Software Engineering: A Look Back and A
Path to the Future

Nancy G. Leveson
University of Washington

December 14, 1996

Trying to predict the future of our field, as others have discovered, is risky:
Our technology is changing so fast that the information necessary to make
good predictions is simply not available. Instead, I thought I would look at
the past and current state of software engineering and use this viewpoint to
formulate some hypotheses about what the future should hold, that is, some
of the paths I would like to see us take.

Software engineering has come a long way since the sixties and the first
attempts to make our field into an engineering discipline. In fact, the first
steps included the name itself, which reflected the goal of introducing engi-
neering discipline into the software development process. Our achievements
toward this goal include a greater understanding of the role of abstraction and
separation of concerns in software engineering, the introduction of modular-
ity and the notions of a software life cycle, process, measurement, abstract
specifications and notations, etc.

Most of these ideas come directly from engineering, although they needed
to be adapted to the unique problems that arise in working with different
and more abstract materials. Although hardware engineers are also involved
in design, they are guided and limited by the natural laws of the materials
with which their designs must be implemented. Software appears not to have
these same types of natural limits, but to be infinitely flexible and malleable.
In reality, the limits exist but are simply less obvious and more related to
limitations in human abilities than limitations in the physical world.

Thus the first fifty years may be characterized as our learning about the
limits of our field, which are intimately bound up with the limits of complexity
with which humans can cope. Our tools and techniques are used to assist us in
dealing with this complexity, that is, to help make our systems intellectually



managable. We do this by imposing on the software development process the
discipline that nature imposes on the hardware engineering process. We have
been learning what types of discipline are necessary and how to best enforce
them.

Besides engineering and management discipline, we have also been learning
how to apply mathematical rigor and discipline to software development. To
this end, many of the pioneers of our field have shown the relationship of soft-
ware with mathematics and the use of mathematics in solving our problems.
These achievements include the axiomatization of programming languages and
data types, formal verification, and formal specification and analysis.

Although we have come a long way in building the engineering and math-
ematical foundations of software engineering and in improving our ability to
build complex software, at the same time the problems we are attempting
to solve have been getting more difficult: Man’s reach always seems to ex-
ceed his grasp. The problems are also changing in their fundamental nature.
The earlier emphasis on efficiency has shifted to an emphasis on correctness
and utility as we become increasingly dependent on computers in applications
where losses due to computer errors are potentially huge. Economic consider-
ations have increased the emphasis on reuse and reusable components. And
although our early days were filled with building new software, we are more
and more consumed with the problems of maintaining and evolving existing
software. In addition, as our systems grow bigger and require large teams of
designers, we have started to examine the ways humans collaborate and to
devise ways to assist them to work together effectively.

These same trends will continue in the next fifty years, with perhaps even
less emphasis on coding and more on the other aspects of the software engi-
neering process. But there will be new challenges and perhaps new approaches
and directions that will be required to solve the problems of the next century.
To address these challenges, we may need to shift our emphases and follow
some new paths.

If our problems in building and interacting with complex systems are really
rooted in intellectual managability and human limits in managing complexity,
then we will need to stretch these limits to build ever more complex systems.
But basic human ability is not changing. To successfully build and operate
ever more complex systems, we will need to find ways to augment human
ability, both in terms of system designers and system users. Achieving this
goal, I believe, will require augmenting our engineering and mathematical
foundations with ideas from cognitive psychology and the social sciences.

While our first 50 years have seen us develop our concepts of software as an
engineered product and a mathematical object, less attention has been focused



on software as a human product and on computers as devices that interact
with and assist humans (as opposed to replacing them). Software engineering
is a problem-solving activity and software engineering techniques and tools are
used to assist humans in this activity—the effectiveness of our tools could be
greatly increased if we based their design on scientific knowledge about how
humans solve problems. Our software products are also used or monitored by
humans, and the way that our software is designed to interact with humans is
a critical factor in whether the software is useful to or usable by them.

When creating new software engineering methods and tools, we often inad-
vertently enforce particular problem-solving strategies, often the one preferred
by the designer of the method or tool. We need to learn more about hu-
man problem solving, particularly with respect to software engineering tasks,
and give our students a better grounding in cognitive psychology. For exam-
ple, psychologists have found that not only do problem-solving strategies vary
among individuals, but individuals vary their strategies dynamically during
a problem-solving activity. To design more effective and usable software en-
gineering methods and tools, we need to ensure they do not limit or assume
certain problem-solving strategies but instead support multiple strategies and
allow for shifting among strategies during problem solving.

Our techniques and tools not only have an effect on our problem-solving
ability, they also affect the errors we make while solving those problems. Thus,
our tools and methods should also reflect human limitations and capabilities,
which will require our learning more about human errors and limitations in
performing software engineering tasks and in using our tools and products.

In addition to these new challenges in making our software engineering
techniques more human-centered, important problems are starting to arise
in designing human-software interfaces and interactions. In the engineering
world, the challenges in building high-tech systems composed of humans and
machines have necessitated augmenting traditional human factors approaches
to consider the capabilities and limitations of the human element in complex
systems. Cognitive engineering is a term that has come to denote the com-
bination of ideas from systems engineering, cognitive psychology, and human
factors to cope with these challenges. With computers playing more and more
important roles in these systems, computer science and especially software
engineering needs to be integrated with these other concerns.

I believe that many of the problems arising in our attempts to build com-
plex systems are rooted in the lack of integration of software engineering,
system engineering, and cognitive engineering. We need to build more bridges
between these three disciplines. The problems in building complex systems
today often arise in the interfaces between the components—where the com-



ponents may be hardware, software, or human. One example is the recent
glass cockpit aircraft accidents where the events have been blamed on human
error, but more properly reflect difficulties in the collateral design of the air-
craft, the avionics systems, and the demands placed on the pilots. We need
methodologies that ease coordinated design of the components and the in-
terfaces and interactions between the components and that provide seamless
transitions and mappings between the disciplines involved.

Another example of the important questions we need to tackle is the rea-
sonableness of our goals in terms of replacing humans (such as pilots, nurses,
factory workers) by computers. Aside from the moral and philosophical ques-
tions, there are technical ones: Have we oversold (albeit inadvertently) the
ability of computers to replace human intelligence and ability? Often, we sim-
ply automate what can be automated while leaving humans with an assortment
of miscellaneous tasks that may be harder to do correctly in isolation. At the
same time, we ask humans to perform what are often impossible monitoring
or backup tasks and then blame them when the inevitable accidents occur. Do
we increase risk or simply change it by using computers to provide control of
potentially dangerous systems rather than assisting humans in doing a better
job of controlling them? The latter is more difficult because it requires a deep
understanding of human capabilities and limitations, but will it get us farther
in the end? These are some of the new issues I believe software engineers
will have to confront. To solve them will require recognizing the important
role of psychology in software engineering, augmenting our foundations with
appropriate knowledge, and building links with cognitive engineering.

Our links with the social sciences also need to be strengthened. Truly
understanding and advancing a technology requires understanding its history,
scientific basis, and the cultural and social milieu in which it operates. Tech-
nology does not exist outside of the context of a human society:

We pretend that technology, our technology, is something of a life
force, a will, and a thrust of its own, on which we can blame all,
with which we can explain all, and in the end by means of which
we can excuse ourselves [T. Cuyler Young in Man in Nature edited
by Louis D. Levine, Royal Ontario Museum, Toronto, 1975].

We need to place more emphasis on understanding the effects of the tech-
nology we create on the world. We have had a tremendous effect on human life
and human society, but only a few computer scientists seem to be considering
these effects to any degree. While caught up in the fervor and excitement
of developing a new and revolutionary new technology with the potential to
change the world in profound ways, we might be excused for concentrating

4



on the technical to the exclusion of the social. But we have now matured to
the point where we need to start assuming responsibility for what we do. A
basic precept in most engineering professional codes of conduct is that engi-
neers shall hold paramount the safety, health, and welfare of the public in the
performance of their professional duties. As a maturing field, we will need to
develop our own standards and codes of professional conduct and more fully
accept our responsibility for the uses and potential misuses of our inventions,
for the effect we have on society and human life, and for our role in those
events.

The history of software engineering has been one of coming to see that what
originally seemed to be limitless actually does have limits, understanding the
nature of those limits, and then searching for ways to expand them. To con-
tinue our progress, we will need to continue building our scientific knowledge
about those limits and searching for new and different ways to stretch them.



