
MIT OpenCourseWare 
http://ocw.mit.edu 

16.346 Astrodynamics 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


√ 

{ 

√ 

Lecture 3 Barker's Equation & Kepler's Equation

Equation of a parabolic orbit e = 1  #4.2 

r = 2
1 p(1 + tan2 1

2 f)r = 
p 

= 
p 

= 2
1 p sec2 

2
1 f = 

1 + cos f 2 cos2 1 f 
⇒

2 

Barker’s Equation Thomas Barker (1722–1809) 

r
2 df = 
√

µp dt tan3 1 f + 3 tan 1 f = 2B2 2 
where B = 3  

µ 
(t − τ) 

p3 
=
⇒


Solving Barker’s Equation 

• Jerome Cardan’s Method (From Tartaglia) 1545 

1 ( 1)3 ( 1) 
Substitute tan 12 f = z − 

z 
to obtain z − 

z 
+ 3  z − 

z 
= 2B 

6 − 2Bz3 − 1 = 0 from which z = 
( 
B ±

√
1 +  B2 

)
same solution.) Hence 

1 
3 (Either sign gives the
or
 z


1 
3 

1 
3

( √ ) ( √ )
tan 12 f = B + 1 +  B2 − B + 1 +  B2 −

• Karl Stumpff’s Method (1959)


2 
3

( √ ) 2AB 
A = B + 1 +  B2 tan 1 f = 2 1 +  A + A2 

• François Vièta’s Method (1591) 

tan 1f = 2 sinh 1 x 
Using tan3 

2
1 f + 3 tan 2

1 f = 2B write 2 3

B = sinh x 

and the cubic equation becomes 4 sinh3 1
3 x + 3 sinh 13 x = sinh x which is a standard 

identity for the hyperbolic sine. The solution is 

x = arcsinh B = log(B + 1 +  B2 ) 
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r + ea cos E = a = r = a(1 − e cos E) (4.28)⇒ 

The relation y = b sin E can be obtained as follows: 

y 2 = PR2 = PF 2 − RF 2 = a 2(1− e cos E)2 − (ae− a cos E)2 = a 2(1− e 2) sin2 E = b2 sin2 E 

We have two expressions for the equation of orbit: one with the true anomaly f and 
the other with the eccentric anomaly E 

a(1 
r = 

− e2) 
and r = a(1  e cos E)

√ 

Elliptic Orbits and the Eccentric Anomaly #4.3


2 2x = a cos E x y
+ = 1⇐⇒ 

a2 b2y = b sin E 

where E , called the “eccentric anomaly”, was so-named by Kepler. 
With the origin of coordinates at the center of the ellipse C , the equation of orbit is 

r + ex = a 

Therefore: 

−
1 +  e cos f 

from which we obtain relations between f and E 

cos E − e a 
cos f = or cos f = (cos E − e)

1 − e cos E r 

From these we derive 
a a

1 − cos f = (1 + e)(1 − cos E) and 1 + cos f = (1 − e)(1 + cos E)︸ ︷︷ ︸ r ︸ ︷︷ ︸ ︸ ︷︷ ︸ r ︸ ︷︷ ︸ 
2 sin2 1

2 f 2 sin2 1
2 E 2 cos2 12 f 2 cos2 12 E 

Hence 
1 +  e (4.32)tan 1 f = tan 1 E2 21 − e 
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M = E − e sin E (4.34)

Solving Kepler’s Equation Using a Cycloid – Isaac Newton See Prob 5–1 

Kepler’s Equation 

Take the differential of the identity relating tan 1 f and tan 1 E :

f df 2 = 

√ 2 2 

1 +  e 
sec2 1 sec2 1 ︷︷ E dE  = r df  = b dE  (4.33)︸ 1 e 2 ⇒ 

r 2 1 = sec 
a

︸ 
E 

−
(1−e) 2 

2 h 
Then r df = h dt  = br dE = ab(1 − e cos E) dE and = 

ab 
Kepler’s 2nd Law 

√ 
µ ︸ ︷︷ ︸ = n 

Mean 

Finally, integrate n dt  = (1  − e cos E) dE 

︸ a︷︷ 3 

motion 

︸ 
n(t − τ) =  E − e sin E 

where τ is the constant of integration and called the time of pericenter passage. 
Introducing the mean anomaly M = n(t − τ), we have the final form of Kepler’s Equation 

x aφ − a φ 

y = a − a cos φ 

Solving Kepler’s Equation by Successive Substitutions 

E0 = 0  
E1 = M + e sin E

. 0 

. . 
Ek+1 = M + e sin Ek etc. 

For the proof of convergence, we utilize the inequality See Pages 196–197 

ek

|Ek+n − Ek| ≤ M 
1 − e 

which can be made arbitraily small (i.e., less than �) by choosing 

�(1 − e)
k >  log 

/ 
log e 

M 
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The following is a translation from the original Latin into 
English of the first two sections of Gauss’ book universally 
known as Theoria Motus. This was the major contribution 
of Gauss to the field of Celestial Mechanics published in 
1809. The translation was motivated by an interest of 
the Navy Department and published in 1857 to meet the 
needs of the American Ephemeris and Nautical Almanac 
as well as the American Astronomers for whom the work 
was regarded as a standard and authority. In 1963 it was 
republished by Dover Publications, Inc. when a renewed 

Carl Friedrich Gauss interest in Celestial Mechanics was inspired by the require­

1777–1855 ments of the US space program. 

Theory of the Motion of the Heavenly Bodies 

Moving about the Sun in Conic Sections 

Karl Friedrich Gauss 

1. 

In this work we shall consider the motions of the heavenly bodies so far only as they 
are controlled by the attractive force of the sun. All the secondary planets are therefore 
excluded from our plan, the perturbations which the primary planets exert upon each other 
are excluded, as is also all motion of rotation. We regard the moving bodies themselves as 
mathematical points, and we assume that all motions are performed in obedience to the 
following laws, which are to be received as the basis of all discussion in this work. 
I. The motion of every heavenly body takes place in the same fixed plane in which the 

center of the sun is situated. 
II. The path described by a body is a conic section having its focus in the center of the 
sun. 
III.	The motion in this path is such that the areas of the spaces described about the sun 
in different intervals of time are proportional to those intervals. Accordingly, if the times 
and spaces are expressed in numbers, any space whatever divided by the time in which it 
is described gives a constant quotient.* 
IV.	 For different bodies moving about the sun, the squares of these quotients are in the 
compound ratio of the parameters of their orbits, and of the sum of the masses of the sun 
and the moving bodies. 

Denoting, therefore, the parameter† of the orbit in which the body moves by p , the 
mass of this body by m (the mass of the sun being put = 1), the area it describes about 
the sun in the time t by 1 g , then‡ 

t
√

p
√g 

1 +  m 
will be a constant§ for all heavenly 2 

* Space/Time = 1
2 

h . 

† Gauss calls p the semi-parameter. 

‡ In our notation g = ht with h = 
√

µp so that 
t
√
g

p 
= G(m1 + m2) =  G(1 + m) 

§ = 
√

G 
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bodies. Since then it is of no importance which body we use for determining this number, 
we will derive it from the motion of the earth, the mean distance of which from the sun 
we shall adopt for the unit of distance; the mean solar day will always be our unit of time. 
Denoting, moreover, by π the ratio of the circumference of the circle to the diameter, 
the area of the entire ellipse described by the earth will evidently be π

√
p ,¶ which must 

therefore be put = 1
2 g ,** if by t is understood the sidereal year; whence, our constant 

2π
becomes†† 

t
√

1 +  m 
. In order to ascertain the numerical value of this constant, hereafter 

to be denoted by k , we will put, according to the latest determination, the sidereal year or 
t = 365.2563835, the mass of the earth, or m = 1 = 0.0000028192, whence results‡‡354710 

log 2π = 0.7981798684 
Compl. log t = 7.4374021852 

Compl. log 
√

1 +  m = 9.9999993878 

log k = 8.2355814414 
k = 0.01720209895. 

2. 

The laws above stated differ from those discovered by our own Kepler in no other 
respect than this, that they are given in a form applicable to all kinds of conic sections, 
and that the action of the moving body on the sun, on which depends the factor 

√
m1 + m2 , 

is taken into account. If we regard these laws as phenomena derived from innumerable and 
indubitable observations, geometry allows what action ought in consequence to be exerted 
upon bodies moving about the sun, in order that these phenomena may be continually 
produced. In this way it is found that the action of the sun upon the bodies moving about 
it is exerted just as if an attractive force, the intensity of which is reciprocally proportional 
to the square of the distance, should urge the bodies towards the centre of the sun. If 
now, on the other hand, we set out with the assumption of such an attractive force, the 
phenomena are deduced from it as necessary consequences. It is sufficient here merely to 
have recited these laws, the connection of which with the principle of gravitation it will 
be the less necessary to dwell upon in this place, since several authors subsequently to 
the eminent Newton have treated this subject, and among them the illustrious La Place, 
in that most perfect work the Mécanique Céleste, in such a manner as to leave nothing 
further to be desired. 

¶ Area = πab = π
√

ap 

** so that g = 2π
√

p


4π2a3


†† In our notation 
P 2 

= G(m1 + m2) =  k2(msun + mearth) 

‡‡ The value of k = 
√

G obtained by Gauss as k = 0.01720209895 has been used over a long 
period in numerical investigations. Therefore, it is current practice to retain this value and 
adjust the unit of length in accordance with the more accurate values of the earth’s mass m 
and the sidereal year t now available. The value of 1.0000010178 for the astronomical unit 
was the value determined in 1992. 
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