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√ 

Lecture 10 Transformation of the Boundary-Value Problem #6.7

According to Lambert’s Theorem 

√
µ(t2 − t1) =  F (a, r1 + r2, c) 

the orbit of the boundary-value problem can be transformed to a rectilinear orbit (e = 1),  
keeping the sum of the radii r1 +r2 , the length of the chord c and the semimajor axis a all 
fixed in value, and the time-of-flight will be unchanged. The transformation is illustrated 
in the following figure: 

The flight time for the rectilinear orbit is


µ 
(t2 − t1) = (α − sin α) − (β − sin β) 

a3 

= (E2 − sin E2) − (E1 − sin E1) 

in terms of the Lagrange parameters and the eccentric anomalies. 
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Figure by MIT OpenCourseWare.
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Transformation of the Four Basic Ellipses


We adopt the convention for assigning quadrants to the Lagrange parameters α and β


0 ≤ α ≤ 2π 0 ≤ β ≤ π for θ ≤ π


0 ≤ α ≤ 2π −π ≤ β ≤ 0 for θ ≥ π


which will include all elliptic orbits. 
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Text Box
Fig. 6.20 from An Introduction to the Mathematics and Methods of Astrodynamics.  Courtesy of AIAA. Used with permission.




