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Lecture 7 Optimum Orbital Transfer 
Velocity Requirements for Orbital Transfer 

Optimum Single-Impulse Transfer #11.2 

We can apply Euler’s tangent to the hyperbola, derived in Lecture 6, to formulate the 
solution of the optimum velocity impulse problem. 

v0 = initial velocity of spacecraft at P 

∆v1 = v1 − v0 = vρ1 
+ v c1 

− v0 = required velocity impulse 

Then the necessary and sufficient condition for an optimum transfer is: 

∆v1 ⊥ (vρ1 
− v c1

) = ⇒ (vρ1 
− v c1

) · (vρ1 
+ v c1 

− v0) = 0  

To convert this to an algebraic equation, we have (vρ1 
)2 1 [vρ1 

] 
− 1 − (v0 · i r1

) − (v0 · i c) = 0  
v v vc1 c1 c1 

Define 
p

x 2 = 
vρ1 = m where pm =

2r1r2 sin2 1
2 θ v c1 

p c 

Then √ 
1 r1r2 sin θ 2r1r2 

v c1 

= 
c
√

µp 
= 

µc 
x cos 1 θ where x >  02 
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Optimality condition:


x 4 − 

√ 
2r1r2 cos 1 θ ( · i ) x 3 +

√ 
2r1r2 

2 v0 r1
cos

µc µc 

We have √
µp

v 0

0 i r1 

= v0 cos γ0 = cot γ0


√ √ 

√ 

 1 θ (v0 · i ) x − 1 = 02 c

· 
r1
 √

µp0 v0 · i c = v0 cos(φ1 − γ0) =  (cos φ1 cot γ0 + sin φ1) r1 

Define 

P =
2r2p0 cos 12 θ cot γ0 Q =

2r2p0 cos 12 θ (cos φ1 cot γ0 + sin φ1) r1c r1c 

Then x 4 − Px3 + Qx − 1 = 0  

Optimum Single-Impulse Transfer from a Circular Orbit 

with Q =
2r2

3 

cos 12 θ sin θx 4 + Qx − 1 = 0  
c3 

The result of Problem 11–4 in the textbook is that the optimum single impulse transfer 
from a circular orbit can be expressed as 

24 4(c/r2)
3 

sin ν − tan ν = = 
Q sin θ

√
1 + cos θ 

where the angle ν , introduced in Section 6.5, is given by 

x 2 = 
pm = cot2 1 ν2p 

and 0 ≤ ν ≤ π . In this form, the equation can be solved for ν almost by inspection using 
a table of trigonometric functions. 

One of my past students, Peter Neirinckx, showed that this equation could be solved 
by successive substitutions. Peter’s argument was that since ν is in the second quadrant, 
the transformation ν = π + α would be convenient and the algorithm could be expressed 
recursively in the form: 

α = arctan[−(sin α + 4/Q)]n+1 n 

His initial guess was α0 = −45◦ and convergence was very rapid indeed. 
The exact solution is developed on Pages 521–522. 
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Solving the General Optimization Problem by Successive Substitutions 

A more recent student, Phil Springmann, in 2003, showed that the general case is 
similar in form to the optimum transfer from a circular orbit. Phil’s development is 

x 4 − Px3 + Qx − 1 = 0  

cot4 1ν − P cot3 1ν + Q cot 1ν − 1 = 02 2 2

(cos4 1ν − sin4 1ν) − P cos3 1ν sin 1ν + Q cos 1ν sin3 1ν = 02 2 2 2 2 2

cos ν − 1P [sin ν(1 + cos ν)] + 1Q[sin ν(1 − cos ν)] = 0  4 4

(Q + P ) sin ν − (Q − P ) tan ν = 4  

Then, as a recursive algorithm, with ν = π + α 

−[(Q + P ) sin α + 4]  
α n+1 = arctan n 

Q − P 
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Earth-to-Mars Departure Velocity for Orbital Transfer 

Introduce the dimensionless quantity 
2 (∆v1 

)
∆E = 

v0 

which is the amount of energy needed at point P1 to transfer from a circular orbit to an 
elliptical orbit for a voyage to P2 . We find that 

1. ∆E is a double-valued function of a having an infinite slope at a = a m = 1
2 s where 

s = 1
2 (r1 + r2 + c) 

which is the smallest value of a for which an elliptical path from P1 to P2 is possible. 
2. As	 a increases, the slope of the upper branch of ∆E is always positive, while the 

slope of the lower branch is negative for a near a m and has a minimum for a = aM . 
Both branches then approach horizontal asymptotes. 
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Minimum Departure Velocity for Orbital Transfer from Earth to the Planets


The figure below gives plots of (∆v1 

v0 

) 
M 

as a function of the transfer angle θ for a voyage from earth to each of the other planets 
of the solar system. The curves for the two most remote planets Neptune and Pluto are 
not shown because, with the scale used, they would be indistinguishable from the curve 
for Uranus. The sections of the curves for Jupiter, Saturn and Uranus corresponding to 
parabolic trajectories as the minimum-velocity paths, are characterized by broken lines. 
For the special case in which θ = 180◦ , the trajectory is of the Hohmann type. (For 
transfer angles θ larger than 180◦ , the parabolic trajectories are ficitious optimums since 
they would not be closed in the counterclockwise direction.) 
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