MIT OpenCourseWare http://ocw.mit.edu

16.346 Astrodynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 2 The Two Body Problem Continued

The Eccentricity Vector or The Laplace Vector

$$\mu \mathbf{e} = \mathbf{v} \times \mathbf{h} - \frac{\mu}{r} \mathbf{r}$$

Explicit Form of the Velocity Vector

#3.1

Using the expansion of the triple vector product $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$ we have

$$\mathbf{h} \times \mu \mathbf{e} = \mathbf{h} \times (\mathbf{v} \times \mathbf{h}) - \frac{\mu}{r} \mathbf{h} \times \mathbf{r} = h^2 \mathbf{v} - (\mathbf{h} \cdot \mathbf{v}) \mathbf{h} - \mu \mathbf{h} \times \mathbf{i}_r = h^2 \mathbf{v} - \mu h \, \mathbf{i}_h \times \mathbf{i}_r$$

since \mathbf{h} and \mathbf{v} are perpendicular. Therefore:

$$\mathbf{h} \times \mu \mathbf{e} \implies \boxed{\mathbf{v} = \frac{\mu}{h} \mathbf{i}_h \times (\mathbf{e} + \mathbf{i}_r)}$$

or

$$\frac{h\mathbf{v}}{\mu} = \mathbf{i}_h \times (e\,\mathbf{i}_e + \mathbf{i}_r) = e\,\mathbf{i}_h \times \mathbf{i}_e + \mathbf{i}_h \times \mathbf{i}_r = e\,\mathbf{i}_p + \mathbf{i}_\theta$$

Then since

$$\mathbf{i}_p = \sin f \, \mathbf{i}_r + \cos f \, \mathbf{i}_\theta$$

we have

$$\frac{h\mathbf{v}}{\mu} = e\sin f \,\mathbf{i}_r + (1 + e\cos f)\,\mathbf{i}_\theta$$

which is the basic relation for representing the velocity vector in the Hodograph Plane.

See Page 1 of Lecture 4

Conservation of Energy

$$\frac{h\mathbf{v}}{\mu} \cdot \frac{h\mathbf{v}}{\mu} = \frac{p}{\mu} \mathbf{v} \cdot \mathbf{v} = 2(1 + e\cos f) + e^2 - 1 = 2 \times \frac{p}{r} - (1 - e^2) = p\left(\frac{2}{r} - \frac{1}{a}\right)$$

which can be written in either of two separate forms each having its own name:

Energy Integral
$$\left[\frac{1}{2}v^2 - \frac{\mu}{r} = -\frac{\mu}{2a}\right] = \frac{1}{2}c_3$$

Vis-Viva Integral
$$v^2 = \mu \left(\frac{2}{r} - \frac{1}{a}\right)$$

The constant c_3 is used by Forest Ray Moulton, a Professor at the University of Chicago in his 1902 book "An Introduction to Celestial Mechanics" — the first book on the subject written by an American.

16.346 Astrodynamics

Lecture 2

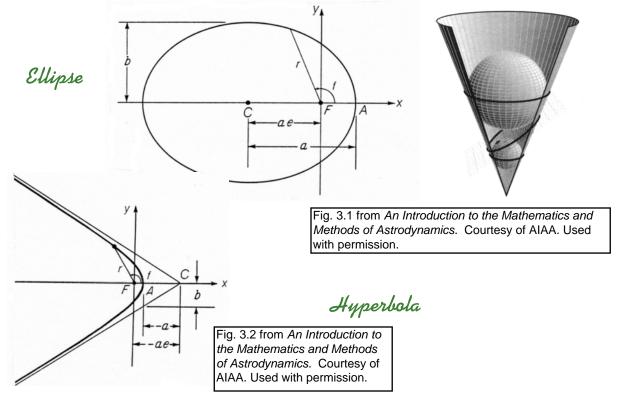
Conic Sections

Ellipse or Hyperbola in rectangular coordinates ($e \neq 1$)

$$y^{2} = r^{2} - x^{2} = (p - ex)^{2} - x^{2} = (1 - e^{2})[a^{2} - (x + ea)^{2}]$$
$$\frac{(x + ea)^{2}}{a^{2}} + \frac{y^{2}}{a^{2}(1 - e^{2})} = 1$$

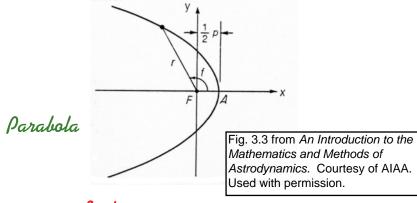
Semiminor Axis:

$$b^2 = |a^2(1 - e^2)| = |a|p$$



Parabola in rectangular coordinates (e = 1)

$$y^{2} = r^{2} - x^{2} = (p - x)^{2} - x^{2} \implies y^{2} = 2p(\frac{1}{2}p - x)$$



16.346 Astrodynamics

Lecture 2

Alternate Forms of the Equation of Orbit

#4.1

$$r + ex = p$$

$$r + ex = a$$

With x now measured from the center which is at a distance ae from the focus, then

$$r + ex = p$$

$$r + e(x - ae) = p = a(1 - e^{2})$$

$$r + ex = a$$

Origin at pericenter r + ex = q

With x now measured from pericenter which is at a distance of a from the center and a distance of q = a(1 - e) from the focus, then

$$r + ex = p$$

$$r + e(x + q) = p = q(1 + e)$$

$$r + ex = q$$

These are useful to derive other properties of conic sections:

• Focus-Directrix Property:

$$r = p - ex$$
: Page 144

or

$$PF = r = e\left(\frac{p}{e} - x\right) = e \times PN$$

$$\frac{PF}{PN} = e$$

• Focal-Radii Property:

$$r = a - ex$$
: Page 145

$$PF^{2} = (x - ea)^{2} + y^{2}$$
$$PF^{*2} = (x + ea)^{2} + y^{2}$$

so that

$$PF^{*2} = PF^{2} + 4aex$$

$$= r^{2} + 4aex$$

$$= (a - ex)^{2} + 4aex = (a + ex)^{2}$$

$$PF^{*} = \begin{cases} a + ex & \text{ellipse} & a > 0 \\ -(a + ex) & \text{hyperbola} & a < 0, x < 0 \end{cases}$$

Thus,

$$PF^* + PF = 2a$$
 ellipse
 $PF^* - PF = -2a$ hyperbola

• Euler's Universal Form: From
$$r = q - ex$$
: Page 143

$$y^{2} = r^{2} - (q+x)^{2} = (q-ex)^{2} - (q+x)^{2}$$

Then

$$y^{2} = -(1+e)[2qx + (1-e)x^{2}]$$

Basic Two-Body Relations

$$\frac{d^2\mathbf{r}}{dt^2} + \frac{\mu}{r^3}\mathbf{r} = \mathbf{0} \qquad \text{or} \qquad \frac{d\mathbf{v}}{dt} = -\frac{\mu}{r^3}\mathbf{r}$$

$$\frac{d\mathbf{v}}{dt} = -\frac{\mu}{r^3}\mathbf{r}$$

$$\mathbf{r} \times \frac{d\mathbf{v}}{dt} = \mathbf{0} \implies \mathbf{r} \times \mathbf{v} = \mathbf{constant} \equiv \mathbf{h}$$

$$\frac{d\mathbf{v}}{dt} \times \mathbf{h} \implies \frac{1}{\mu} \mathbf{v} \times \mathbf{h} - \mathbf{i}_r = \mathbf{constant} \equiv \mathbf{e}$$

$$\mu \mathbf{e} \cdot \mathbf{r} \implies r = \frac{h^2/\mu}{1 + e \cos f} = \frac{p}{1 + e \cos f}$$

$$\mathbf{h} \times \mu \mathbf{e} \quad \Longrightarrow \quad \mathbf{v} = \frac{1}{p} \, \mathbf{h} \times (\mathbf{e} + \mathbf{i}_r)$$

Orbital Parameter p

Dynamics Definition: $p \equiv \frac{h^2}{\mu}$ **Geometric Definition:** $p = a(1 - e^2)$

Total Energy or Semimajor Axis or Mean Distance

Dynamics Definition:
$$\frac{1}{2}v^2 - \frac{\mu}{r} = \text{constant} \equiv -\frac{\mu}{2a}$$

Geometric Definition:
$$\frac{(x+ea)^2}{a^2} + \frac{y^2}{a^2(1-e^2)} = 1$$

Eqs. of Motion in Polar Coord.
$$\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2 + \frac{\mu}{r^2} = 0 \qquad \frac{d}{dt}\left(r^2\frac{d\theta}{dt}\right) = 0$$

Kepler's Laws

$$\frac{dA}{dt} = \frac{1}{2}r^2\frac{d\theta}{dt} = \text{constant} = \frac{h}{2}$$

$$r = \frac{p}{1 + e \cos f}$$
 or $r = p - ex$

$$\frac{\pi ab}{P} = \frac{h}{2}$$
 \Longrightarrow $\frac{a^3}{P^2} = \text{constant} = \frac{\mu}{4\pi^2}$

16.346 Astrodynamics