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Lecture 32 Powered Flight Guidance to Maximize Final Energy

Lagrange Multipliers Example 
Consider a simple example of the use of Lagrange Multipliers: 

Find the point on the curve x2y = 2 which is nearest the origin. 
Here we must make x2 + y2 a minimum subject to the constraint x2y − 2 = 0.  
Solution: Find the minimum of the function f(x, y) =  x2 + y2 − λ(x2y − 2) when x and 
y are unconstrained: 

∂f	 ∂f
= 2x − λ2xy = 0  = 2y  

∂x	 ∂y 
− λx2 = 0  

from which we find: λ = 1  x = 
√ 

± 2 y = 1 so that the two points at minimum  
distance from the origin are 

√ 
2, 1 and 

√
− 2, 1. 

Thrust Vector Attitude Control to Maximize Total Energy 

State Equations ⎡ 
x v x 

d
 ⎢⎣
y
 vy
  dx
=
 
 = f [x(t), β(t)]

dt
 vx  

⎤ ⎡
β(t) 

⎤
⇐⇒

dt

vy 

⎥⎦
 ⎢⎣

aT cos 

aT sin β(t) − g

⎥⎦

Performance Index 

J = gy(t 1
1) +  [v2

x(t1) +  v2(t )] ⇐⇒	 J = gx (t ) +  1 2 2 t 2
y 1 2 1 [x3( 1) +  x4 (t2 1)]

Admissible Variations 

x(t) =  x m(t) +  αε(t) with ε(t0) =  0 

β(t) =  βm (t) +  αγ(t) 

Lagrange Multipliers 

Introduce the vector Lagrange Multiplier λ(t) (also called the Co-State) and write 
t1 dx 

I = 
� 

λT(t) 
�


− f [x(t), β(t)] dt = 0 

t0 dt 

�

The Problem 
To maximize J − I	 as a function of α 

dJ �� � = gε2(t1) +  x3m(t1)ε3(t1) +  x4m(t1)ε4(t1)dα ��α=0 

dI

�
 t1 �
 dε
 ∂f ∂f


=
 λT(t) 
�


ε  γ dt

dt 

−

dα
 α=0 t0 ∂x


−
∂β

�
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Integration by Parts


dI

dα


�� t1 �
 dε

=
 λT ∂f ∂f


(t) 
 ε  γ dt

α=0 

� 
t0 

�

dt 

−
∂x


−
∂β

t1 t1 

�

= λT dλT ∂f t1 ∂f


(t)ε(t) 
���  + λT(t) ε(t) dt  λT(t) γ(t) dt

t

−
�


t0 

�

dt
 ∂x


�

−

�

t0 ∂β


0 

t1 ∂f dJ 
= λT(t T

1)ε(t

�

1) − 

�

λ (t) γ(t) dt must equal


∂β
 dα 

���

α=0t0 

Here we require the Co-State λ(t) to satisfy the differential equation 

dλ T ∂f 
= −λ T 

dt ∂x
In our case ⎡
0 0 1 0 
⎤
 λ1(t) =  c1 0

∂f
 ⎣
⎢ 0 0 0 1 
⎦
⎥ λ

=
 2(t) =  c
so that 2 ∂f
 0
Also
 =


∂x
 0 0 0 0 
 λ (t) =  c1t + c ∂β
3 3

⎡
⎢⎣
−aT sin β 

⎤

0 0 0 0 
  + ac T cos β λ4(t) =  c2t 4 

⎦
⎥

Choose the constants c1 , c2 , c3 , c4 so that 

λ1(t) = 0  λ3(t) =  vxm (t1) 

λ2(t) =  g λ4(t) =  g(t1 − t) +  vym (t1) 

Then, if we are to have 

dJ
 dI
 t1 ∂f
= 0 we must require that λ T(t) γ(t) dt = 0 


dα
 α 


the Fundamen

���

=0 

−
dα α=0 

� 
t0 ∂β


From tal 

���

Lemma of the Calculus of Variations it follows that


∂f 
λ T(t) = 0  

∂β 

which is called the Optimality Condition. 
In our case, we have 

−λ3(t) sin βm (t) +  λ4(t) cos βm (t) = 0  

Thus, the optimum program for β(t) is  

λ ( g(t4 t)
= tan 1 

βm(t) =
− t) +  vym (t1)

λ3(t) vxm (t1) 

called the Linear-Tangent Law. 

This result formed the basis of the so-called Iterated Guidance Mode used by the 
Saturn launch vehicle’s guidance system to place the Apollo spacecraft in an earth parking 
orbit prior to its voyage to the moon. 
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