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Lecture 31 The Calculus of Variations & Lunar Landing Guidance


The Brachistochrone Problem 

In a vertical xy -plane a smooth curve y = f(x) connects the origin with a point P (x1, y1) 
in such a way that the time taken by a particle sliding without friction from O to P along 
the curve propelled by gravity is as short as possible. What is the curve? 

Assume the positive y -axis is vertically downward. Then the equation of motion is 
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Deriving Euler’s Equation 
x1 

To minimize the integral I = F (x, y, y′) dx let y(x, α) =  ym(x) +  α�(x) 
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Therefore, from the Fundamental Lemma of the Calculus of Variations 
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is a Necessary Condition which F must satisfy if the integral I is to be a minimum. 

Special Case of Euler’s Equation 
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which will be zero if F is not a function of x . Therefore 

F − 
∂F 

y′ = constant Prob. 11–33 

which establishes the necessary condition used to solve the Brachistochrone Problem. 
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Solution of the Brachistochrone Problem 

If T is to be a minimum, then, using Euler’s Special Case of the Necessary Condition, we 
have � � � 

y(1 + y′2) = 2c or dx = x = 
y 

dy
2c − y 

Now let 
y = 2c sin2 θ = c(1 − cos 2θ) 

so that � 
x = 2c (1 − cos 2θ) dθ = c(2θ − sin 2θ) 

Therefore, the equation of the curve in parametric form is 

x = c(φ − sin φ) 
with φ = 2θ 

y = c(1 − cos φ) 

and represents a cycloid—the path of a point on a circle of radius c as it rolls along the 
underside of the x axis. 

Terminal State Vector Control 

Find the acceleration vector a(t) to minimize � t1 � t1 

J = a(t)2 dt = aT(t)a(t) dt 
t0 t0 

subject to 
dr 

= v r(t0) =  r0 r(t1) =  r1dt 
dv v(t0) =  v0 v(t1) =  v1= a 
dt 

Define the Admissible Functions: 

r(t, α) =  r m(t) +  αδ(t) δ(t0) =  δ(t1) =  0 

v(t, α) =  vm(t) +  αδ′(t) where δ′(t0) =  δ′(t1) =  0 

a(t, α) =  a m(t) +  αδ′′(t) δ′′(t0) =  δ′′(t1) =  0 

Then � � �t1 t1 t1 

J(α) =  aT(t)a (t) dt + 2α aT(t)δ ′′(t) dt + α2 δ ′′(t)T 
δ ′′(t) dt m m m 

t0 t0 t0 
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A Necessary Condition for
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to be a minimum is that 
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Use integration by parts
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⇒
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Again using the Fundamental Lemma of the Calculus of Variations it follows th

d2aT

m( t) = 0T = ⇒ a m(t) =  c t + c
dt2 1 2

Therefore, with t go = t1 − t , we have  

4 6 
a m(t) =  c1t + c2 = [v1 − v(t)] + {r1 − [r(t) +  v1t go]t t2 go go 

Lunar-Landing Guidance for Apollo Missions 

To include the effects of gravity 

a(t) =  aT (t) +  g(r) 

we could use 

4 6 
aT (t) =  [v1 − v(t)] + {r1 − [r(t) +  v1t go]} − g[r(t)]

t t2 go go 

for the thrust acceleration which would be an exact solution if g were constant. 
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