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Lecture 11

Hyperbolic Orbits

r = asec(

<~
y = btan( a?

Hyperbalic Onbits

r=a—€exr —

r =a(l —esec()

To understand the geometrical significance of (, write the equation of orbit as

r+recos f = a(l — e?)

a(l —esec() +recos f = a(l — e?)

—asec(+ rcosf
—_—— =

positive

= —ae=FC

negative

and relate the terms of the last equation to the diagram

Y
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Also
x = acosh H x y?
. — S5 =1 r=a—er —
y = bsinh H a b
/ 1
Then tan%f: cr tan%ﬁ or tan L f = ﬂtanth
e—1 2 e—1 2

and the analogs of Kepler’s equation are

N =etan( —logtan(5( + 1) or

IR

where

76.346 ﬂmocéwmm

Fig. 4.12 from An Introduction to
the Mathematics and Methods of
Astrodynamics. Courtesy of AIAA.
Used with permission.

r=a(l —ecosh H)

| N =esinh H — H |
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Fig. 4.12 from An Introduction to the Mathematics and Methods of Astrodynamics.  Courtesy of AIAA. Used with permission.


Lagrange’s Equations for Hyperbolic Orbits
For hyperbolic orbits, ¢ and ¢ are defined as
Y= 1(H,—H) cosh¢ = ecosh 1 (H, + H,)
and the basic equations are
Vii(ty — ;) = 2(—a)? (sinh ¢ cosh ¢ — ¢))
ry + 7y = 2a(1 — cosh v cosh ¢)
¢ = —2asinh sinh ¢
V/T175 cos 20 = a(cosh ¢ — cosh ¢)
The Lagrange parameters are defined as for the ellipse. Then
EI .
Viilty —1,) = (—a)¥[(sinha — ) — (sinh 8 — 3)

where
s—c

. S .
sinh? %a:—— sinh? %ﬂ:—
2a 2a

Hyperbolic Injection Velocity Page 294

Recall to the velocity vector in terms of the semimajor axis :

V. A 2 7RI W A B A N IR P
! 2(s—¢) 4a 2s 4da ) ° 2(s—c) 4a 2s 4a )™M
Then

s

lim i, =i lim —-=0 lim —=1

0= const 0= const. S 0= const. Ty
T9—0Q0 T2 —00 T2 — 00
Now
1+ cosf s(s—c s(s—c 1
i =cos® 10 = ( ) and lim ( ):—><1>< lim (s—c¢)
2 Ty 6= const.  TTy ] 6= const.
T2 —00 T2 —00
. (5]
so that lim (s—c¢)=—=(14cosh)
0= const. 2
T2 —00
2 1
Also, from the vis-viva integral: v = u(— — —) — Ugo = %
roa —
Therefore, in the limit: vi=(D+ zv )i+ (D— 3vy,)i,,
v2 v2 . .
where D=4/—2 4 and cosf =i, -i
14 cosf 4
NoTE: v, is the circular speed at the pericenter radius ry, i.e., v2 = Ly
1
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Injection from Pericenter of a Hyperbolic Orbit

For injection from pericenter of the hyperbola

0=1i, -vy=(D+ zv,)cosf+(D— Lv)
so that
(1+cosb)D = v (1 —cosb)
Hence,
U . )
V1= T eosd (i, —cosfi, )

To determine cos @, first square both sides of the equation for D
(14 cos0)’D? = 202 (1 — cosf)?

Then, from the previous equation for D,

v2 v2
D= ° Zoo
\/1+0030 * 4

(14 cos0)*D? = v2(1+ cosf) + v (1 + cosb)’

we also have

Therefore:
v2(1 4 cosO) + L2 (1 +cos)® = 2v2 (1 — cosb)?
) 1
N : siny = 5
Then | cosf = cos(57 +v) = —sinv | = 14 Yo
2
/UO

where v is the angle between the hyperbolic asymptote and the minor axis.
Out-of-Plane Injection from Pericenter of a Hyperbolic Orbit

The vector v =v_ i, isin the orbital transfer plane in which both P, and P, lie. The
orientation of this plane can be specified by the vector i, defined as iy, = Unit(r; X v ).
where r; is the vector position of point P,

Having determined cos6 from

’U2

2 2 o
1 0 =0 f— —
vZ(1+ cosf) + vz, cos or Ccos ey

and knowing i, , we can obtain the pericenter direction i. using the vector rotation
calculation developed in Lecture 12 on Page 2.

Rotate i, , clockwise, through the angle 6 to obtain i, . Specifically:

oo )

i, =i —sinf(iy xi )+ (1 —cosh)iy X (iy X i)

T'm
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