ageability. A basic and often noted principle of engineer-
ing is to keep things simple. This principle, of course,
is easier to state than to do. Ashby’s Law of Requi-
site Variety [Ash62] tells us that there is a limit to how
simple we can make control systems, including those
designs represented in software, and still have them be
effective. In addition, basic human ability is not chang-
ing. If humans want to build and operate increasingly
complex systems, we need to increase what is intellec-
tually manageable. That is, we will need to find ways
to augment human ability.

The situation is not hopeless. As Rasmussen observes,
the complexity of a system is not an objective feature
of the system [Ras85]. Observed complexity depends
upon the level of resolution upon which the system is
being considered. A simple object becomes complex if
observed through a microscope. Complexity, therefore,
can only be defined with reference to a particular rep-
resentation of a system, and then can only be measured
relative to other systems observed at the same level of
abstraction.

Thus, a way to cope with complex systems is to struc-
ture the situation such that the observer can transfer
the problem being solved to a level of abstraction with
less resolution. The complexity faced by the builders or

users of a system is determined by their mental mod-
els (representations) of the internal state of the system.
We build such mental models and update them based
on what we observe about the system, that is, by means
of our interface to the system. Therefore, the apparent
complexity of a system ultimately depends upon the
technology of the interface system [Ras85].

The solution to the complexity problem is to take ad-
vantage of the most powerful resources people have for
dealing with complexity. Newman has noted, “People
don’t mind dealing with complexity if they have some
way of controlling or handling it . . . If a person is allowed
to structure a complex situation according to his percep-
tual and conceptual needs, sheer complexity is no bar
to effective performance” [New66, Ras85]. Thus, com-
plexity itself is not a problem if humans are presented
with meaningful information in a coherent, structured
context.

3.3.2 Hierarchy Theory

Two ways humans cope with complexity is to use
top-down reasoning and stratified hierarchies. Build-
ing systems bottom-up works for relatively simple sys-
tems. But as the number of cases and objects that
must be considered increases, this approach becomes
unworkable—we go beyond the limits of human mem-
ory and logical ability to cope with the complexity. Top-
down reasoning is a way of managing that complexity.
At the same time, we have found that pure top-down
reasoning is not adequate alone; humans need to com-
bine top-down with bottom-up reasoning. Thus, the
structure of the information must allow reasoning in
both directions.

In addition, humans cope with complexity by build-
ing stratified hierarchies. Models of complex systems
can be expressed in terms of a hierarchy of levels of
organization, each more complex than the one below,
where a level is characterized by having emergent prop-
erties. The concept of emergence is the idea that at any
given level of complexity, some properties characteris-
tic of that level (emergent at that level) are irreducible.
Such properties do not exist at lower levels in the sense
that they are meaningless in the language appropriate
to those levels. For example, the shape of an apple, al-
though eventually explainable in terms of the cells of the
apple, has no meaning at that lower level of description.

Regulatory or control action involves imposing con-
straints upon the activity at one level of a hierarchy.
Those constraints define the “laws of behavior” at that
level that yield activity meaningful at a higher level
(emergent behavior). Hierarchies are characterized by
control processes operating at the interfaces between

levels. Checkland explains it:

Any description of a control process entails
an upper level imposing constraints upon the
lower. The upper level is a source of an alter-
native (simpler) description of the lower level
in terms of specific functions that are emer-
gent as a result of the imposition of constraints
[Che81, pg. 87].

Hierarchy theory deals with the fundamental differences
between one level of complexity and another. Its ulti-
mate aim is to explain the relationships between dif-
ferent levels: what generates the levels, what separates
them, and what links them. Emergent properties associ-
ated with a set of components at one level in a hierarchy
are related to constraints upon the degree of freedom of
those components. In the context of this paper, it is im-
portant to note that describing the emergent properties
resulting from the imposition of constraints requires a
language at a higher level (a metalevel) different than
that describing the components themselves. Thus, dif-
ferent description languages are required at each hier-
archical level.

The problem then comes down to determining appro-
priate types of hierarchical abstraction that allow both
top-down and bottom-up reasoning. In computer sci-
ence, we have made much use of part-whole abstractions
where each level of a hierarchy represents an aggregation
of the components at a lower level and of information-
hiding abstractions where each level contains the same
conceptual information but hides some details about the
concepts, that is, each level is a refinement of the infor-
mation at a higher level. Each level of our software
specifications can be thought of as providing what in-
formation while the next lower level describes how.

Such hierarchies, however, do not provide information
about why. Higher-level emergent information about
purpose or intent cannot be inferred from what we nor-
mally include in such specifications. Design errors may
result when we either guess incorrectly about higher-
level intent or omit it from our decision-making pro-
cess. For example, while specifying the system require-
ments for TCAS II [LHHR94], we learned from experts
that crossing maneuvers are avoided in the design for
safety reasons. The analysis on which this decision is
based comes partly from experience during TCAS sys-
tem testing on real aircraft and partly as a result of an
extensive safety analysis performed on the system. This
design constraint would not be apparent in most design
or code specifications unless it were added in the form of
comments, and it could easily be violated during system
modification unless it was recorded and easily located.

But there are abstractions that can be used in stratified

hierarchies other than part—whole abstraction. While
investigating the design of safe human-machine inter-
action, Rasmussen studied protocols recorded by peo-
ple working on complex systems (process plant oper-
ators and computer maintainers) and found that they
structured the system along two dimensions: (1) a part—
whole abstraction in which the system is viewed as a
group of related components at several levels of physical
aggregation, and (2) a means—ends abstraction [Ras86].

3.3.3 Means-Ends Hierarchies

In a means-end abstraction, each level represents a dif-
ferent model of the same system. At any point in the
hierarchy, the information at one level acts as the goals
(the ends) with respect to the model at the next lower
level (the means). Thus, in a means—ends abstraction,
the current level specifies what, the level below how, and
the level above why [Ras86]. In essence, this intent in-
formation is emergent in the sense of system theory:

When moving from one level to the next higher
level, the change in system properties repre-
sented is not merely removal of details of in-
formation on the physical or material prop-
erties. More fundamentally, information is
added on higher-level principles governing the
coordination of the various functions or ele-
ments at the lower level. In man-made sys-
tems, these higher-level principles are natu-
rally derived from the purpose of the system,
i.e., from the reasons for the configurations at
the level considered [Ras86]

A change of level involves both a shift in concepts and
in the representation structure as well as a change in
the information suitable to characterize the state of the
function or operation at the various levels [Ras86].

Each level in a means-ends hierarchy describes the sys-
tem in terms of a different set of attributes or “lan-
guage.” Models at the lower levels are related to a
specific physical implementation that can serve several
purposes while those at higher levels are related to a
specific purpose that can be realized by several physi-
cal implementations. Changes in goals will propagate
downward through the levels while changes in the phys-
ical resources (such as faults or failures) will propagate
upward. In other words, states can only be described
as errors or faults with reference to their intended func-
tional purpose. Thus reasons for proper function are de-
rived “top-down.” In contrast, causes of improper func-
tion depend upon changes in the physical world (i.e., the
implementation) and thus they are explained “bottom
up” [VR92].

Mappings between levels are many-to-many: Compo-
nents of the lower levels can serve several purposes while
purposes at a higher level may be realized using sev-
eral components of the lower-level model. These goal-
oriented links between levels can be followed in either
direction, reflecting either the means by which a func-
tion or goal can be accomplished (a link to the level
below) or the goals or functions an object can affect
(a link to the level above). So the means—ends hierar-
chy can be traversed in either a top-down (from ends to
means) or a bottom-up (from means to ends) direction.

As stated earlier, our representations of problems have
an important effect on our problem-solving ability and
the strategies we use, and there is good reason to be-
lieve that representing the problem space as a means—
ends mapping provides useful context and support for
decision making and problem solving. Consideration of
purpose or reason (top-down analysis in a means-ends
hierarchy) has been shown to play a major role in un-
derstanding the operation of complex systems [Ras85].

Rubin’s analysis of his attempts to understand the func-
tion of a camera’s shutter (as cited in [Ras90]) provides
an example of the role of intent or purpose in under-
standing a system. Rubin describes his mental efforts
in terms of conceiving all the elements of the shutter in
terms of their function in the whole rather than explain-
ing how the individual parts worked: How they worked
was immediately clear when their function was known.
Rasmussen argues that this approach has the advan-
tage that solutions of subproblems are identifiable with
respect to their place in the whole picture, and it is im-
mediately possible to judge whether a solution is correct
or not. In contrast, arguing from the parts to the way
they work is much more difficult because it requires syn-
thesis: Solutions of subproblems must be remembered
in isolation, and their correctness is not immediately
apparent.

Support for this argument can be found in the difficul-
ties Al researchers have encountered when modeling the
function of mechanical devices “bottom-up” from the
function of the components. DeKleer and Brown found
that determining the function of an electric buzzer solely
from the structure and behavior of the parts requires
complex reasoning [DB83]. Rasmussen suggests that the
resulting inference process is very artificial compared
to the top-down inference process guided by functional
considerations as described by Ruben. “In the DeKleer-
Brown model, it will be difficult to see the woods for the
trees, while Rubin’s description appears to be guided by
a birds-eye perspective ” [Ras90].

Glaser and Chi suggest that experts and successful prob-
lem solvers tend to focus first on analyzing the func-
tional structure of the problem at a high level of ab-

straction and then narrow their search for a solution by
focusing on more concrete details [GC88]. Representa-
tions that constrain search in a way that is explicitly
related to the purpose or intent for which the system
is designed have been shown to be more effective than
those that do not because they facilitate the type of
goal-directed behavior exhibited by experts [VCP95].
Therefore, we should be able to improve the problem
solving required in software development and evolution
tasks by providing a representation (i.e., specification)
of the system that facilitates goal-oriented search by
making explicit the goals related to each component.

Viewing a system from a high level of abstraction is not
limited to a means—ends hierarchy, of course. Most hi-
erarchies allow one to observe systems at a less detailed
level. The difference is that the means—ends hierarchy
is explicitly goal oriented and thus assists goal-oriented
problem solving. With other hierarchies (such as the
part—whole hierarchies often used in computer science),
the links between levels are not necessarily related to
goals. So although it is possible to use higher-levels
of abstraction to select a subsystem of interest and to
constrain search, the subtree of the hierarchy connected
to a particular subsystem does not necessarily contain
system components relevant to the goals the problem
solver is considering.

3.4 Form (Notation)

The final aspect of specification design is the actual form
of the specification. Although this is often where we
start when designing languages, the four aspects actu-
ally have to be examined in order, first defining the pro-
cess to be supported, then determining what the con-
tent should be, then how the content will be structured
to make the information easily located and used, and
finally the form the language should take. All four as-
pects need to be addressed not only in terms of the anal-
ysis to be performed on the specification, but also with
respect to human perceptual and cognitive capabilities.

Note that the form itself must also be considered from
a psychological standpoint: The usability of the lan-
guage will depend on human perceptual and cognitive
strategies. For example, Fitter and Green describe the
attributes of a good notation with respect to human
perception and understanding [FG79]. Casner [Cas91]
and others have argued that the utility of any infor-
mation presentation is a function of the task that the
presentation is being used to support. For example, a
symbolic representation might be better than a graphic
for a particular task, but worse for others.

No particular specification language is being proposed
here. We first must clarify what needs to be expressed

before we can design languages that express that infor-
mation appropriately and effectively. In addition, differ-
ent types of systems require different types of languages.
All specifications are abstractions—they leave out unim-
portant details. What is important will depend on the
problem being solved. For different types of systems,
the important and difficult aspects differ. For example,
specifications for embedded controllers may emphasize
control flow over data flow (which is relatively trivial
for these systems), while data transformation or infor-
mation management systems might place more empha-
sis on the specification of data flow than control flow.
Attempts to include everything in the specification are
not only impractical, but involve wasted effort and are
unlikely to fit the budgets and schedules of industry
projects. Because of the importance of completeness,
as argued earlier, determining exactly what needs to be
included becomes the most important problem in spec-
ification design.

This paper deals with process, content and structure,
but not form (notation). We are defining specification
languages built upon the foundation laid in this paper
and on other psychological principles, but they will be
described in future papers.

4 Intent Specifications

These basic ideas provide the foundation for what I
call intent specifications. They have been developed
and used successfully in cognitive engineering by Vi-
cente and Rasmussen for the design of operator in-
terfaces, a process they call ecological interface design
[DV96, Vic9l].

The exact number and content of the means—ends hier-
archy levels may differ from domain to domain. Here
I present a structure for process systems with shared
software and human control. In order to determine the
feasibility of this approach for specifying a complex sys-
tem, I extended the formal TCAS II aircraft collision
avoidance system requirements specification we previ-
ously wrote [LHHR94] to include intent information and
other information that cannot be expressed formally but
is needed in a complete system requirements specifica-
tion. We are currently applying the approach to other
examples, including a NASA robot and part of the U.S.
Air Traffic Control System. The TCAS II specification
is used as an example in this paper.?2 The table of con-
tents for the example TCAS II System Requirements
Specification (shown in Figure 3) may be helpful in fol-

20ur TCAS 1II Intent Specification (complete system specifi-
cation) is over 800 pages long. Obviously, the entire specifica-
tion cannot be included in this paper. It can be accessed from
http://www.cs.washington.edu/homes/leveson.

lowing the description of intent specifications. Note that
the only part of TCAS that we specified previously is
section 3.4 and parts of 3.3.

In the intent specifications we have built for real sys-
tems, we have found the approach to be practical; in
fact, most of the information in an intent specification
is already located somewhere in the often voluminous
documentation for large systems. The problem in these
systems usually lies in finding specific information when
it is needed, in tracing the relationships between infor-
mation, and in understanding the system design and
why it was designed that way. Intent specifications are
meant to assist with these tasks.

System and software specifications of the type being
proposed, like those used in ecological interface design,
are organized along two dimensions: intent abstraction
and part-whole abstraction (see Figure 2). These two
dimensions constitute the problem space in which the
human navigates. The part-whole (horizontal) dimen-
sion, which itself can be separated into refinement and
decomposition, allows users to change their focus of at-
tention to more or less detailed views within each level
or model. The vertical dimension specifies the level of
intent at which the problem is being considered, i.e., the
language or model that is currently being used.

4.1 Part-Whole Dimension

Computer science commonly uses two types of part—
whole abstractions. Parallel decomposition (or its op-
posite, aggregation) separates units into (perhaps inter-
acting) components of the same type. In Statecharts,
for example, these components are called orthogonal
components and the process of aggregation results in
an orthogonal product. Each of the pieces of the par-
allel decomposition of Statecharts is a state machine,
although each state machine will in general be different.

The second type of part-whole abstraction—
refinement—takes a function and breaks it down into
more detailed steps. An example is the combining of a
set of states into a superstate in Statecharts. In Petri-
nets, such abstractions have been applied both to states
and to transitions—they provide a higher-level name for
a piece of the net. In programming, refinement abstrac-
tions are represented by procedures or subprograms.

Note that neither of these types of abstraction is an
“emergent-property” or means—ends abstraction—the
whole is simply broken up into a more detailed descrip-
tion. Additional information, such as intent, is not pro-
vided at the higher level.

Along this horizontal dimension, intent specifications
are broken up into three parts. The first column con-

tains information about characteristics of the environ-
ment that affects the ability to achieve the system goals
and design constraints. For example, in TCAS, the
designers need information about the operation of the
ground-based ATC system in order to fulfill the system-
level constraint of not interfering with it. Information
about the environment is also needed for some types
of hazard analysis and for normal system design. For
example, the design of the surveillance logic in TCAS
depends on the characteristics of the transponders car-
ried on the aircraft with which the surveillance logic
interacts.

The second column of the horizontal dimension is in-
formation about human operators or users. Too often
human factors design and software design is done in-
dependently. Many accidents and incidents in aircraft
with advanced automation have been blamed on human-
error that has been induced by the design of the au-
tomation. For example, Weiner introduced the term
clumsy automation to describe automation that places
additional and unevenly distributed workload, commu-
nication, and coordination demands on pilots without
adequate support [Wei89]). Sarter, Woods, and Billings
[SWB95] describe additional problems associated with
new attentional and knowledge demands and break-
downs in mode awareness and “automation surprises,”
which they attribute to technology-centered automation:
Too often, the designers of the automation focus exclu-
sively on technical aspects, such as the mapping from
software inputs to outputs, on mathematical models of
requirements functionality, and on the technical details
and problems internal to the computer; they do not de-
vote enough attention to the cognitive and other de-
mands of the automation design on the operator.

One goal of intent specifications is to integrate the infor-
mation needed to design “human-centered automation”
into the system requirements specification. We are also
working on analysis techniques to identify problematic
system and software design features in order to predict
where human errors are likely to occur [LPS97]. This
information can be used in both the automation design
and in the design of the operator procedures, tasks, in-
terface, and training.

The third part of the horizontal dimension is the sys-
tem itself and its decomposition along the part—whole
dimension.

4.2 Intent Dimension

The Intent (vertical) dimension has five hierarchical lev-
els, each providing intent (“why”) information about
the level below. Each level is mapped to the appropriate
parts of the intent levels above and below it, providing

Decomposition

Refinemey

Environment

Operator

System Components
T

System
Purpose

System
Principles

Intent
Blackbox

Behavior

Design
Representation

Code
(Physical
Representation)

Figure 2: The structure of an intent specification for software systems.

traceability of high-level system requirements and con-
straints down to code (or physical form) and vice versa.

Each level also supports a different type of reasoning
about the system, with the highest level assisting sys-
tems engineers in their reasoning about system-level
goals, constraints, priorities, and tradeoffs. The second
level, System Design Principles, allows engineers to rea-
son about the system in terms of the physical principles
and laws upon which the design is based. The Black-
box Behavior level enhances reasoning about the logical
design of the system as a whole and the interactions
between the components as well as the functional state
without being distracted by implementation issues. The
lowest two levels provide the information necessary to
reason about individual component design and imple-
mentation issues. The mappings between levels provide
the relational information that allows reasoning across
hierarchical levels.

Each level (except the top level) also includes a specifi-
cation of the requirements and results of verification or
validation activities for the information at that specifi-
cation level. The top level does not include this infor-
mation (except perhaps for parts of the hazard analysis)
because it is not clear what types of validation, outside
of expert review, would be appropriate at this highest
level of intent abstraction.

10

4.2.1 System Purpose

Along the vertical dimension, the highest specification
level, System Purpose, contains the (1) system goals, (2)
design constraints, (3) assumptions, (4) limitations, (5)
design evaluation criteria and priorities, and (6) results
of analyses for system level qualities.

Examples of high-level goals (purpose) for TCAS II are
to:

G1: Provide affordable and compatible collision avoid-
ance system options for a broad spectrum of Na-
tional Airspace System users.

G2: Detect potential midair collisions with other aircraft
in all meteorological conditions.

Usually, in the early stages of a project, goals are stated
in very general terms. One of the first steps in defining
system requirements is to refine the goals into testable
and achievable high-level requirements. For G1 above,
a refined subgoal is:

R1: Provide collision avoidance protection for any two
aireraft closing horizontally ot any rate up to 1200
knots and vertically up to 10,000 feet per minute.

This type of refinement and reasoning is done at the
System Purpose level, using an appropriate specification
language (most likely English).

Requirements (and constraints) are also included for the

1. System Purpose

11
1.2
13

14

15
1.6
1.7
1.8

1.9

Introduction

Historical Perspective

Environment

1.3.1 Environmental Assumptions
1.3.2 Environmental Constraints
Operator

1.4.1 Tasks and Procedures

1.4.2 Pilot-TCAS Interface Requirements
TCAS System Goals

High-Level Functional Requirements
System Limitations

System Constraints

1.8.1 General Constraints

1.8.2 Safety-Related Constraints
Hazard Analysis

2. System Design Principles

2.1
2.2
2.3

2.4
2.5

General Description

TCAS System Components

Surveillance and Collision Avoidance Logic
2.3.1 General Concepts

2.3.2 Surveillance

2.3.3 Tracking

2.3.4 Traffic Advisories

2.3.5 Resolution Advisories

2.3.6 TCAS/TCAS Coordination
Performance Monitoring

Pilot-TCAS Interface

2.5.1 Controls

2.5.2 Displays and Aural Annunciations

2.6 Testing and Validation

2.6.1 Simulations
2.6.2 Experiments
2.6.3 Other Validation Procedures and Results

3. Blackbox Behavior

3.1
3.2

3.3

3.4

3.5

Environment

Flight Crew Requirements

3.2.1 Tasks

3.2.2 Operational Procedures
Communication and Interfaces
3.3.1 Pilot-TCAS Interface
3.3.2 Message Formats

3.3.3 Input Interfaces

3.3.4 Output Interfaces

3.3.5 Receiver, Transmitter, Antennas
Behavioral Requirements

3.4.1 Surveillance

3.4.2 Collision Avoidance
3.4.3 Performance Monitoring
Testing Requirements

4. Physical and Logical Function

moowp

® m

4.1 Human-Computer Interface Design
4.2 Pilot Operations (Flight) Manual
4.3 Software Design
4.4 Physical Requirements
4.4.1 Definition of Standard Conditions

4.4.2 Performance Capability of Own Aircraft’s

Mode S Transponder
4.4.3 Receiver Characteristics
4.4.4 TCAS Transmitter Characteristics

4.45 TCAS Transmitter Pulse Characteristics

4.4.6 TCAS Pulse Decoder Characteristics
4.4.7 Interfence Limiting
4.4.8 Aircraft Suppression Bus
4.4.9 TCAS Data Handling and Interfaces
4.4.10 Bearing Estimation
4.4.11 High-Density Techniques

4.5 Hardware Design Specifications

4.6 Verification Requirements

Physical Realization

5.1 Software

5.2 Hardware Assembly Instructions
5.3 Training Requirements (Plan)
5.4 Maintenance Requirements

Constant Definitions

Table Definitions

Reference Algorithms

Physical Measurement Conventions

Performance Requirements on Equipment
that Interacts with TCAS

Glossary
Notation Guide
Index

Figure 3: The contents of the sample TCAS Intent Specification

human operator, for the human-computer interface, and
for the environment in which TCAS will operate. Re-
quirements on the operator (in this case, the pilot) are
used to guide the design of the TCAS-pilot interface,
flightcrew tasks and procedures, aircraft flight manuals,
and training plans and program. Links are provided
to show the relationships. Example TCAS II operator
requirements are:

O1: After the threat is resolved, the pilot shall return
promptly and smoothly to his/her previously as-
signed flight path.

02: The pilot must not maneuver on the basis of a Traf-
fic Advisory only.

Design constraints are restrictions on how the system
can achieve its purpose. For example, TCAS is not al-
lowed to interfere with the ground-level air traffic con-
trol system while it is trying to maintain adequate sep-
aration between aircraft. Avoiding interference is not a
goal or purpose of TCAS—the best way to achieve it
is not to build the system at all. It is instead a con-
straint on how the system can achieve its purpose, i.e.,
a constraint on the potential system designs. Because
of the need to evaluate and clarify tradeoffs among al-
ternative designs, separating these two types of intent
information (goals and design constraints) is important.

For safety-critical systems, constraints should be further
separated into normal and safety-related. Examples of
non-safety constraints for TCAS II are:

C1: The system must use the transponders routinely
carried by aircraft for ground ATC purposes.

C2: No deviations from current FAA policies and
philosophies must be required.

Safety-related constraints should have two-way links to
the system hazard log and perhaps links to any analysis
results that led to that constraint being identified. Haz-
ard analyses specified on this level are linked to Level 1
requirements and constraints on this level, to design fea-
tures on Level 2, and to system limitations (or accepted
risks). Example safety constraints are:

SC1: The system must generate advisories that require
as little deviation as possible from ATC clearances.

SC2: The system must not disrupt the pilot and ATC
operations during critical phases of flight.

Note that refinement occurs at the same level of the
intent specification (see Figure 2). For example, the
safety-constraint SC3 can be refined

SC1: The system must not interfere with the ground ATC
system or other aircraft transmissions to the ground
ATC system.

SC1.1: The system design must limit interfer-
ence with ground-based secondary surveillance

12

radar, distance-measuring equipment chan-
nels, and with other radio services that operate
in the 1030/1090 MHz frequency band.

SC1.1.1: The design of the Mode S waveforms
used by TCAS must provide compatibility
with Modes A and C of the ground-based
secondary surveillance radar system.

SC1.1.1: The frequency spectrum of Mode S
transmissions must be controlled to pro-
tect adjacent distance-measuring equip-
ment channels.

SC1.1.1: The design must ensure electromag-
netic compatibility between TCAS and

SC1.2: Multiple TCAS units within detection range
of one another (approrimately 30 nmi) must
be designed to limit their own transmissions.
As the number of such TCAS units within this
region increases, the interrogation rate and
power allocation for each of them must de-

crease in order to prevent undesired interfer-
ence with ATC.

Environment requirements and constraints may lead to
restrictions on the use of the system or to the need for
system safety and other analyses to determine that the
requirements hold for the larger system in which the sys-
tem being designed is to be used. Examples for TCAS
include:

E1: Among the aircraft environmental alerts, the hier-
archy shall be: Windshear has first priority, then
the Ground Prozimity Warning System (GPWS),
then TCAS.

The behavior or interaction of non-TCAS equip-
ment with TCAS must not degrade the performance
of the TCAS equipment or the performance of the
equipment with which TCAS interacts.

The TCAS alerts and advisories must be indepen-
dent of those using the master caution and warning
system.

E2:

E3:

Assumptions are specified, when appropriate, at all lev-
els of the intent specification to explain a decision or
to record fundamental information on which the de-
sign is based. These assumptions are often used in the
safety or other analyses or in making lower level de-
sign decisions. For example, operational safety depends
on the accuracy of the assumptions and models under-
lying the design and hazard analysis processes. The
operational system should be monitored to ensure (1)
that it is constructed, operated, and maintained in the
manner assumed by the designers, (2) that the mod-
els and assumptions used during initial decision making
and design were correct, and (3) that the models and
assumptions are not violated by changes in the system,

such as workarounds or unauthorized changes in proce-
dures, or by changes in the environment [Lev95]. Op-
erational feedback on trends, incidents, and accidents
should trigger reanalysis when appropriate. Linking the
assumptions throughout the document with the hazard
analysis (for example, to particular boxes in the system
fault trees) will assist in performing safety maintenance
activities.

Examples of assumptions associated with requirements
on the first level of the TCAS intent specification:

R1: Provide collision avoidance protection for any two
aireraft closing horizontally at any rate up to 1200

knots and vertically up to 10,000 feet per minute.

Assumption: This requirement is derived
from the assumption that commercial aircraft
can operate up to 600 knots and 5000 fpm dur-
ing wvertical climb or controlled descent (and
therefore two planes can close horizontally up
to 1200 knots and vertically up to 10,000 fpm,).

TCAS shall operate in enroute and terminal areas
with traffic densities up to 0.3 aircraft per square
nautical miles (i.e., 24 aircraft within 5 nmi).

R3:

Assumption: Traffic density may increase to
this level by 1990, and this will be the maxi-
mum density over the next 20 years.

An example of an assumption associated with a safety
constraint is:

SC5: The system must not disrupt the pilot and ATC op-
erations during critical phases of flight nor disrupt
aireraft operation.

SC5.1: The pilot of a TCAS-equipped aircraft must
have the option to switch to the Traffic-
Advisory-Only mode where TAs are displayed
but display of resolution advisories is inhib-
ited.

Assumption: This feature will be used
during final approach to parallel runways,
when two aircraft are projected to come
close to each other and TCAS would call
for an evasive maneuver.

Assumptions may also apply to features of the environ-
ment. Examples of environment assumptions for TCAS
are that:

EA1: All aircraft have legal identification numbers.

EA2: All aircraft carry transponders.

EA3: The TCAS-equipped aircraft carries a Mode-S air
traffic control transponder, whose replies include
encoded altitude when appropriately interrogated.

EA4: Altitude information is available from intruding
targets with a minimum precision of 100 feet.

13

EA5: Threat aircraft will not make an abrupt maneuver
that thwarts the TCAS escape maneuver.

System limitations are also specified at Level 1 of an
intent specification. Some may be related to the basic
functional requirements, such as:

L1: TCAS does not currently indicate horizontal escape
maneuvers and therefore does not (and is not in-
tended to) increase horizontal separation.

Limitations may also relate to environment assump-
tions. For example, system limitations related to the
environment assumptions above include:

L2: TCAS provides no protection against aircraft with
nonoperational transponders.

Aireraft performance limitations constrain the mag-
nitude of the escape maneuver that the flight crew
can safely execute in response to a resolution advi-
sory. It is possible for these limitations to preclude
a successful resolution of the conflict.

TCAS is dependent on the accuracy of the threat
aircraft’s reported oltitude. Separation assurance
may be degraded by errors in intruder pressure alti-
tude as reported by the transponder of the intruder
aircraft.

L3:

L4:

Assumption: This limitation holds for ez-
isting airspace, where many aircraft use pres-
sure altimeters rather than GPS. As more air-
craft install GPS systems with greater accu-
racy than current pressure altimeters, this lim-
itation will be reduced or eliminated.

Limitations are often associated with hazards or hazard
causal factors that could not be completely eliminated
or controlled in the design. Thus they represent ac-
cepted risks. For example:

L5: TCAS will not issue an advisory if it is turned on or
enabled to issue resolution advisories in the middle
of a conflict (—FTA-405).

If only one of two aircraft is TCAS equipped while
the other has only ATCRBS altitude-reporting ca-
pability, the assurance of safe separation may be
reduced (—FTA-290).

Lé6:

In our TCAS intent specification, both of these system
limitations have pointers to boxes in the fault tree gen-
erated during the hazard analysis of TCAS II.

Finally, limitations may be related to problems encoun-
tered or tradeoffs made during the system design process
(recorded on lower levels of the intent specification). For
example, TCAS has a Level 1 performance monitoring
requirement that led to the inclusion of a self-test func-
tion in the system design to determine whether TCAS

3The pointer to FTA-405 denotes the box labelled 405 in the
Level-1 fault tree analysis

is operating correctly. The following system limitation
relates to this self-test facility:

L7: Use by the pilot of the self-test function in flight
will inhibit TCAS operation for up to 20 seconds
depending upon the number of targets being tracked.
The ATC transponder will not function during
some portion of the self-test sequence.

Most of these system limitations will be traced down
in the intent specification levels to the user documen-
tation. In the case of an avionics system like TCAS,
this specification includes the Pilot Operations (Flight)
Manual on level 4 of our TCAS intent specification. An
example is shown in the next section.

FEvaluation criteria and priorities are used to resolve
conflicts among goals and design constraints and to
guide design choices at lower levels. This information
has not been included in the TCAS example specifica-
tion as I was unable to find out how these decisions were
made during the TCAS design process.

Finally, Level 1 contains the analysis results for system-
level (emergent) properties such as safety or security.
For the TCAS specification, a hazard analysis (including
fault tree analysis and failure modes and effects analy-
sis) was performed and is included and linked to the
safety-critical design constraints on this level and to
lower-level design decisions based on the hazard anal-
ysis. Whenever changes are made in safety-critical sys-
tems or software (during development or during main-
tenance and evolution), the safety of the change needs
to be evaluated. This process can be difficult and ex-
pensive. By providing links throughout the levels of the
intent specification, it should be easy to assess whether
a particular design decision or piece of code was based
on the original safety analysis or safety-related design
constraint.

4.2.2 System Design Principles

The second level of the specification contains System
Design Principles—the basic system design and scien-
tific and engineering principles needed to achieve the
behavior specified in the top level. The horizontal di-
mension again allows abstraction and refinement of the
basic system principles upon which the design is predi-
cated.

For TCAS, this level includes such general principles as
the basic tau concept, which is related to all the high-
level alerting goals and constraints:

PR1: Each TCAS-equipped aircraft is surrounded by a
protected volume of airspace. The boundaries of
this volume are shaped by the tau and DMOD cri-
teria.

14

PR1.1: TAU: In collision avoidance, time-to-go to
the closest point of approach (CPA) is more
important than distance-to-go to the CPA.
Tau is an approzimation of the time in sec-
onds to CPA. Tau equals 3600 times the slant
range in nmi, divided by the closing speed in
knots.

PR1.2: DMOD: If the rate of closure is very low,
o target could slip in very close without cross-
ing the tau boundaries and triggering an ad-
visory. In order to provide added protection
against a possible maneuver or speed change
by either aircraft, the tau boundaries are mod-
ified (called DMOD). DMOD varies depending
on own aircraft’s altitude regime. See Table 2.

The principles are linked to the related higher level re-
quirements, constraints, assumptions, limitations, and
hazard analysis as well as linked to lower-level system
design and documentation. Assumptions used in the
formulation of the design principles may also be speci-
fied at this level. For example, the TCAS design has a
built-in bias against generating advisories that would re-
sult in the aircraft crossing paths (called altitude cross-
ing advisories).

PR36.2: A bias against altitude crossing RAs is also used
in situations involving intruder level-offs at least
600 feet above or below the TCAS aircraft. In
such a situation, an altitude-crossing advisory is
deferred if an intruder aircraft that is projected to
cross own aircraft’s altitude is more than 600 feet
away vertically (| Alt_Separation_Test;,_351).

Assumption: In most cases, the intruder
will begin a level-off maneuver when it is
more than 600 feet away and so should have
a greatly reduced vertical rate by the time it
is within 200 feet of its altitude clearance
(thereby either not requiring an RA if it levels
off more than ZTHR* feet away or requiring a
non-crossing advisory for level-offs begun after
ZTHR is crossed but before the 600 foot thresh-
old is reached).

The example above includes a pointer down to
the part of the black box requirements specification
(Alt_Separation_Test) that embodies the design prin-
ciple. As another example of the type of links that may
be found between Level 2 and the levels above and be-
low it, consider the following. TCAS II advisories may
need to be inhibited because of an inadequate climb per-
formance for the particular aircraft on which TCAS II
is installed. The collision avoidance maneuvers posted

4The vertical dimension, called zTHR, used to determine
whether advisories should be issued varies from 750 to 950 feet,
depending on the TCAS aircraft’s altitude.

as advisories (called RAs or Resolution Advisories) by
TCAS II assume an aircraft’s ability to safely achieve
them. If it is likely they are beyond the capability of
the aircraft, then TCAS II must know beforehand so it
can change its strategy and issue an alternative advi-
sory. The performance characteristics are provided to
TCAS II through the aircraft interface. An example de-
sign principle (related to this problem) found on Level
2 of the intent specification is:

PR39: Because of the limited number of inputs to TCAS
for aircraft performance inhibits, in some instances
where inhibiting RAs would be appropriate it is not
possible to do so (1L3). In these cases, TCAS may
command maneuvers that may significantly reduce
stall margins or result in stall warning (15C9.1).
Conditions where this may occur include The
aireraft flight manual or flight manual supplement
should provide information concerning this aspect
of TCAS so that flight crews may take appropriate
action (| [Pilot procedures on Level 3 and Aircraft
Flight Manual on Level 4).

Finally, principles may reflect tradeoffs between higher-
level goals and constraints. As examples:

PR2: Tradeoffs must be made between necessary protec-
tion (G1) and unnecessary advisories (SC5). This
is accomplished by controlling the sensitivity level,
which controls the tau, and therefore the dimen-
sions of the protected airspace around each TCAS-
equipped aircraft. The greater the sensitivity level,
the more protection is provided but the higher is the
incidence of unnecessary alerts. Sensitivity level is
determined by . . .

PR38: The need to inhibit CLIMB RAs because of inad-
equate aircraft climb performance will increase the
likelihood of TCAS II (a) issuing crossing maneu-
vers, which in turn increases the possibility that an
RA may be thwarted by the intruder maneuvering
(1SC7.1, FTA-1150), (b) causing an increase in
DESCEND RAs at low altitude (15C8.1), and (c)
providing no RAs if below the descend inhibit level
(1200 feet above ground level on takeoff and 1000
feet above ground level on approach).

4.2.3 Blackbox Behavior

Beginning at the third level or Blackbox Behavior level,
the specification starts to contain information more fa-
miliar to software engineers. Above this level, much of
the information, if located anywhere, is found in sys-
tem engineering specifications. The Blackbox Behavior
model at the whole system viewpoint specifies the sys-
tem components and their interfaces, including the hu-
man components (operators). Figure 4 shows a system-
level view of TCAS II and its environment. Each system

15

component behavioral description and each interface is
refined in the normal way along the horizontal dimen-
sions.

The environment description includes the assumed be-
havior of the external components (such as the altime-
ters and transponders for TCAS), including perhaps
failure behavior, upon which the correctness of the sys-
tem design is predicated, along with a description of
the interfaces between the TCAS system and its envi-
ronment. Figure 5 shows part of a state-machine de-
scription of an environment component, in this case an
altimeter.

Remember that the boundaries of a system are purely
an abstraction and can be set anywhere convenient for
the purposes of the specifier. In this case, I included
as environment any component that was already on the
aircraft or in the airspace control system and was not
newly designed or built as part of the TCAS effort.

Going along this level to the right, each arrow in Fig-
ure 4 represents a communication and needs to be de-
scribed in more detail. Each box (component) also
needs to be refined. What is included in the decom-
position of the component will depend on whether the
component is part of the environment or part of the sys-
tem being constructed. The language used to describe
the components may also vary. I use a state-machine
language called SpecTRM-RL (Specification Tools and
Requirements Methodology-Requirements Language),
which is a successor to the language (RSML) used in
our official TCAS II specification [LHHR94]. Figure 6
shows part of the SpecTRM-RL description of the be-
havior of the CAS (collision avoidance system) subcom-
ponent. SpecTRM-RL specifications are intended to be
both easily readable with minimum instruction and for-
mally analyzable (we have a set of analysis tools that
work on these specifications).

Note that the behavioral descriptions at this level are
purely blackbox: They describe the inputs and outputs
of each component and their relationships only in terms
of externally visible variables, objects, and mathemat-
ical functions. Any of these components (except the
humans, of course) could be implemented either in hard-
ware or software (and, in fact, some of the TCAS surveil-
lance functions are implemented using analog devices
by some vendors). Decisions about physical implemen-
tation, software design, internal variables, and so on are
limited to levels of the specification below this one.

Other information at this level might include flight crew
requirements such as description of tasks and opera-
tional procedures, interface requirements, and the test-
ing requirements for the functionality described on this
level. We have developed a visual operator task mod-
eling language that can be translated to SpecTRM-RL

| |
' OWN AIRCRAFT |
| Pilot |
| |
1 1
| . |
1 Displays and Mode Selector 1
| Aural Alerts |
|
| |
1 \ |
| |
1 1
| |
1 TCAS :
| |
| |
1 1
l / i \ Pressure l
| / Altimeter | |
| |
| |
1 Radio A/C Antennas Transmitter Mode-S i
| Altimeter Discretes Transponder < | AirData \
l Computer |
| |
| |
| |
|

Intruders Ground Station

Figure 4: System viewpoint showing the system interface topology for the Blackbox Behavior level of the TCAS
specification.

16

Operating Normally

RADIO

ALTIMETER

Malfunction Detected

Failed Self-Test

Not Sending Output

Malfunction Undetected

Sending Zeros

Sending Max Value

Stuck on Single Value

Sending Random Values

Figure 5: Part of the SpecTRM-RL description of an environment component (a radio altimeter). Modeling failure
behavior is especially important for safety analyses. In this example, (1) the altimeter may be operating correctly,
(2) it may have failed in a way that the failure can be detected by TCAS II (i.e., it fails a self-test and sends a status
message to TCAS or it is not sending any output at all), or (3) the malfunctioning is undetected and it sends an

incorrect radio altitude.

and thus permits integrated simulation and analysis of
the entire system, including human—-computer interac-
tions [BLIS].

4.2.4 Design Representation

The two lowest levels of an intent specification provide
the information necessary to reason about component
design and implementation. The fourth level, Design
Representation, contains design information. Its con-
tent will depend on whether the particular function is
being implemented using analog or digital devices or
both. In any case, this level is the first place where
the specification should include information about the
physical or logical implementation of the components.

For functions implemented on digital computers, the
fourth level might contain the usual software design doc-
uments or it might contain information different from
that normally specified. Again, this level is linked to
the higher level specification.

The design intent information may not all be completely
linked and traceable upward to the levels above the
Design Representation—for example, design decisions
based on performance or other issues unrelated to re-
quirements or constraints, such as the use of a particular

17

graphics package because the programmers are familiar
with it or it is easy to learn. Knowing that these deci-
sions are not linked to higher level purpose is important
during software maintenance and evolution activities.

The fourth level of the example TCAS intent specifi-
cation simply contains the official pseudocode design
specification. But this level might contain information
different than we usually include in design specifica-
tions. For example, Soloway et.al. [Sol88] describe the
problem of modifying code containing delocalized plans
(plans or schemas with pieces spread throughout the
software). They recommend using pointers to chain the
pieces together, but a more effective approach might be
to put the plan or schema at the higher design represen-
tation level and point to the localized pieces in the lower
level Code or Physical representation. The practicality
of this approach, of course, needs to be determined.

Soloway et.al. also note that reviewers have difficulty
reviewing and understanding code that has been opti-
mized. To assist in code reviews and walkthroughs, the
unoptimized code sections might be shown in the refine-
ment of the Design Representation along with mappings
to the actual optimized code at the lower implementa-
tion level.

The possibilities for new types of information and rep-

INTRUDER.STATUS Threat Other-Traffic

. OR
Other-Traffic e
- - Alt-Reporting in-state Lost TI|T||T||.
Proximate-Traffic - - sninninnisn
Bearing-Valid . FII.[|T|].
Potential-Threat A " el I
N | Range-Valid ., LR
Threat D | Proximate-Traffic-Condition .. FIL- |
Potential-Threat-Condition _ ., FIL- |
Other-Aircraft in-state On-Ground | |. ||. ||. || T]

Description: A threat is reclassified as other traffic if its altitude reporting
has been lost (A PR13) and either the bearing or range inputs are invalid;
if its altitude reporting has been lost and both the range and bearing are
valid but neither the proximate nor potential threat classification criteria
are satisfied; or the aircraft is on the ground (APR12).

Mapping to Level 2: APR23, APR29
Mapping to Level 4: V Section 7.1, Traffic-Advisory

Figure 6: Part of a SpecTRM-RL Blackbox Behavior level description of the criteria for downgrading the status of an
intruder (into our protected volume) from being labeled a threat to being considered simply as other traffic. Intruders
can be classified in decreasing order of importance as a threat, a potential threat, proximate traffic, and other traffic.
In the example, the criterion for taking the transition from state Threat to state Other Traffic is represented by an
AND/OR table, which evaluates to TRUE if any of its columns evaluates to TRUE. A column is TRUE if all of its
rows that have a “T” are TRUE and all of its rows with an “F” are FALSE. Rows containing a dot represent “don’t
care” conditions. The subscripts denote the type of expression (e.g., v for input variable, m for macro, ¢ for table,
and f for function) as well as the page in the document on which the expression is defined. A macro is simply an
AND/OR table used to implement an abstraction that simplifies another table.

18

resentations at this level of the intent hierarchy is the
subject of long-term research.

Other information at this level might include hardware
design descriptions, the human—computer interface de-
sign specification, the pilot operations (flight) manual,
and verification requirements for the requirements and
design specified on this level.

4.2.5 Physical Representation

The lowest level includes a description of the physical
implementation of the levels above. It might include the
software itself, hardware assembly instructions, training
requirements (plan), etc.

4.2.6 Example

To illustrate this approach to structuring specifications,
a small example is used related to generating resolution
advisories. TCAS selects a resolution advisory (vertical
escape maneuver) against other aircraft that are consid-
ered a threat to the aircraft on which the TCAS system
resides. A resolution advisory (RA) has both a sense
(upward or downward) and a strength (vertical rate),
and it can be positive (e.g., CLIMB) or negative (e.g.,
DON’T CLIMB). In the software to evaluate the sense
to be chosen against a particular threat, there is a pro-
cedure to compute what is called a “Don’t-Care-Test.”
The software itself (Level 5) would contain comments
about implementation decisions and also a pointer up
to the Level 4 design documentation and from there up
to the Level 3 black-box description of this test, shown
in Figure 7.

In turn, the blackbox (Level 3) description of the Dont-
Care-Test would be linked to Level 2 explanations of
the intent of the test and the reason behind (why) the
design of the test. For example, our Level 2 TCAS
intent specification contains the following:

PR35: Don’t-Care-Test. When TCAS is
displaying an RA against one threat and then
attempts to choose a sense against a second
threat, it is often desirable to choose the same
sense against it as was chosen against the first
threat, even if this sense is not optimal for the
new threat. One advantage is display conti-
nuity (1 SC6). Another advantage is that the
pilot may maneuwver more sharply to increase
separation against both threats. If a dual sense
advisory is given, such as DON’T CLIMB AND
DON’T DESCEND, a vertical maneuver to in-
crease separation against one threat reduces
separation against the other threat. The most

19

important advantage, however, is to avoid sac-
rificing separation inappropriately against the
first threat in order to gain a marginal advan-
tage against the second threat.

The don’t-care test determines the relative
advantages of optimizing the sense against the
new threat versus selecting the same sense for
both threats. When the former outweighs the
latter, the threat is called a do-care threat; oth-
erwise, the threat is o don’t-care threat.

This Level 2 description in turn points up to high-level
goals to maintain separation between aircraft and con-
straints (both safety-related and non-safety-related) on
how this can be achieved. We found while constructing
the TCAS intent specification that having to provide
these links identified goals and constraints that did not
seem to be documented anywhere but were implied by
the design and some of the design documentation.

Understanding the design of the Don’t-Care-Test also
requires understanding other concepts of sense selection
and aircraft separation requirements that are used in
the blackbox description (and in the implementation) of
the Don’t-Care-Test procedure. For example, the sepa-
ration between aircraft in Figure 7 is defined in terms
of ALIM. The concept is used in the Level 3 documen-
tation, but the meaning and intent behind using the
concept is defined in the basic TCAS design principles
at Level 2:

PR2: ALIM. ALIM is the desired or “ade-
quate” amount of separation between aircraft
that TCAS is designed to meet. This amount
varies from 400 to 700 feet, depending on own
aircraft’s altitude. ALIM includes allowances to
account for intruder and own altimetry errors
and vertical tracking uncertainties that affect
track projections (see PR22.3). The value of
ALIM increases with altitude to reflect increased
altimetry error (1 SC4.5) and the need to in-
crease tracked separation at higher altitudes.

The blackbox behavioral specification shown in Figure 7
also points to the module that implements this required
behavior in the design specification on Level 4. For
TCAS 1II, pseudocode was used for the design speci-
fication. Figure 8 shows the pseudocode provided by
MITRE for the Don’t-Care-Test.

The structure of intent specifications has advantages in
solving various software engineering problems—such as
changing requirements, program understanding, main-
taining and changing code, and validation—as discussed
in the next section.

AIRCRAFT(i).STATUS Macro: Don’t-Care-Test(i)

N\ OR
New o
V Aircraft(i).Capability ., =TCAS-TAIRA FI|F||F||F
Established A Aircraft(i).Status in-state New T||T||T||T
N | Alrcraft(i).Sense in-state Climb T{.||T||.
D | Aircraft(i).Sense in-state Descend T T
Down-Separation, ... <ALIM [NPR1] F
AIRCRAFT(i).SENSE Up-Separation, ., <ALIM WPRL] | | | FI]- |-
Own-RA-Sense in-state Descend T
Climb Own-RA-Sense in-state Climb AT
Descend Some Aircraft(j).Sense not-in-same-state-as Nin
Aircraft(i).Sense T
Unknown I B
Some Aircraft(j). Vertical-Miss-Distance. .,
(RELALT, TAUM, TRTRU, TVPE) | | || || T|| T
< Separation-Second-Choice(i) , ..

OWN-RA-SENSE

Comment: The last two entries in the AND/OR table ensure that
No RA there exists at least one other aircraft that is a threat and has
selected a sense opposite that of the current aircraft, and that
the modeled separation for that aircraft following a leveloff is
worse than the modeled separation for the current aircraft in the
opposite (second choice) sense.

Climb

Descend

Mapping to Level 2: APR35
Mapping to Level 4: V Sense.Dont-care-test

Abbreviations:

ALIM = Positive-RA-Altitude-Limit-Threshold . [Alt-Layer-Value,]

RELALT = Own-Tracked-Alt + (4 s x Own-Tracked-Alt-Rate

£-529) - Other-Tracked-Alt

f-528 f-524

TAUM = Min (Max (Modified-Tau-Capped 10 s, True-Tau-Uncapped

f-522 ' -542)

TRTRU = True-tau-Capped, ,,

TVPE = XTVPETBLX [Other-Sensitivity-Level

t-552 v-391]

Figure 7: This macro is used in the defining which resolution advisory will be chosen when multiple aircraft (threats)
are involved, among the most complicated aspects of the collision avoidance logic. Abbreviations are used to enhance
readability.

20

PROCESS Sense.Don’t_care_test;

‘ (1) Don't_Care_Test,,—357, (1)Climb_Desc._Inhibit,_s317 ‘

{WL threat = threat whose WL entry is input to task}
{TF threat = threat examined in loop below}
IF (either sense provides adequate separation)
THEN SET Don’t_care flag for WL threat;
ELSE CLEAR Don’t_care flag for WL threat;
IF (own resolution advisories show a Positive in second-choice sense)
THEN calculate own altitude following a leveloff;
REPEAT WHILE (more entries in threat file AND don’t_care flag
for WL threat not set);
IF (resolution against TF threat shows a Positive in same sense
as second choice for WL threat)
THEN calculate altitude relative to TF threat and
time for leveloff;
{result of ‘do care’ for WL threat}
CALL vertical miss_distance_calculation
IN (rel alt, rel vert rate, start time (WL threat)
end time (WL threat), clip time (WL threat));
IF (sep with leveloff vs. TR threat less than that
for second choice maneuver vs. WL threat)
THEN SET Don’t_care flag for the WL threat;
{allow second choice sense}
Select next threat file entry;
ENDREPEAT;
END Don’t_care_test;

Figure 8: The pseudocode for the Don’t-Care-Test.

21

5 Intent Specification Support
for Software Engineering Prob-
lem Solving

As stated earlier, our representations of problems have
an important effect on our problem-solving ability and
the strategies we use. A basic hypothesis of this paper
is that intent specifications will support the problem
solving required to perform software engineering tasks.
This hypothesis seems particularly relevant with respect
to tasks involving education and program understand-
ing, search, design, validation, safety assurance, main-
tenance, and evolution.

5.1 Education and Program Under-
standing

Curtis et.al. [CKI88] did a field study of the require-
ments and design process for 17 large systems. They
found that substantial design effort in projects was
spent coordinating a common understanding among the
staff of both the application domain and of how the
system should perform within it. The most successful
designers understood the application domain and were
adept at identifying unstated requirements, constraints,
or exception conditions and mapping between these and
the computational structures. This is exactly the infor-
mation that is included in the higher levels of intent
specifications and the mappings to the software. Thus
using intent specifications should help with education in
the most crucial aspects of the system design for both
developers and maintainers and augment the abilities of
both, i.e., increase the intellectual manageability of the
task.

5.2 Search Strategies

Vicente and Rasmussen have noted that means-ends hi-
erarchies constrain search in a useful way by provid-
ing traceability from the highest level goal statements
down to implementations of the components [VR92]. By
starting the search at a high level of abstraction and
then deciding which part of the system is relevant to
the current goals, the user can concentrate on the sub-
tree of the hierarchy connected to the goal of interest:
The parts of the system not pertinent to the function of
interest can easily be ignored. This type of “zooming-
in” behavior has been observed in a large number of
psychological studies of expert problem solvers. Recent
research on problem-solving behavior consistently shows
that experts spend a great deal of their time analyzing
the functional structure of a problem at a high level of

22

abstraction before narrowing in on more concrete details
[BP87, BS91, GC88, Ras86, Ves85].

With other hierarchies, the links between levels are not
necessarily related to goals. So although it is possible
to use higher levels of abstraction in a standard decom-
position or refinement hierarchy to select a subsystem
of interest and to constrain search, the subtree of the
hierarchy connected to a particular subsystem does not
necessarily contain system components that are relevant
to the goals and constraints that the problem solver is
considering.

Upward search in the hierarchy, such as that required
for debugging, is also supported by intent specifications.
Vicente and Rasmussen claim (and have experimental
evidence to support) that in order for operators to cor-
rectly and consistently diagnose faults, they must have
access to higher-order functional information since this
information provides a reference point defining how the
system should be operating. States can only be de-
scribed as errors or faults with reference to the intended
purpose. Additionally, causes of improper functioning
depend upon aspects of the implementation. Thus they
are explained bottom up. The same argument seems to
apply to software debugging. There is evidence to sup-
port this hypothesis. Using protocol analysis, Vessey
found that the most successful debuggers had a “sys-
tem” view of the software [Ves85].

5.2.1 Design Criteria and Evaluation

An interesting implication of intent specifications is
their potential effect on system and software design.
Such specifications might not only be used to under-
stand and validate designs but also to guide them.

An example of a design criterion appropriate to intent
specifications might be to minimize the number of one-
to-many mappings between levels in order to constrain
downward search and limit the effects of changes in
higher levels upon the lower levels. Minimizing many-
to-many (or many-to-one) mappings would, in addition,
ease activities that require following upward links and
minimize the side effects of lower-level changes.

Intent specifications assist in identifying intent-
related structural dependencies (many-to-many map-
pings across hierarchical levels) to allow minimizing
them during design, and they clarify the tradeoffs be-
ing made between conflicting goals. Software engineer-
ing attempts to define coupling between modules have
been limited primarily to the design level. Perhaps an
intent specification can provide a usable definition of
coupling with respect to emergent properties and to as-
sist in making design tradeoffs between various types of
high-level coupling.

5.3 Minimizing the Effects of Require-
ments Changes

Hopefully, the highest levels of the specification will not
change, but sometimes they do, especially during devel-
opment as system requirements become better under-
stood. Functional and intent aspects are represented
throughout an intent specification, but in increasingly
abstract and global terms at the higher levels. The high-
est levels represent more stable design goals that are less
likely to change (such as detecting potential threats in
TCAS), but when they do they have the most important
(and costly) repercussions on the system and software
design and development, and they may require analy-
sis and changes at all the lower levels. We need to be
able to determine the potential effects of changes and,
proactively, to design to minimize them.

Reversals in TCAS are an example of this. About four
years after the original TCAS specification was writ-
ten, experts discovered that it did not adequately cover
requirements involving the case where the pilot of an
intruder aircraft does not follow his or her TCAS ad-
visory and thus TCAS must change the advisory to its
own pilot. This change in basic requirements caused
extensive changes in the TCAS design, some of which
introduced additional subtle problems and errors that
took years to discover and rectify.

Anticipating exactly what changes will occur and de-
signing to minimize the effects of those changes is dif-
ficult, and the penalties for being wrong are great. In-
tent specifications theoretically provide the flexibility
and information necessary to design to ease high-level
requirements changes without having to predict exactly
which changes will occur: The abstraction and design
are based on intent (system requirements) rather than
on part-whole relationships (which are the least likely
to change with respect to requirement or environment
changes).

5.4 Design of Run-Time Assertions

Finally, intent specifications may assist software engi-
neers in designing effective fault-tolerance mechanisms.
Detecting unanticipated faults during execution has
turned out to be a very difficult problem. For exam-
ple, in one of our empirical studies, we found that pro-
grammers had difficulty writing effective assertions for
detecting errors in executing software [LCKS90]. I have
suggested that using results from safety analyses might
help in determining which assertions are required and
where to detect the most important errors [Lev9l]. The
information in intent specifications tracing intent from
requirements, design constraints, and hazard analyses

23

through the system and software design process to the
software module (and back) might assist with writing ef-
fective and useful assertions to detect general violations
of system goals and constraints.

5.5 Safety Assurance

A complete safety analysis and methodology for build-
ing safety-critical systems requires identifying the
system-level safety requirements and constraints and
then tracing them down to the components [Lev95]. Af-
ter the safety-critical behavior of each component has
been determined (including the implications of its be-
havior when the components interact with each other),
verification is required that the components do not vio-
late the identified safety-related behavioral constraints.
In addition, whenever any change is made to the sys-
tem or when new information is obtained that brings
the safety of the design into doubt, revalidation is re-
quired to ensure that the change does not degrade sys-
tem safety. To make this verification (and reverifica-
tion) easier, safety-critical parts of the software should
be isolated and minimized.

This analysis cannot be performed efficiently unless
those making decisions about changes and those actu-
ally making the changes know which parts of the system
affect a particular safety design constraint. Specifica-
tions need to include a record of the design decisions
related to basic safety-related system goals, constraints,
and hazards (including both general design principles
and criteria and detailed design decisions), the assump-
tions underlying these decisions, and why the decisions
were made and particular design features included. In-
tent specifications capture this information and provide
the ability to trace design features upward to specific
high-level system goals and constraints.

5.6 Software Maintenance and Evolu-
tion

Although intent specifications provide support for a top-
down, rational design process, they may be even more
important for the maintenance and evolution process
than for the original designer, especially of smaller or
less complex systems. Software evolution is challenging
because it involves many complex cognitive processes—
such as understanding the system’s structure and func-
tion, understanding the code and documentation and
the mapping between the two, and locating inconsisten-
cies and errors—that require complex problem-solving
strategies.

Intent specifications provide the structure required for

recording the most important design rationale informa-
tion, i.e., that related to the purpose and intent of the
system, and locating it when needed. They, therefore,
can assist in the software change process.

While trying to build a model of TCAS, we discov-
ered that the original conceptual model of the TCAS
system design had degraded over the years as changes
were made to the pseudocode to respond to errors found,
new requirements, better understanding of the problem
being solved, enhancements of various kinds, and er-
rors introduced during previous changes. The specific
changes made often simplified the process of making the
change or minimized the amount of code that needed
to be changed, but complicated or degraded the origi-
nal model. Not having any clear representation of the
model also contributed to its degradation over the ten
years of changes to the pseudocode.

By the time we tried to build a representation of the
underlying conceptual model, we found that the system
design was unnecessarily complex and lacked concep-
tual coherency in many respects, but we had to match
what was actually flying on aircraft. I believe that mak-
ing changes without introducing errors or unnecessarily
complicating the resulting conceptual model would have
been simplified if the TCAS staff had had a blackbox
requirements specification of the system. Evolution of
the pseudocode would have been enhanced even more if
the extra intent information had been specified or orga-
nized in a way that it could easily be found and traced
to the code.

Tools for restructuring code have been developed to
cope with this common problem of increasing com-
plexity and decreasing coherency of maintained code
[GN95]. Using intent specifications will not eliminate
this need, but we hope it will be reduced by provid-
ing specifications that assist in the evolution process
and, more important, assist in building software that is
more easily evolved and maintained. Such specifications
may allow for backing up and making changes in a way
that will not degrade the underlying conceptual model
because the model is explicitly described and its impli-
cations traced from level to level. Intent specifications
may also allow controlled changes to the higher levels of
the model if they become necessary.

Maintenance and evolution research has focused on ways
to identify and capture information from legacy code.
While useful for solving important short-term problems,
our long term goal should be to specify and design sys-
tems that lend themselves to change easily—that is,
evolvable systems. Achieving this goal requires devis-
ing methodologies that support change throughout the
entire system life cycle—from requirements and specifi-
cation to design, implementation and maintenance. For

24

example, we may be able to organize code in a way
that will minimize the amount of code that needs to be
changed or that needs to be evaluated when deciding if
a change is safe or reasonable.

In summary, I believe that effective support for such
evolvable systems will require a new paradigm for
specification and design and hypothesize that such a
paradigm might be rooted in abstractions based on in-
tent. Intent specifications provide the framework to in-
clude the information maintainers need in the specifica-
tion. They increase the information content so that less
inferencing (and guessing) is required. Intent specifica-
tions not only support evolution and maintenance, but
they may be more evolvable themselves, which would
ease the problem of keeping documentation and imple-
mentation consistent. In addition, they also provide the
possibility of designing for evolution so that the systems
we build are more easily maintained and evolved.

6 Conclusions

Specifications are constructed to help us solve prob-
lems. Any theory of specification design, then, should
be based on fundamental concepts of problem-solving
behavior. It should also support the basic systems en-
gineering process. This paper has presented one such
approach to system and software specifications based
on underlying ideas from psychology, systems theory,
human factors, system engineering, and cognitive engi-
neering.

The choice of content, structure, and form of specifi-
cations have a profound effect on the kind of cognitive
processing that the user must bring to bear to use a
specification for the tasks involved in system and soft-
ware design and construction, maintenance, and evolu-
tion. Intent specifications provide a way of coping with
the complexity of the cognitive demands on the builders
and maintainers of automated systems by basing our
specifications on means—ends as well as part—whole ab-
stractions. I believe that the levels of the means-ends
hierarchy reflect a rational design philosophy for the sys-
tems engineering of complex systems and thus a rational
way to specify the results of the process. They pro-
vide mapping (tracing) of decisions made earlier into
the later stages of the process. Design decisions at each
level are linked to the goals and constraints they are
derived to satisfy. A seamless (gapless) progression is
recorded from high-level system requirements down to
component requirements, design, and implementation.

In addition, intent specifications provide a way of in-
tegrating formal and informal aspects of specifications.
Completely informal specifications of complex systems

tend to be unwieldy and difficult to validate. Com-
pletely formal specifications provide the potential for
mathematical analysis and proofs but omit necessary
information that cannot be specified formally. Some for-
mal approaches require building special models in addi-
tion to the regular system specifications. I believe that
the wide-spread use of formal specifications in indus-
try will require the development of formal specifications
that are readable with minimal training requirements
and that are integrated with informal specifications.
Ideally, formal analysis should not require building spe-
cial models that duplicate the information included in
the specification or it is unlikely that industry will find
the use of formal methods to be cost effective.

An example intent specification for TCAS II has been
constructed and was used as an example in this paper.
The reader is cautioned, however, that intent specifica-
tions are a logical abstraction that can be realized in
many different physical ways. That is, the particular
organization used for the TCAS specification is simply
one possible physical realization of the general logical
organization inherent in intent specifications.

7 REFERENCES

[AT90] D. Ackermann and M. J. Tauber, editors.
Mental Models and Human-Computer Inter-

action. North-Holland, Amsterdam, 1990.

[Ash62] W.R. Ashby. Principles of the self-organizing
system. in H. Von Foerster and G.W. Zopf
(eds.) Principles of Self-Organization, Perga-

mon, 1962.

[BP87] M. Beveridge and E. Parkins. Visual represen-
tation in analogical program solving. Memory

and Cognition, v. 15, 1987.

[Bro83] R. Brooks. Towards a theory of comprehen-
sion of computer programs. Int. Journal of

Man-Machine Studies, 18:543-554, 1983.

[BL98] M. Brown and N. G. Leveson. Modeling
Controller Tasks for Safety Analysis. Second
Workshop on Human Error and System De-

velopment, Seattle, April 1998.

[BS91] M.A. Buttigieg and P.M. Sanderson. Emer-
gent features in visual display design for two
types of failure detection tasks. Human Fac-

tors, 33, 1991.

[Cas91] S.M. Casner. A task analytic approach to the
automated design of graphic presentations.
ACM Transactions on Graphics, vol. 10, no.

2, April 1991.

25

[Che81] P. Checkland. Systems Thinking, Systems

Practice. John Wiley & Sons, 1981.

B. Curtis, H. Krasner and N. Iscoe. A field
study of the software design process for large
systems. Communications of the ACM, 31(2):
1268-1287, 1988.

[CKI8S]

[DB83] DeKleer J, and J.S. Brown. Assumptions and
ambiguities in mechanistic mental models. In
D. Gentner and A.L. Stevens (eds.), Mental

Models, Lawrence Erlbaum, 1983.

[DV96] N. Dinadis and K.J. Vicente. Ecological inter-
face design for a power plant feedwater sub-
system. IEEE Transactions on Nuclear Sci-

ence, in press.

[Dor87] D. Dorner. On the difficulties people have in
dealing with complexity. In Jens Rasmussen,
Keith Duncan, and Jacques Leplat, editors,
New Technology and Human Error, pages 97-

109, John Wiley & Sons, New York, 1987.

[Dun87] K.D. Duncan. Reflections on fault diagnostic
expertise. In Jens Rasmussen, Keith Duncan,
and Jacques Leplat, editors, New Technology
and Human Error, pages 261-269, John Wiley

& Sons, New York, 1987.

B. Fischoff, P. Slovic, and S. Lichtenstein.
Fault trees: Sensitivity of estimated failure
probabilities to problem representation. Jour-
nal of Experimental Psychology: Human Per-
ception and Performance, vol. 4, 1978.

[FSL78]

[FG79] Fitter and Green. When do diagrams make
good programming languages?. Int. J. of

Man—Machine Studies, 11:235-261, 1979.

R. Glaser and M. T. H. Chi. Overview. In
R. Glaser, M. T. H. Chi, and M. J. Farr, edi-
tors, The Nature of Expertise. Erlbaum, Hills-
dale, New Jersey, 1988.

W. Griswold and D. Notkin. Architectural
tradeoffs for a meaning-preserving program
restructuring tool. IEEE Transactions on
Software Engineering, 21(4):275-287, March
1995.

[GCSg]

[GNO5]

[Har82] G. Harman. Logic, reasoning, and logic form.
In Language, Mind, and Brain, T.W. Simon
and R.J. Scholes (eds.), Lawrence Erlbaum

Associates, 1982.

[JLHMO1] M.S. Jaffe, N.G. Leveson, M.P.E. Heim-
dahl, and B.Melhart. Software requirements
analysis for real-time process-control systems.
IEEE Trans. on Software Engineering, SE-
17(3), March 1991.

[KS90]

[KHS85]

[Let86]

[Levol]

[Lev95)

C.A. Kaplan and H.A. Simon. In search of
insight. Cognitive Psychology, vol. 22, 1990.

K. Kotovsky, J.R. Hayes, and H.A. Simon.
Why are some problems hard? Evidence from
Tower of Hanoi. Cognitive Psychology, vol. 17,
1985.

S. Letovsky. Cognitive processes in program
comprehension. In Proceedings of the First
Workshop on Empirical Studies of Program-
mers, pages 58-79. Ablex Publishing, Nor-
wood, NJ, 1986.

N.G. Leveson. Software safety in embedded
computer systems. Communications of the
ACM, vol. 34, no. 2, February 1991.

N.G. Leveson. Safeware: System Safety and
Computers. Addison-Wesley Publishing Com-
pany, 1995.

[LCKS90] N.G. Leveson, S.S. Cha, J.C. Knight, and

T.J. Shimeall. The use of self-checks and vot-
ing in software error detection: An empirical
study. IEEE Transactions on Software Engi-
neering, vol. SE-16, no. 4, April 1990.

[LHHR94] N.G. Leveson, M. P.E. Heimdahl, H. Hil-

[LPS97]

[Luc87]

[New66]

[Nor93]

[RP95]

dreth, and J.D. Reese. Requirements spec-
ification for process-control systems. Trans.
on Software Engineering, SE-20(9), Septem-
ber 1994.

N.G. Leveson, L.D. Pinnel, S.D. Sandys, S.
Koga, and J.D. Reese. Analyzing software
specifications for mode confusion potential.
Workshop on Human Error and System De-
velopment, Glascow, March 1977.

D.A. Lucas. Mental models and new technol-
ogy. In Jens Rasmussen, Keith Duncan, and
Jacques Leplat, editors, New Technology and
Human FError, pages 321-325. John Wiley &
Sons, New York, 1987.

J.R. Newman. Extension of human capability
through information processing and display
systems. Technical Report SP-2560, System
Development Corporation, 1966.

D.A. Norman. Things that Make us Smart.
Addison-Wesley Publishing Company, 1993.

J. Rasmussen and A. Pejtersen. Virtual ecol-
ogy of work. In J. M. Flach, P. A. Hancock,
K. Caird and K. J. Vicente, editors An FEco-
logical Approach to Human Machine Systems
I: A Global Perspective, Erlbaum, Hillsdale,
New Jersey, 1995..

26

[Pen87]

[Ras85]

[Ras86]

[Ras90]

[Rea90]

[SWB95]

[SM79]

[Smi89]

[SE84]

[Sol88]

[Ves85)

[Vic91]

N. Pennington. Stimulus structures and men-
tal representations in expert comprehension
of computer programs. Cognitive Psychology
19:295-341,1987.

J. Rasmussen. The Role of hierarchical knowl-
edge representation in decision making and
system management. IEEE Transactions on
Systems, Man, and Cybernetics, vol. SMC-15,
no. 2, March/April 1985.

J. Rasmussen. Information Processing and
Human—Machine Interaction: An Approach
to Cognitive Engineering. North Holland,
1986.

J. Rasmussen. Mental models and the con-
trol of action in complex environments. In
D. Ackermann and M.J. Tauber (eds.) Men-
tal Models and Human—Computer Interaction,
Elsevier (North-Holland), 1990, pp. 41-69.

J. Reason. Human Error. Cambridge Univer-
sity Press, 1990.

N.D. Sarter, D.D. Woods, and C.E. Billings.
Automation Surprises. in G. Salvendy (Ed.)
Handbook of Human Factors/Ergonomics,
2nd Edition, Wiley, New York, in press.

B. Shneiderman and R. Mayer. Syntac-
tic/semantic interactions in programmer be-
havior: A model and experimental results.
Computer and Info. Sciences, 8(3):219-238,
1979.

G.F. Smith. Representational effects on the
solving of an unstructured decision problem.
IEEE Transactions on Systems, Man, and
Cybernetics, vol. SMC-19, 1989, pp. 1083-
1090.

E. Soloway and K. Ehrlich. Empirical studies
of programming knowledge. IEEE Trans. on
Software Engineering, vol. SE-10(5):595-609,
1984.

E. Soloway, J. Pinto, S. Letovsky, D. Littman,
and R. Lampert. Designing documentation to
compensate for delocalized plans. Communi-
cations of the ACM, 31(2): 1259-1267, 1988.

I. Vessey. Expertise in debugging computer
programs: A process analysis. Int. J. of Man—
Machine Studies, vol. 23, 1985.

K.J. Vicente. Supporting knowledge-based
behavior through ecological interface design.
Ph.D. Dissertation, University of Illinois at
Urbana-Champagne, 1991.

[VCP95] K.J. Vicente, K. Christoffersen and A. Perek-

[VR90]

[VR92]

[Wei89]

[Wo095]

lit. Supporting operator problem solving
through ecological interface design. IEEE
Transactions on Systems, Man, and Cyber-
netics, 25(4):529-545, 1995.

K.J. Vicente and J. Rasmussen. The ecol-
ogy of human—machine systems II: Mediating
direct perception in complex work domains.
Ecological Psychology, 2(3):207-249, 1990.

K.J. Vicente and J. Rasmussen. Ecological in-
terface design: Theoretical foundations. IEEE
Trans. on Systems, Man, and Cybernetics, vol
22, No. 4, July/August 1992.

E.L. Wiener. Human Factors of Advanced
Technology (“Glass Cockpit”) Transport Air-
craft. NASA Contractor Report 177528,
NASA Ames Research Center, June 1989.

D.D. Woods. Toward a theoretical base
for representation design in the computer
medium: Ecological perception and aiding hu-
man cognition. In J. M. Flach, P. A. Hancock,
K. Caird and K. J. Vicente, editors An Eco-
logical Approach to Human Machine Systems
I: A Global Perspective, Erlbaum, Hillsdale,
New Jersey, 1995.

27

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

