16.333 Lecture#9

Basic Longitudinal Control

e Basic aircraft control concepts

e Basic control approaches
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Basic Longitudinal Control

e Goal: analyze aircraft longitudinal dynamics to determine if the be-
havior is acceptable, and if not, then modify it using feedback control.

e Note that we could (and will) work with the full dynamics model,
but for now, let's focus on the short period approximate model from
lecture 7-5.

j:sp — Asp:l:sp + Bspae

where 0, is the elevator input, and

- [w] oA, - [ Zw/m Uy

q ]y_yl (Mw + Mwa/m) ]y_yl (Mq + MwU())

B. — de/m
o ]y—y1 (Ms, + My Zs,/m)

e Add that 6 = ¢, so s = q

e Take the output as 6, input is J., then form the transfer function

o) 1als
de(s)  s0.(8)

= [0 1] (sl — Ay) 'B,

e As shown in the code, for the 747 (40Kft, M = 0.8) this reduces to:

O(s)  1.1569s 4 0.3435
5c(s)  s(s2+0.7410s + 0.9272)

so that the dominant roots have a frequency of approximately 1
rad /sec and damping of about 0.4

= Gg(;e(s)
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Figure 1: Pole-zero map for G5,

e Basic problem is that there are vast quantities of empirical data to
show that pilots do not like the flying qualities of an aircraft with this
combination of frequency and damping

— What do they prefer?

Acceptable

T

T T T T
0.1 0.2 0.4 06081 2 4

Unacceptable

Undamped natural frequency s rad/sec

Damping ratio

Figure 2: “Thumb Print” criterion
e This criterion has been around since the 1950's, but it is still valid.
e Good target: frequency ~ 3 rad/sec and damping of about = 0.6

e Problem is that the short period dynamics are no where near these
numbers, so we must modify them.
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— Could do it by redesigning the aircraft, but it is a bit late for that...

Pole-Zero Map
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Figure 3: Pole-zero map and target pole locations

e Of course there are plenty of other things that we will consider when
we design the controllers
— Small steady state error to commands
— 0, within limits
— No oscillations

— Speed control
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First Short Period Autopilot

e First attempt to control the vehicle response: measure 6 and feed it
back to the elevator command ..

— Unfortunately the actuator is slow, so there is an apparent lag in
the response that we must model

O¢ 4 O¢ 0
Gos.(5) —

ko

0,

e Dynamics: 0? is the actual elevator deflection, ¢ is the actuator
command created by our controller
4

s+4

0 = Gps,(s)0s; 00 = H(s)oy; H(s) =

e

The control is just basic proportional feedback

52 — _ke(e - ec)

Which gives that
0 = —Gys,(s)H (s)ko(0 — 0.

or that 0s) G (s)H(s)ky
0.(s) 14 Gos,(s)H(s)ks

e Looks good, but how do we analyze what is going on?

— Need to be able to predict where the poles are going as a function
of ks = Root Locus
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Root Locus Basics

Ge(s) Gp(s) ——

e Assume that the plant transfer function is of the form

N (5 — 2
Gp — Kp_p _ KPHZ(S - Zp.)
D, [1:(s — ppi)

and the controller transfer function is

N (s = z)
Gl = e = L )

e Signals are:

control commands
output/measurements
reference input

o 3 ¢ o

response error

e This is the unity feedback form. We could add the controller GG.. in
the feedback path without changing the pole locations.

e Will add disturbances later.
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e Basic questions:

— Analysis: Given N, and D,., where do the closed loop poles go
as a function of K.?

— Synthesis: Given K,, N, and D,, how should we chose K., N., D,
to put the closed loop poles in the desired locations?

e Block diagram analysis: Since y = G,G.¢ and e = r — y, then
easy to show that

(7 G.G)
o =@,
F T ira.q, = Gal
where KKNN
Gals) = bt
D.D, + K,K,N,N,

is the closed loop transfer function

e The denominator is called the characteristic equation ¢.(s) and
the roots of ¢.(s) = 0 are called the closed-loop poles (CLP) .

e The CLP are clearly functions of K, for a given K, N,,, D,,, N, D,
= a “locus of roots" [Evans, 1948]
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Root Locus Analysis

e General root locus is hard to determine by hand and requires Matlab
tools such as rlocus (num,den) to obtain full result, but we can get
some important insights by developing a short set of plotting rules.

— Full rules in FPE, page 260.
e Basic questions:

1. What points are on the root locus?

2. Where does the root locus start?

3. Where does the root locus end?

4. When /where is the locus on the real line?

5. Given that s is found to be on the locus, what gain is need for

that to become the closed-loop pole location?

e Question #1: is point sg on the root locus? Assume that N, and D,
are known, let

NN,

L=
‘" D.D,

and K = K_.K, then
dc(s) =14+ KLg(s) =0
or equivalently for values of s for which Ly(s) = —1/K, with K real.
— For K positive, sq is on the root locus if
/La(sy) = 180° £1-360°, 1=0,1,...
— If K negative, s is on the root locus if  [0° locus]
LLa(sg) = 0°£1-360°, 1=0,1,...

These are known as the phase conditions.




Fall 2004 16.333 8-8

e Question #2: Where does the root locus start?
N.N,
D.D,

bo=1+K 0

= D.D,+ KN.N, =0

So if K — 0, then locus starts at solutions of D.D,, = 0 which are
the poles of the plant and compensator.

e Question #3: Where does the root locus end?

Already shown that for sy to be on the locus, must have

1
La(s0) = — 7=

So if K — 00, the poles must satisfy:
_ N.N,

D.D,

Lg 0

e There are several possibilities:

1. Poles are located at values of s for which N.N, = 0, which are
the zeros of the plant and the compensator

2. If Loop Ly(s) has more poles than zeros

— As |s| — oo, |L4(s)| — 0, but we must ensure that the phase
condition is still satisfied.
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e More details as K — oc:

— Assume there are n zeros and p poles of L,(s)

— Then for large |s],

1
L ~
d(S) (S _ Oé)p_n
— So the root locus degenerates to:
1+ ! =0
(s — )

— So n poles head to the zeros of L,(s)

— Remaining p — n poles head to |s| = oo along asymptotes
defined by the radial lines

~ 180°+360° - (I —1)
— "
so that the number of asymptotes is governed by the number of

0] =12, ...

poles compared to the number of zeros (relative degree).

— If 2; are the zeros if L; and p; are the poles, then the centroid
of the asymptotes is given by:

P n
R IE
o =
p—n
e Example: L(s) = s
N
AN
\\\
\\
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e Question #4: When/where is the locus on the real line?

— Locus points on the real line are to the left of an odd number
of real axis poles and zeros [K positive].

— Explanation a bit too detailed and not that relevant

e Question #b5: Given that s; is found to be on the locus, what gain
is needed for that to become the closed-loop pole location?

— Need

1 ‘ D, (s0)De(s0)

B = 0] |, o) Natso)

— Since K = K, K, sign of K. depends on sign of K,

O e.g., assume that £Lg(sy) = 180°, then need K. and K, to
be same sign so that K > 0
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Root Locus Examples

Tm
5 i
" X
Re
Y] Re
X
Figure 4: Basic Figure 5: Two poles
Iwm Tm
% X
—6 Re v Re
X X
Figure 6: Add zero Figure 7: Three poles
IM
b ¢
e B Ce
X

Figure 8: Add zero
[

Examples similar to control design process: add compensator dynamics to mod-

ify root locus and then chose gain to place CLP at desired location on the locus.
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I-M
Re
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Figure 9: Complex case
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Figure 10: Very complex case
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Dynamic Compensation

e For a given plant, can draw a root locus versus K. But if desired
pole locations are not on that locus, then need to modify it using
dynamic compensation.

— Basic root locus plots give us an indication of the effect of adding
compensator dynamics. But need to know what to add to place
the poles where we want them.

e New questions:

— What type of compensation is required?
— How do we determine where to put the additional dynamics?

e There are three classic types of controllers u = G.(s)e

1. Proportional feedback: G. = K|, a gain, so that N. = D. =1

— Same case we have been looking at.

2. Integral feedback

u(t) = KZ-/O e(T)dr = G.(s) = Ki

S

— Used to reduce/eliminate steady-state error

— If e(7) is approximately constant, then u(t) will grow to be very
large and thus hopefully correct the error.
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— Consider error response of
Gp(s)=1/(s+a)(s+b)
(a >0, b > 0) to a step,
r(t) =1(t) — r(s) =1/s

where
e 1 B r(s)
r 1+ GG, “s) =13 G.G,)

— To analyze error, use FVT

tlim e(t) = lin% se(s)

so that with proportional control,

I I <5) 1 1
t—00 s—0\s/ 14+ K,Gy(s) 1+ %,

so can make ey, small, but only with a very large K|
— With integral control, lims_,o G(s) = 00, so ez — 0

— Integral control improves the steady state, but this is at
the expense of the transient response (typically gets worse
because the system is less well damped)
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1
E I 1: G(s) =
xample #1: Gls) = o)
improve the steady state response.

, add integral feedback to

Figure 11: RL after adding integral FB

— Increasing K; to increase speed of the response pushes the poles
towards the imaginary axis — more oscillatory response.

Combine proportional and integral (Pl) feedback:

K, Kis+ K
G = K+ 2 _ 1 2
S S
which introduces a pole at the origin and zero at s = — K5/ K,

— Pl solves many of the problems with just integral control (I).

Figure 12: RL with proportional and integral FB
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3. Derivative Feedback u = K é so that G.(s) = Kys
— Does not help with the steady state

— Provides feedback on the rate of change of e(t) so that the
control can anticipate future errors.

Example # 2 G(s) =
with G.(s) = Kys

ooooooooo

T

RRRRRR

Figure 13: RL with derivative FB

— Derivative feedback is very useful for pulling the root locus into
the LHP - increases damping and more stable response.

Typically used in combination with proportional feedback to form
proportional-derivative feedback PD

GC(S) = K1 + KQS

which moves the zero from the origin.
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Controller Synthesis

e First determine where the poles should be located
e Will proportional feedback do the job?

e What types of dynamics need to be added? Typically use main build-
ing block

(s+ 2)
Gp(s) = K.——=
) (s +p)
e Can be made to look like various controllers, depending on how we
pick K., p, and z

— If we pick z > p, with p small, then

(s+2) -

Gp(s) =~ K,

O—%T1—Re

which is essentially a Pl compensator, called a lag.

— If we pick p > z, then at low frequency, the impact of p/(s + p)
is small, so

Tm

Gp(s) = K.(s+ 2)

O

¥- Re

which is essentially PD compensator, called a lead.

e Various algorithms exist to design the components of the lead and
lag compensators (see 16.31 course notes online)
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Pole Placement

e One option for simple systems is called pole placement.

e Consider a simple system G, = s~ 2 for which we want the closed
loop poles to be at —1 £ 2i

e Proportional control clearly not sufficient, so use a compensator with
1 pole.

/N

G — K s+ z)

So there are 3 CLP.

e Know that the desired characteristic equation is
Pa(s) = (s* +25+5)(s +a) =0
e The actual closed loop poles solve:
bc(s) =1+G,G. = 0
— s (s+p)+K(s+2z) =0
— S+ p+ Ks+ Kz = 0
e Clearly need to pull the poles at the origin into the LHP, so need a

lead compensator — Good rule of thumb is to take p = 10z as a
starting point.

e Compare the characteristic equations:

¢c(5) = 82—|—10282—|—K3—|—Kz:0

da(s) = (82 +25+5)(s+ )
= 52+ s*(a+2)+s2a+5) +ba =0

gives
s?| a+2=10z
S | 2a+ 5=K
s¥ ba=zK
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solve for o, z, K

25 5
K = o= -
5h—2z 5—2z
— 2 =2.23, a = 20.25, K =45.5

20

Imaginary Axis
b
<>

-20 .
-25 -20

fo >C§>

0
Real Axis

Figure 14: CLP with pole placement
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Fall 2004
Autopilot
e Back to the problem on 9-4: # feedback to ¢, to control short period
model
de(s) =14 Gys,(s)H(s)kg =0
with

1.1569s + 0.3435 4
Gos (5) = — H(s) =
n(8) = — g 0T 7 ooares T8 =S

e Pole/zero map:

Figure 15: Pole/zero map of the short period autopilot with # feedback

e Note: K, <0, soif kg > 0, then we would have to draw a 0° locus

— Pole at origin would move to right along real axis = unstable.

SP Autopilot with 6 FB: ke >0

-

Figure 16: With ky > 0
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e So must use ky < 0

SP Autopilot with 6 FB: ke <0

T

Imaginary Axis

Real Axis

Figure 17: With ky <0

e C(lear from the plot that 6 feedback alone is not going to work par-
ticularly well.

— Need to increase the gain to move the pole from the origin, but
in doing so the SP poles start to move very close to the imaginary
axis = making the response worse
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e Could use a rate gyro as the sensor instead and feedback ¢

1.1569s + 0.3435 4
G = — H
w0:5) = = F 072105 1 0.0272°

Figure 18: PZmap with q FB

e Again, pick the gain k;, < 0. Note locus for the real pole.

SP Autopilot with q FB: kq <0

Imaginary Axis

L L L 1 L
-4 -3 -2 -1 0 1
Real Axis

Figure 19: With k, < 0. 4 give the CLP with k, = —1
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e (Can get an even better result if we combine the ¢ and 6 feedback -
like PD on the measurement 6.

5y e 1| e
— | = s+4 1 s
kq
ko
'y

e

0 = —keq — ko(6 —6,) 0¢ = H(s)d¢
g = sb

1
0= "Gus0! = G 0!
= —GggeH [(k‘@ + qu)Q — kg@c]

0 Gos, Hky
0. 1+ Gy H(kg + kys)

e Now pick £, = Cky, and do RL versus kg
dc(s) =14 Gos, H(1 + (s)kyg =0

— Places a zero at s = —1/(

e Step response is reasonable, but now need to pick the kg and £k, to
get the desired wy, and (),
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SP PD Autopilot with {=1 FB: k, <0
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Figure 20: PD feedback with ( = 1. 4 are the closed loop poles.
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Figure 21: PD feedback with ( =1 - step
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SP PD Autopilot with {=1.95 FB:k <0
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Figure 22: PD FB - step with ( =1.95 ko = —1. & are the closed loop poles.
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Summary

e Presented only basics of control design and analysis, but this is enough
for us to get started

e Working with smaller models is good for design, but need to confirm
that the full model still stable

e Could work with the full model, but that is much easier with state
space tools
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SP control codes (lect9a.m)

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51

53

58

60
61
62
63
64
65
66

%

% Fall 2004

% 16.333

% Codes to investigate control for the SP
%

close all

figure(1);clf
set(gcf,’DefaultLinelineWidth’,2)
set(gcf, ’DefaultlineMarkerSize’,10)
rlocus([1],conv([1 0],[1 3 2]))
print -depsc rl_pil

load b747 Asp Bsp

figure(10) ;pzmap (ss(Asp,Bsp, [0 1]1,0));grid on;

hh=get (10, ’children’) ;hhh=get (hh(1),’children’)

set (hhh(1),’MarkerSize’,24) ;set(hhh(1),’LineWidth’,2)
set (hhh(2),’MarkerSize’,24) ;set(hhh(2),’LineWidth’,2)
axis([-1 0.1 -1 1])

print -depsc pz_sp

jpdf (’pz_sp’)

figure(10);clf

test=[% thumbnail data from Nelson 167

.5 .4;

.8 .4;

1 .55;

.7 .6]

test(:,2)=test(:,2)*2%pi;

stest=[-test(:,1) .*test(:,2) test(:,2).*sqrt(l-test(:,1).72)]
fill(stest(:,1),stest(:,2),’blue’,stest(:,1),-stest(:,2),’blue’)
hold on

pzmap (ss (Asp,Bsp, [0 1],0));grid on;

hh=get (10, ’children’) ;hhh=get (hh(1),’children’)

set (hhh(1),’MarkerSize’,24) ;set(hhh(1),’LineWidth’,2)

set (hhh(2), ’MarkerSize’,24) ;set(hhh(2),’LineWidth’,2)

hold off

print -depsc pz_sp2

jpdf (’pz_sp2’)

figure(1);clf
set(gcf,’DefaultLinelineWidth’,2)
set(gcf,’DefaultlineMarkerSize’,10)
rlocus([1],conv([1 0],[1 3 2]))
print -depsc rl_pil

figure(2);
set(gcf,’DefaultLinelineWidth’,2)
set(gcf,’DefaultlineMarkerSize’,12)
rlocus([1 3],conv([1 0],[1 3 21))
print -depsc rl_pi2

figure(2);
set(gcf,’DefaultLinelineWidth’,2)
set(gcf,’DefaultlineMarkerSize’,12)
rlocus([1 0],conv([1 -2],[1 -11))
print -depsc rl_di

%Example: G(s)=1/2"2

%Design Gc(s) to put the clp poles at -1 + 2j

z=roots([-20 49 -10]) ;z=max(z) ,k=25/(5-2%z) ,alpha=5%z/(5-2%z),
num=1;den=[1 0 0];

knum=k*[1 z];kden=[1 10*z];

rlocus(conv(num,knum) ,conv(den,kden)) ;
hold;plot(-alpha+eps*j,’d’);plot([-1+2%j,-1-2%j],’d’) ;hold off
r=rlocus(conv(num,knum) ,conv(den,kden) ,1)’

print -depsc rl_pp
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67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

103
104
105
106
107
108

110
111
112
113
114
115
116
117
118
119

jpdf Crl_pil?)
jpdf (’rl_pi2’)
jpdf (°rl_d1’)
jpdf (’rl_pp’)

load b747 Asp Bsp

G=tf (ss(Asp,Bsp, [0 1],0))*tf(1,[1 01);

H=tf(4,[1 4]1);

rlocus (G*H)

axis([-3 3 -3 3]*1.5)

title(’SP Autopilot with \theta FB: k_\theta > 0’,’FontSize’,16)
print -depsc sp_apl

jpdf (’sp_apl’)

rlocus (-G*H)

axis([-3 3 -3 3]*1.5)

title(’SP Autopilot with \theta FB: k_\theta < 0’,’FontSize’,16)
print -depsc sp_ap2

jpdf (’sp_ap2’)

load b747 Asp Bsp

G=tf (ss(Asp,Bsp, [0 1]1,0));

H=tf(4,[1 41);

rlocus (-G*H)

rr=rlocus(-G*H, 1)

hold on

plot (rr+sqrt(-1)*eps,’d’, ’MarkerFaceColor’,’b’)
hold off

axis([-3 1 -3 3]*1.5)

title(’SP Autopilot with q FB: k_q < 0’,’FontSize’,16)
print -depsc sp_ap3

jpdf (’sp_ap3’)

load b747 Asp Bsp

zeta=1;

k_th=1;

PD=tf ([zeta 1],1);

G=tf (ss(Asp,Bsp, [0 1],0))*tf(1,[1 01);

H=tf(4,[1 4]);

rlocus (-G*H*PD)

rr=rlocus (-G*H*PD,k_th)

hold on

plot (rr+sqrt(-1)*eps,’d’, ’MarkerFaceColor’,’b’)
plot(-1.8+2.4%sqrt(-1),’s’, ’MarkerFaceColor’,’r’)
plot(-1.8-2.4*sqrt(-1),’s’, ’MarkerFaceColor’,’r’)
hold off

axis([-3 0 -3 3]*1.5)

title(’SP PD Autopilot with \zeta=1 FB: k_\theta < 0’,’FontSize’,16)
print -depsc sp_pdl

jpdf (’sp_pd1’)

figure(2);

set(gcf,’DefaultLinelineWidth’,2)

set(gcf, ’DefaultlineMarkerSize’,12)

G_cl=G*H*(-k_th)/ (1+G*H*PD*(-k_th)) ;

step(G_cl,35)

h=get (gcf,’children’) ;hh=get (h(1),’children’);set(hh(1),’LineWidth’,2)
title(’\theta step response to \theta_c’)

ylabel (’\theta(t) - rads’)

print -depsc tstep

jpdf (’tstep’)

16.333 8-28
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SP control codes: Part 2 (lect9b.m)

1 % 16.333 Fall 2004

2 % SP design meeting the performance goals a bit better
3 h

4 load b747 Asp Bsp

G=tf(ss(Asp,Bsp, [0 1],0))*tf(1,[1 01);

H=tf(4,[1 41);

zeta=1.95;
k_th=1;
10 PD=tf([zeta 1],1);

12 rlocus(-GxH*PD)

13 rr=rlocus(-G*H*PD,k_th)

14 hold on

15  plot(rr+sqrt(-1)*eps,’d’,’MarkerFaceColor’,’b’)
16 plot(-1.8+2.4*sqrt(-1),’s’,’MarkerFaceColor’,’r’)
17 plot(-1.8-2.4xsqrt(-1),’s’,’MarkerFaceColor’,’r’)
18 hold off

19 axis([-3 0 -3 3]*1.5)

20 title([’SP PD Autopilot with \zeta=’,num2str(zeta),’ FB: k_\theta < 0’],’FontSize’,16)
21  print -depsc sp_pd2

22 jpdf (’sp_pd2’)

24 figure(2);

25 set(gcf,’DefaultLinelineWidth’,2)

26 set(gcf,’DefaultlineMarkerSize’,12)

27 G_cl=G*H* (-k_th) / (1+G*xH*PD* (-k_th)) ;

28 step(G_cl,35)

20  h=get(gcf,’children’) ;hh=get(h(1),’children’);set(hh(1),’LineWidth’,2)
30 title(’\theta step response to \theta_c’)
31 ylabel(’\theta(t) - rads’)

32 print -depsc tstep2

33 jpdf (tstep2’)

34

35 load b747 A B

36 Gf=tf(ss(A,B(:,1),[0 0 0 1]1,0));

37 H=tf(4,[1 41);

38

39 zeta=1.95;

40  k_th=1;
41 PD=tf([zeta 1],1);
42

43 rlocus(-Gf*H*PD)

44  rrf=rlocus(-Gf*H*PD,k_th)

45  hold on

46 plot(rrf+sqrt(-1)*eps,’s’,’MarkerFaceColor’,’b’)

47 plot(rr+sqrt(-1)*eps,’rd’, ’MarkerFaceColor’,’r’)

48 hold off

49  axis([-3 0 -3 3]*1.5)

50 title([’SP PD Autopilot with \zeta=’,num2str(zeta),’ FB: k_\theta < 0’],’FontSize’,16)
51 print -depsc sp_f1

52 jpdf (’sp_f1’)
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SP control: Basic Dynamics (lect9.m)

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

59
60
61
62
63
64
65
66

clear all

prt=1;

%

% B747 longitudinal dynamics

% 16.333 Fall 2004

%

% B747 at Mach 0.8, 40,000ft, level-flight

% From Etkin and Reid

%
% metric

Xu=-1.982e3;Xw=4.025e3;

Zu=-2.595e4;Zw=-9.030e4;Zq=-4.524e5;Zwd=1.909e3;
Mu=1.593e4;Mw=-1.563e5;Mq=-1.521e7;Mwd=-1.702e4;

g=9.81;theta0=0;5=511;cbar=8.324;
U0=235.9;Iyy=.449e8;m=2.83176e6/g; cbar=8.324;rho=0.3045;
Xdp=.3*m*g; Zdp=0;Mdp=0;
Xde=-3.818e-6%(1/2*rho*U0"~2%S) ; Zde=-0.3648% (1/2*rho*U0~2*S) ;
Mde=-1.444x(1/2*rho*U0~2*S*cbar) ; ;

A=[Xu/m Xw/m O -g*cos(thetal);[Zu Zw Zq+m*U0 -m*g*sin(theta0)]/(m-Zwd);
[Mu+Zu*Mwd/ (m-Zwd) Mw+Zw*Mwd/(m-Zwd) Mqg+(Zq+m*U0)*Mwd/ (m-Zwd)
-m*g*sin(theta0)*Mwd/ (m-Zwd)1/Iyy;
[0010]1];
B=[Xde/m Xdp/m;Zde/(m-Zwd) Zdp/(m-Zwd) ; (Mde+Zde*Mwd/(m-Zwd))/Iyy ...
(Mdp+Zdp*Mwd/ (m-Zwd) ) /Iyy;0 0];

% Short-period Approx
Asp=[Zw/m UO;

[Mw+Zw*Mwd/m Mq+UO*Mwd]/Iyy];
Bsp=[Zde/m; (Mde+Zde/m*Mwd) /Iyy];
[nsp,dspl=ss2tf (Asp,Bsp,eye(2) ,zeros(2,1));
[Vsp,evspl=eig(Asp) ;evsp=diag(evsp);
%rifd(evsp)

%

% CONTROL

%

% actuator dynamics are a lag at 4

actn=4;actd=[1 4]; % H(s) in notes

%

% use the short period model since that is all we are trying to control
%

[nsp,dspl=ss2tf (Asp,Bsp,eye(2) ,zeros(2,1));
[nfull,dfull]l=ss2tf(A,B(:,1),eye(4),zeros(4,1));

%

% form num and den for the "plant" = act_dyn*G == N/D
%

% short period model

N=conv(actn,nsp(2,:));% q is second state
D=conv(actd,dsp) ;

% full model

Ngfull=conv(actn,nfull(3,:));% q is third state
Ntfull=conv(actn,nfull(4,:));% theta is fourth state
Dfull=conv(actd,dfull);

%

% add an extra pole to get the integrator for the \dot theta = q
%

Ntheta=conv(N,1) ;Dtheta=conv(D,[1 0]);

figure(1);clf;

K_thO=-1;

rlocus(sign(K_thO)*Ntheta,Dtheta);
r_thO=rlocus(Ntheta,Dtheta,K_thO)’;hold on;plot(r_thO+eps*sqrt(-1),’v’);
hold off

sgrid(.6,3); % gives target damping and fregs
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axis([-5 .5 -4 4]);grid
title(’Closed-loop poles using only theta FB’)
if prt
print -depsc ac_thO
end

figure(2);clf;
K_g=-1;
rlocus(sign(K_q)*N,D);
r_g=rlocus(N,D,K_q)’;hold on;plot(r_g+eps*sqrt(-1),’v’);
hold off
sgrid(.6,3);
axis([-5 .5 -4 4]);grid
title(’Closed-loop poles using q FB’)
if prt
print -depsc ac_q
end
)
%closed-loop dynamics with q FB in place (inner loop)
% GH/(1+k_q GH) = (N/D) / (1+k_q N/D) = N/(D+k_q N)
h
Ng=N;Dg=K_q* [0 N]+D;

%

% add integrator for q ==> theta
%

K_th=-1;

%
figure(3);clf;
rlocus(sign(K_q)*Nq,conv(Dg, [1 0]));grid
r_th=rlocus(Ng,conv(Dq, [1 0]),K_th)’;hold on;
plot(r_qt+eps*sqrt(-1),’v’) ;plot(r_th+eps*sqrt(-1),’"’);
hold off
sgrid(.6,3);
axis([-5 .5 -4 4]);grid
title(’Closed-loop poles also using theta FB’)
if prt
print -depsc ac_th
end
%
% as a final check, form the closed-loop dynamics
% using the original short period model
Ncl=Ntheta*K_th;
Dcl=Dtheta+conv ([0 N],[K_q K_thl);
roots(Dcl)
%
SPcl=tf(Ncl,Dcl);
[y,tl=step(SPcl);
figure(4)
plot(t,y);xlabel(’time’);ylabel(’\theta rad’,’FontSize’,12)
if prt
print -depsc ac_th_step
end

h
% as a final check, form the closed-loop dynamics
% using the full dynamics from del_e to theta
Nfcl=Ntfull*K_th;
Dfcl=Dfull+conv(Ntfull, [K_q K_thl);
roots(Dfcl)
figure(3)
hold on;plot(roots(Dfcl)+eps*sqrt(-1),’r*’);hold off
axis([-3 .5 -2 2]);grid
title(’Closed-loop poles with g and th FB on FULL model’)
if prt
print -depsc ac_full
end

J%return
%

% add theta state to the short period approx model
)
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Ksp=place(Asp,Bsp, [roots([1 2%.6%3 3°2])’]1)

Asp2=[Asp [0 0]’;0 1 0];Bsp2=[Bsp;0];

Ksp2=place (Asp2,Bsp2, [roots([1 2%.6%3 3°2])’,-.25])

%

% add actuator model to SP with theta

%

Plist=[roots([1 2*.6%3 3°2])’,-.25,-3];

At2=[Asp2 Bsp2(:,1);zeros(1,3) -4];Bt2=[zeros(3,1);4];
Kt2=place(At2,Bt2, [Plist])

step(ss(At2-Bt2*Kt2,Bt2,[0 0 1 0],0),35)

hh=get (gcf, ’children’) ;hhh=get (hh(1),’children’)

set (hhh(1),’MarkerSize’,24);set(hhh(1),’LineWidth’,2)
ylabel(’\theta rads’,’FontSize’,12)

print -depsc fsfb_step.eps

jpdf (’fsfb_step’)

%

ev=eig(A);

% dampe short period, but leave the phugoid where it is
Plist=[roots([1 2*.6%3 3°2])’ ev([3 4],1)’];
Ki=place(A,B(:,1),Plist)

%

% add actuator model

%

At=[A B(:,1);zeros(1,4) -4];Bt=[zeros(4,1);4];
Kt=place(At,Bt, [Plist -3])

save b747 A B Asp Bsp

%'eps2pdf /f="ac7_figl.eps"
%'mv c:\ac7_figl.pdf ./ac7_figl.pdf

16.333 8-32




	Basic Longitudinal Control
	Basic Longitudinal Control
	Pole-zero map for Gqe
	``Thumb Print'' criterion
	Pole-zero map and target pole locations

	First Short Period Autopilot
	Root Locus Basics
	Root Locus Analysis
	Root Locus Examples
	Basic
	Two poles
	Add zero
	Three poles
	Add zero
	Complex case
	Very complex case

	Dynamic Compensation
	RL after adding integral FB
	RL with proportional and integral FB
	RL with derivative FB

	Controller Synthesis
	Pole Placement
	CLP with pole placement

	Autopilot
	Pole/zero map of the short period autopilot with  feedback
	With k>0
	With k< 0
	PZmap with q FB
	With kq < 0. blue give the CLP with kq=-1
	PD feedback with =1. blue are the closed loop poles.
	PD feedback with =1 - step 
	PD FB - step with =1.95   k=-1. blue are the closed loop poles.

	Summary
	SP control codes
	SP control codes: Part 2
	SP control: Basic Dynamics


