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Lecture 1 The Two Body Problem


Newton’s Two-Body Equations of Motion 1687 #3.1, #3.3 

Force = Mass × Acceleration 
d2


Gm1m2 (r2 − r1) d2r1 
(m1r1 + m2r2) =  0


= m1 
dt2


r2 r dt2 = ⇒ 
G(m1 + m2) (r2 − r1) d2


Gm2m1 (r1 − r2) = m2 

d2r2 
− 

r2 r 
= 

dt2 
(r2 − r1)


r2 r dt2


Conservation of Total Linear Momentum Page 96 

d2r def m1r1 + m2r2cm = 0 = r cm = c1t + c2 where r cm = 
dt2 

⇒ 
m1 + m2 

Two-Body Equation of Relative Motion Page 108 

r = r2 − r1 
d2r µ or 

d

dt 

v 
= − 

r

µ 
3 
r where r = |r| = |r2 − r1|+ r = 0 

dt2 r3 

µ = G(m1 + m2) 

Vector Notation 

Position Vectors • 

r1 = x1 i x + y1 i y + z1 i z 
 

x1 

  
x2 

   
r2 = x2 i x + y2 i y + z2 i z r1 =  y1 

 r2 =  y2 
 r = r2 − r1 =  y  

r = r2 − r1 = x i + y i y + z i z1 z2 z 
x z 

Two-Body Equations of Motion in Rectangular Coordinates • 

d2x µ d2y µ d2z µ
+ x = 0  + y = 0  + z = 0  

dt2 r3 dt2 r3 dt2 r3 

Velocity Vectors •   
dx/dt 

v = 
dr 

= 
dx 

i x + 
dy 

i y + 
dz 

i z =  dy/dt  
dt dt dt dt 

dz/dt 

Polar Coordinates • 

di rr = r i i = cos θ i + sin θ i iθ = − sin θ i + cos θ i = r r x y x y dθ 
dr dr di dθ dr dθ 

v = = i r + r r = i r + r iθ = v r i r + vθ iθdt dt dθ dt dt dt 
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= r 2 = Constant ≡ h = 2  Area 
 θ 

⇒ x
dt 

− y = 
dt dt 

× 
dt 

ibbs (1839–1908) Vector Analysis for the Engineer 

Appendix B–1 

r1 · r2 = x1x2 + y1y2 + z1z2 = r  
1r2 cos 

i x i y i z 
r1 × r2 = 

�� �
�
��� x y z r1r  

1 1 1 �
���
�
= 2 sin in 

x2 y2 z2 

x1 y1 z1 

r1 × r2 · r3 = 
���� x2 y2 z2 

x y3 z

�
3 3 

���

(r1 × r2) × r3 = (

��

r1 

�
�
· r3)r2 − (r2 · r3)r1 

r1 × (r2 × r3) = (r1 · r3)r2 − (r1 · r2)r3 

 Law 1609 Conservation of Angular Momentum 

�
 �

Kepler’s Second Law 1609 Equal Areas Swept Out in Equal Times 

Assume z = 0 so that the motion is confined to the x-y plane 

d2y d2x d dy dx
 dy dx

0 =  x
 = Constant
=
 =
x
 x


dt2 
− y 

dt2 dt dt 
− y


dt

⇒


dt 
− y


dt


Using polar coordinates 

x = r cos θ dy dx dθ d 

y = r sin

Josiah Willard G

�

�

Kepler’s Second

dv d 
r × 

dt 
= 

dt
(r × v) =  0 = ⇒ = Constant 

Motion takes place in a plane and angular momentum is conserved 

In polar coordinates 

h = r × v 

dr dr dθ 
r = r ir dt 

= v = 
dt 

i r + r
dt 

iθ = v r i r + vθ iθ 

so that the angular momentum of m2 with respect to m1 is 

2 dθ def 
m2 r vθ = m2 r = m2 h = Constant 

dt 

• Rectilinear Motion: For r ‖ v , then .h = 0  
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The quantity h is called the angular momentum but is actually the massless angular 
momentum. In vector form h = h i so that h = r×v and is a constant in both magnitude z 
and direction. This is called Kepler’s second law even though it was really his first major 
result. As Kepler expressed it, the radius vector sweeps out equal areas in equal time since 

dA 1 2 dθ h = Constant = r = 
dt 2 dt 2 

Kepler’s Law is a direct consequence of radial acceleration! 

Eccentricity Vector 

d dv µ µh µh dθ di 
dt

(v × h) =  
dt 

× h = −
r3 

r × h = − 
r2 

i r × ih = 
r2 

iθ = µ
dt 

iθ = µ 
dt 

r 

Hence µ 
µe = v × h − r = Constant 

r 

The vector quantity µe is often referred to as the Laplace Vector. 

We will call the vector e the eccentricity vector because its magnitude e is the eccentricity 
of the orbit. 

Kepler’s First Law 1609 The Equation of Orbit 

If we take the scalar product of the Laplace vector and the position vector, we have 

µe r = v × h r − 
µ
r r = r × v h − µr = h h − µr = h2 − µr· · 

r 
· · · 

Also µe r = µre cos f where f is the angle between r and e so that · 

p h2 
defr = or r = p − ex where p = 1 +  e cos f µ 

is the Equation of Orbit in polar coordinates. (Note that r cos f = x .) 

The angle f is the true anomaly and p , called the parameter, is the value of the radius 
r for f = ± 90◦ . 
The pericenter (f = 0) and apocenter (f = π ) radii are 

r = 
p 

and r = 
p 

p a1 +  e 1 − e 

If 2a is the length of the major axis, then r + r = 2a = p = a(1 − e 2)p a ⇒ 
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Kepler’s Third Law 1619 The Harmony of the World 

Archimedes was the first to discover that the area of an ellipse is πab where a and b are 
the semimajor and semiminor axes of the ellipse. 

Since the radius vector sweeps out equal areas in equal times, then the entire area will be 
swept out in the time interval called the period P . Therefore, from Kepler’s Second Law 

πab h 
√

µp 
� 

µa(1 − e2)
= = = 

P 2 2 2 

2Also, from the elementary properties of an ellipse, we have b = a
√

1 − e so that the 
Period of the ellipse is 

3a
P = 2π 

µ 

Other expressions and terminology are used 

2π µ
Mean Motion orn = = 

P a3 
2 3 µ = n a or


3a
= Constant 

P 2 

The last of these is known as Kepler’s third law. 

Kepler made the false assumption that µ is the same for all planets. • 

Units for Numerical Calculations 

A convenient choice of units is 

Length The astronomical unit (Mean distance from Earth to the Sun) 
Time The year (the Earth’s period) 
Mass The Sun’s mass (Ignore other masses compared to Sun’s mass) 

Then 

µ = G(m1 + m2) =  G(m sun + mplanet) =  G(m sun) =  G 

so that, from Kepler’s Third Law, we have 

or k = 
√

G = 2π 

where G is the Universal Gravitation Constant. 

µ = G = 4π2 
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Josiah Willard Gibbs (1839–1908) was a professor of mathematical physics 
at Yale College where he inaugurated the new subject — three dimensional 
vector analysis. He had printed for private distribution to his students a small 
pamphlet on the “Elements of Vector Analysis” in 1881 and 1884. 

Gibbs’ pamphlet became widely known and was finally incorporated in the 
book “Vector Analysis” by J. W. Gibbs and E. B. Wilson and published in 
1901. 

Gibb’s Method of Orbit Determination Pages 131–133 

• Given r1 , r2 , r3 with r1 × r2 · r3 = 0  
To determine the eccentricity vector e and the parameter p• 

r2 = αr1 + βr3 with n = r1 × r3 = ⇒ α = 
r2 × 

n

r
2
3 · n 

and β = 
r1 × 

n

r
2
2 · n 

αr1 − r2 + βr30 =  e · (r2 − αr1 − βr3) =  p − r2 − α(p − r1) − β(p − r3) = ⇒ p = 
α − 1 +  β 

To determine the eccentricity vector, we observe that: • 

n × e = (r1 × r3) × e = (e r1)r3 − (e r3)r1 = (p − r1)r3 − (p − r3)r1· ·

Then, since (n × e) × n = n2e it follows that


1 
e = 

2 
[(p − r1)r3 × n − (p − r3)r1 × n] 

n




