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Lecture 4 The Initial-Value Problem

Polar Coordinates and Orbital Plane Coordinates

From Lecture 2
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Fig. 3.5 (a) and (b) from An Introduction to the Mathematics and
Methods of Astrodynamics. Courtesy of AIAA. Used with permission.
Hodograph Plane

Physical Plane

Flight-Direction Angle
From the position and velocity equations in polar coordinates at the top of this page:

presin f
r-v—= ——-=-
h
In terms of the flight-direction angle v (shown in the figures above),
r=ri,
. . = T :+V=7vC08Yy
V =vc0s7Y1,. +vsinyly

Also
h=|r X v|=rvsiny

7V COS 7Y h cot y . 2
= or, since p= —
1
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o = ./pcoty

Therefore:
we have
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Fig. 3.5 (a) and (b) from An Introduction to the Mathematics and Methods of Astrodynamics.  Courtesy of AIAA. Used with permission.


The Initial-Value Problem using Lagrange Coefficients F', G, F,, G, #3.6

r rcos f rsin f i, i, ﬂ(e + cos f;) _T0 gin fo r,
_ _ | w2 h
v —% sin f %(e + cos f) i, i, % sin f, EO cos f \2)

—Fr,+G
SRR CI P {r}:q{r(’} with @:{F G} and |®] =1
v=Fr,+G,v, Vo F G,

The value of the determinant |®| = FG, — GF, = 1 follows from the conservation of
angular momentum
r X v=(FG,—GF,)ry X vjy =1y X Vv,

Lagrange Coefficients in Terms of the True Anomaly Difference

L)

,
F=1——(1-cosf G = sin 6
p( ) V Hp
i ) (3.42)
F, = —[ (1 —cosf) — \/psinb] G, :1—;0(1—6089)
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Lagrange Coefficients in Terms of the Eccentric Anomaly Difference Page 162

Define ¢ =FE — E;. Then:

le—g(l—cosgo) VIG = aoy(1 — cos ) + ryv/asinp

"o
(4.41)
Vua
Ft:——usingo Gtzl—g(l—cosgo)
T r
: Yo" Vo
where r=a+ (ry—a)cosp+ ogy\/asing and 0y = ? = \/pcot,
1

Kepler’s Equation is then

M- M, = @/% (t—t,) =(FE—esinFE)— (E, —esinE)

or, in terms of ¢ = F — E,

\/g(t —tg) =p+ %(1 — cos ) — (1 - %O) sin.p (4.43)
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Lagrangian Coefficients for Parabolic Orbits Pages 155-156

Since tan % f is obtained directly as the solution of Barker’s equation, it is more convenient
to express all trigonometric functions in terms of this function of the true anomaly.

Thus, the position and velocity vectors for the parabola in orbital plane coordinates
are

r:g(l—tanz% )ie+pta,n%fip
Kp

B Lee NI,
v=-—- tan§f16+71p

rc

v
7 = /ptan %f = /pcoty

Define o=

Therefore, with x =0 —o0,, we have
X2 X
F=1-2_ G=-—""(r +0
2, 2,/ 0 0

0

together with Barker’s equation and the equation of orbit:

6y/(t — to) = 6rox + 30x> + x°
g = 0-0 + X

Solving the Generalized Form of Barker’s Equation
The solution is
X=Vpz =0y
where z is obtained by solving the cubic equation
z*+32=2B
with
1

B=—
pf

[09(rg + ) + 3v/1(t — )]

Therefore, all the solution methods developed for Barker’s equation are applicable without
modification provided that B > 0.
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Construction of a Parabola and its Tangents Pages 156-157
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Fig. 4.7 from An Introduction to the Mathematics and Methods of
Astrodynamics. Courtesy of AIAA. Used with permission.
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Fig. 4.7 from An Introduction to the Mathematics and Methods of Astrodynamics.  Courtesy of AIAA. Used with permission.




