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Lecture 23 gmmo%paWWWMmgm /Vcwit/:aﬁm
Recall the Definitions

Deviation in quantity measured: dq

Measurement vector: b = “)l}

o | or(¢)
State vector deviation: 0x(t) = [5v(t)}
Fundamental relationship: dq = b* dx

State transition matrix: ®(¢,,t, ;) = P®

n?'n—1 n,n—1

State vector deviations at ¢, and ¢, _;: 0%, and 0x,_;

Fundamental relationship: dx_ = ®

n n,n—1 5Xn—1

Effect at ¢,, of observation made at ¢, ,

oq(t, 1) =909, 1 = b:—l 0X,, 1 = b:—l‘I’_l ox

n,n—1 n

Recursive Formulation of the Navigation Algorithm

0X,, = 0X,, + w(6qg — 6q) where 6q=Db"éx, and 6x,=®, 0%, ;

Propagating the Covariance Matrix P and the Error Transition Matrix W

e Using the state transition matrix

5§n—1 = 5Xn—1 + €1 en = (ﬁn,n—len—l
5§n = (I’n,n—l 5§n—1 = e;l; = 95—14’2,71—1
6x” - q)nan—l 6x”—1 ene'rlz = (I)n,n—len—legflq);,n—l
Hence
Pn - @n,n—an—l(I’g,n—l and Wn - (ﬁn,n—lwn—l
e Using differential equations
dx de de™
— =F _— —_—_ =—F d =— = TFT
at at oM T T
Hence
dpP
— =FP +PF" and dE:FW
dt dt
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Encke’s Method of Orbital Integration #9.4

Deviations from the Osculating Orbit

Define
r(tO) = rosc(tO) V(to) = Vosc(tO)
r(t) =r,.(t) +6(t) V(t) = v, (t) + (1)
Then since 2 P
r M rOSC /’L _
a2 AT g T g T =0

we can write 5

d*é 1 1 r
LI B (1 _ ﬂ)
a0 T U )
with the initial conditions
do

d(ty) =0 and =v(t,) =0

t=to

dt

Coping with Numerical Accuracy for Small Deviations

When r ~ r we can define

osc?

(6 +2r_,.):0

OSC)

q o
and then write osc

def r _3
=1 osc | =1 — ]__|_q 2
fla) = 3 (1+4q)

which is used in the classical method, or,

3+3q+q2
(1+q)% + (1+q)3

fla)=q

as discovered by James E. Potter.
Encke’s Method Johann Franz Encke (1791-1865)

1. Use the Lagrangian coefficients to extrapolate along the osculating orbit:

rosc(t) = Fr<t0) + GV(tO)
Vosc<t> - Ftr(to) + Gtv(to)

Note: Solving Kepler’s equation is necessary to determine the coefficients.
2. Use numerical integration to propagate the deviation vector 9 :

?6  p 1
s + 5 0 = rgscf(q)r(t) +a, where r=r,.+0

3. Use periodic rectification to maintain the efficiency of the algorithm.
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Navigating To Mars

Aug, 1959 ___ M.LT INSTRUMENTATION LABORATORY

Introduction Figure 7 from An Introduction to the Mathematics and
Methods of Astrodynamics. Courtesy of AIAA. Used with

Navigating to the Moon
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b: VARIATION IN MEASURED QUANTITY RESULTING
FROM VARIATIONS IN COMPONENTS OF r AND v

M.LT. INSTRUMENTATION LABORATORY—— v us01s —— 8 /64

Introduction Figure 8 from An Introduction to the Mathematics and
Methods of Astrodynamics. Courtesy of AIAA. Used with permission.
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Introduction Figure 8 from An Introduction to the Mathematics and Methods of Astrodynamics.  Courtesy of AIAA. Used with permission.




