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Lectwe 13 Gauss' Method for the Time-Constrained BUP # 7.3

Lagrange’s equations for the boundary-value problem

VI (ty — t)) = 203 (¢ — sin ¢ cos ¢) (1)
ry 4+ ry = 2a(1l — cos 1 cos @) (2)
V175 cos 30 = a(cosh — cos @) (3)

Gauss’s Equation for the Semimajor Axis
Eliminate cos ¢ between (2) and (3):
2sin? ¢
a 1,41y — 2,/ T, CO8 30 costp

When v and 6 are very small (of the order of 2 or 3 degrees), then 7, and r, will have
almost the same value. The denominator will be determined as the difference between two
almost equal terms resulting in a severe loss of accuracy. To prevent this, Gauss wrote

1 sin? 1)
a 2 19 in? 1 4)
\/T1T5 cos 50 (£ + sin” 5))

T T
_2+ -1
V "1 V T2

1
4COS%¢9 2

where ¢ is defined as

The problem of subtracting two almost equal quantities still exists but Gauss had a different
method for calculating ¢ which avoided any subtraction:
sin? i 0 + tan? 2w

) —
cos%@

%
where tan(;m+w) = <T—2)

T

An alternate method, which does not require any inverse trigonometric function is to
express

ry =11(1+€)
The quantity e is simply the fractional part resulting when r, is divided by r; (assuming,
of course, that r, exceeds r;). The result is

T r T
T2 T2 (o, _2)
ron 1

tan® 2w =
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Gauss’s Time Equation

Eliminate cos ¢ between (1) and (3):

2 T, cos 6
,/%(tQ—tl):2zp—sin21/)+ L2 2 §ing
a a

Next using Eq. (4) for 1/a he obtained

bt ) sind .3 .3
VI 21 31)sm ‘¢2 g = m‘su;l 11/} — = 29 —sin 2y + 7&1} 2¢1
(2y/riT5cos 50)2 (£ +sin” 5¢)2 (£ +sin” 51)2 £ +sin” 35
to — 1
where he defined m = Vit i) 3
(2,/T 75 cos 50)2
which requires that 0 < 6 < 180°.
Finally, Gauss defined
2
m
v = 7+ s L
+sin” 59
so that the time equation (5) can be written as
Y3 2 —sin2y y? o 21 — sin 29

m X — =

3 2
. or |y —-yi=m
m3 31n3 w m2

sin® )

which are Gauss’ equations, to be solved for y and .
The Orbital Parameter and the Significance of y

From Lecture 9 on Page 3

_ sing _ sing " 27,7, sin’ 10 sing " 27,7, sin? 14 _TqTy sin? 14
p_sinwpm_sinzp c ~siny  2asinysing  asin’e
Then from
27Ty co8 10 (¢ +sin” 1¢) 5 m?
a= — and Yt =g
sin” ¢ ¢+ sin” 3
we have
2m?, /r T4 cos 50 to —1.)2
asin?®) = ! 22 2 where m? = ity 1)1
y (2/m T4 cos 50)3
so that
r2r2 4% sin? 0 B h_2
pulty —ty)? H
from which
Th(ty —ty) _ | Area of sector
Trirysing Y7 Area of triangle
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21

Changing the independent variable from ¢ to z = sin” 3

Define
21 — sin 2
Q=—"5—
sin” v
then
3Q sin® ) cos ) + sm%b—i =2 —2cos 2y = 4sin? ¢
Now p .
ﬁ = sin %@[Jcos %w =3 sin 1)
1 d
so that 3Q cos 1) + — sin® ¢—Q =4
2 dx
Since
cosz/J—l—Qsm =1-2zx
sin® ¢ = 4sin® 21p(1 — sin® 1¢) = da(1 — 2)
d
then 2(1 —x)— @ =4—(3—-62)Q
dx
Write Q= ( + @7 + @1 + a7 + gt + )
Substitute and equate like powers of z to obtain:
6 8 10 12
Q1:g Q2:?Q1 Q3ZEQQ Q4:ﬁQ3 etc

resulting in

4 6 6-8-10 . 6-8-10-12
— ~F(3,1; &; (1 R 3 fe)

Qz) = 3F@, 1 352) = 3 +5"”+5 Tt s T o Y5t "

. 5. 1
F(3,1; 3;2) = > (n+2)(n +5) "
1—- o - (2n +1)(2n + 3)
1% n = B
1— V3l n(n —3) n even

(2n+1)(2n + 3)

a. The series converges for —1 < x < 1.

b. The continued fraction converges for —oo < z < 1.

Note: The function F(a, 3;7;z) is Gauss’ Hypergeometric Function which we will
exam in some detail in the next Lecture.
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The Universal Form of Gauss’ Method
We can extend the definition of = so that
sin® L(E, — E,)  ellipse
T = 0 parabola
—sinh® 2(H, — H,) hyperbola

The range of x is —oo < & < 1. The series representation of Q(x) will not converge when
x < —1. However the continued fraction does converge over the full range.

Possible Algorithm

Gauss’ equations are: m2

y2=€+x and ¢ —y* = m’Q(x)

in terms of x. The following is a recursive algorithm for the solution:
1. Set x =0
2. Solve of cubic y3 —y? = m?Q(x)

Note: Solution of the cubic: y=1+ % sinh?

3. Obtain new z from

z where sinhz:% 3m?2Q)

and repeat until the process converges.

Gauss’ Successive Substitution Algorithm

1. Given Ty, Ty, 0, \/ﬁ(tz —t)

1 ty —t,)?
2. Compute (= "t I and m? = ity 1)1
4,/ Tycos 50 2 (2,/rT5cos 50)3
3. Initialize z=0
2 .2
4. Calculate E(x) = B
=T
1+ Za— i
e T
m2 1— 9970
and h= ———— 113 T
B4+ l+¢(w) 1— Sra
5. Solve the cubic y3—y2—hy—§ =0 { %gx
m? 1-—-
6. Determine new r=—> —{ and repeat until z no longer changes.
Y
7. Calculate the orbital elements:
1 8ryrey?z(l — x)(1 + cos ) r2r2y? sin? 0
- = p e
a pu(ty —19)? pu(ty — t1)?
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Avoiding the Continued Fraction When ) is Not Small

Instead of the continued fraction (which we shall learn more about in the next lecture),
we can use the closed form expression
() = sin® ¢ — %(21& —sin2¢)(1 — g sin? %@b)
2 (2¢ — sin2¢))
Since z = sin® 24, then 1 = 2arcsin(y/z ).
“The numerator of this expression is a quantity of the seventh order, the denominator of
the third order, and &, therefore, of the fourth order, if ¢ is regarded as a quantity of

the first order. Hence it is inferred that this formula is not suited to the exact numerical
computation of & when v does not denote a very considerable angle.”

Karl Friedrich Gauss

Solving the Cubic Equation Pages 321 & 54

The solution of the cubic equation
v —y? —hy— 5h=0
using the method developed on Page 321 of your textbook, is
y=3(14+wv1+3h)

where w is the solution of

w3—3w:2ﬂ—2b

(1+3n)s

Note: Barker’s Equation is w?® + 3w = 2b

We must address the cases b < 1 and b > 1 separately:

b <1 Write w=2cos 2z = 2(1 — 2 sin? 32) and b=cos2z=1-— 2sin? x
Then the cubic equation becomes
tity for cosine functions. Hence:

4 cos? %x = 3 cos %x = cos2x which is an iden-

w = 2 cos( 5 arccosb)

b>1 Define w=2cosh Zz =2(1+ 2sinh*2) and b= cosh2z =14 2sinh®z

Then the cubic equation becomes 4 cosh? %x — 3 cosh %x = cosh2x which is an
identity for hyperbolic cosines. Hence:

w = 2 cosh( 5 arccoshb)
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