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Lecture 26 The Clohessy- Wiltshine Eguations of Relative Motion

Clohessy-Wiltshire Equations

We begin with the equations for the restricted three-body problem
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With m; and my on -axis, then ry =7, i, and ry =7y i

To adapt these equations to the problem of a chase spacecraft m in pursuit of a target
spacecraft m, both moving about a central body of mass m,, let both m and m; become
infinitesimal. As a result r, will be zero so that r and p, are the same vector. The vector
p, = p is the position of the chase spacecraft relative to the target spacecraft. Further,
the angular velocity is
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so that the equations of motion of the chase spacecraft can be written as
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where p and r; = r;i. are the position vectors of the chase and target spacecrafts,

respectively.
Note: r=p+r;

This differential equation is non-linear because of the factor 1/73. However, with the
use of the Taylor Series expansion, we write
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1 W.H. Clohessy and R.S. Wiltshire, Journal of Aerospace Sciences, Vol. 27, No. 9, 1960, pp. 653—-658.
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and the equation will be linear if we ignore the higher order terms. Then
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since the term with the factor (i; - p)p is O(p?).

Finally,
p =& ic+ni, +Ci,
so that
wX(pr):—wZ(fig—knin) and i-p=¢

Therefore, the differential equation for the motion of the chase spacecraft relative
to the target spacecraft is

dp dp 2, 2+ 2
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or in scalar form
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It is sometimes convenient to express the position vector
p=r=vziy+yi, —zi, i, =i, w=—-wi,

with z in the direction of motion iy, y in the radial direction i, and i, =i, X i, normal
to the orbital plane. Then the equations of motion arel are
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The Clohessy-Wiltshire equations are three simultaneous second-order, linear, constant-
coefficient, coupled differential equations which are capable of exact solution.

1 S.W. Shepperd, Journal of Guidance, Control, and Dynamics, Vol. 14, No. 6, 1991, pp. 1318-1322.
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General Solution of the C-W Equations

Introduce the dimensionless time variable 7 = wt so that the Clohessy-Wiltshire equations
take the form
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d?z
— 4+ 2=0
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The general solution of these equations, with initial conditions z, v,, 2, ¢, Yy and 2,
: . dx . dy . dz . .
and using the notation — =2, — =9y and — = 2, is
dr dr dr
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