
16.333: Lecture # 7 

Approximate Longitudinal Dynamics Models 

•	 A couple more stability derivatives 

•	 Given mode shapes found identify simpler models that capture the main re­
sponses 
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More Stability Derivatives


•	 Recall from 6–2 that the derivative stability derivative terms Zẇ and 
Mẇ ended up on the LHS as modifications to the normal mass and 
inertia terms 

– These are the apparent mass effects – some of the surrounding 
displaced air is “entrained” and moves with the aircraft 

– Acceleration derivatives quantify this effect 

– Significant for blimps, less so for aircraft. 

•	 Main effect: rate of change of the normal velocity ẇ causes a transient 
in the downwash � from the wing that creates a change in the angle 
of attack of the tail some time later – Downwash Lag effect 

•	 If aircraft flying at U0, will take approximately Δt = lt/U0 to reach 
the tail. 

– Instantaneous downwash at the tail �(t) is due to the wing α at 
time t − Δt. 

∂� 
�(t) = 

∂α
α(t − Δt) 

– Taylor series expansion 

α(t − Δt) ≈ α(t) − α̇Δt 

– Note that Δ�(t) = −Δαt. Change in the tail AOA can be com­

puted as 

d� d� lt
Δ�(t) = − α̇Δt = α̇ = −Δαt

dα 
−

dα U0 
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•	 For the tail, we have that the lift increment due to the change in 
downwash is 

d�	 lt
ΔCLt = CLαt 

Δαt = CLαt 
α̇

dαU0 

The change in lift force is then 

1 
ΔLt = ρ(U0

2)tStΔCLt2 

In terms of the Z­force coefficient • 
ΔLt St	 St d� lt

ΔCZ = 1 = −η ΔCLt = −η CLαt 
α̇−	

ρU0
2S S S dαU02 

• c/(2U0) to nondimensionalize time, so the appropriate stabil­We use ¯

ity coefficient form is (note use Cz to be general, but we are looking

at ΔCz from before):


∂CZ	 2U0 ∂CZ 
=	 =CZα̇ α¯ 0∂ ( ˙ c/2U0) c̄ ∂α̇ 0 

2U0 St lt d� 
=	 −η 

c̄ S U0 
CLαt dα 
d� 

=	 −2ηVHCLαt dα 

•	 The pitching moment due to the lift increment is 

ΔMcg = −ltΔLt 
1 ρ(U 2 

0 )tStΔCLt 
1→	ΔCMcg = −lt 

2 

ρU0
2Sc̄2 

d�	 lt 
= −ηVH ΔCLt = −ηVHCLαt 

α̇
dαU0 
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So that 

∂CM	 2U0 ∂CM 
=	 =CMα̇ α¯ 0∂ ( ˙ c/2U0) c̄ ∂α̇ 0 

d� lt 2U0 
=	 −ηVHCLαt dαU0 c̄

d� lt 
=	 −2ηVHCLαt dα c̄

lt 
CZα̇

≡	
c̄

•	 Similarly, pitching motion of the aircraft changes the AOA of the tail. 
Nose pitch up at rate q, increases apparent downwards velocity of tail 
by qlt, changing the AOA by 

qlt
Δαt = 

U0 

which changes the lift at the tail (and the moment about the cg). 

•	 Following same analysis as above: Lift increment 

ΔLt = CLαt 

qlt 
U0 

1 
2 
ρ(U 2 

0 )tSt 

ΔCZ = − 
ΔLt 

1 
2 ρ(U 2 

0 )S 
= −η 

St 

S 
CLαt 

qlt 
U0 

� � � � 

CZq ≡ 
∂CZ 

∂(qc̄/2U0) 0 

= 
2U0 

c̄ 
∂CZ 

∂q 0 

= −η 
2U0 

c̄ 
lt 
U0 

St 

S 
CLαt 

=	 −2ηVHCLαt 

Can also show that •	
lt

CMq = CZq c̄
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Approximate Aircraft Dynamic Models


•	 It is often good to develop simpler models of the full set of aircraft 
dynamics. 

– Provides insights on the role of the aerodynamic parameters on 
the frequency and damping of the two modes. 

– Useful for the control design work as well 

•	 Basic approach is to recognize that the modes have very separate sets 
of states that participate in the response. 

– Short Period – primarily θ and w in the same phase. 
The u and q response is very small. 

– Phugoid – primarily θ and u, and θ lags by about 90◦. 
The w and q response is very small. 

• Full equations from before: ⎡ ⎤ ⎡ 
Xu 

u̇ m ⎣ ẇ
Zu 

w 
[Mu+ZuΓ] 

⎦	= ⎣ m−Z ˙
q̇

θ̇
Iyy 

0 

Xw 
m 
Zw 

m−Z ẇ 
[Mw+ZwΓ] 

Iyy 

0 

0 
Zq+mU0 

m−Z ẇ 
[Mq+(Zq+mU0)Γ] 

Iyy 

1 

−g cos Θ0 
⎤� � � � 

u ΔXc 

−mg sin Θ0 
m−Z ˙ w ΔZc 

− mg sin Θ0Γ 
w	 ⎦ 

q + ΔM c 
Iyy 

0 θ 0 
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•	 For the Short Period approximation, 

1. Since	 u ≈ 0 in this mode, then u̇ ≈ 0 and can eliminate the 
X­force equation. ⎤⎡ ⎤
⎡
 ⎤⎡⎤⎡Zq+mU0 −mg sin Θ0 

m−Z ˙
Zw 

ΔZcẇ wm−Zẇ m−Zẇ

[Mq+(Zq+mU0)Γ]
⎢⎢⎣


⎥⎥⎦


w ⎣
 ⎦ =
 ⎣
 ⎦+
⎣
[Mw+ZwΓ] ΔMc −mg sin Θ0Γ 
Iyy 

q̇ q
Iyy Iyy 

θ̇ θ 00 1 0 

2. Typically find that Zẇ � m and Zq � mU0. Check for 747: 

–	Zẇ = 1909 � m = 2.8866 × 105 

–	Zq = 4.5 × 105 � mU0 = 6.8 × 107 

Mẇ Mẇ
Γ = 

m − Zẇ
⇒ Γ ≈ 

m ⎤⎡ ⎤
⎡
 ⎤⎡⎤⎡Zw U0 −g sin Θ0 ΔZcẇ w
m
⎢⎢⎣

⎥⎥⎦


Mw+Zw 
Mẇ Mq+(mU0) 

Mẇ
m⎣
 ⎦	=
 ⎣
 ⎦+
⎣
ΔMc −mg sin Θ0 M ẇ 

Iyy 
q̇
 m q

Iyy Iyy m 
θ̇ θ 00 1 0 

3. Set Θ0 = 0 and remove θ from the model (it can be derived from 
q) 

•	 With these approximations, the longitudinal dynamics reduce to 

ẋsp = Aspxsp + Bspδe


where δe is the elevator input, and


w	 Zw/m U0 xsp = 
q 

, Asp = 
I−1 (Mw + MẇZw/m) I−1 (Mq + MẇU0)yy	 yy 

⎦


⎦ 

Zδe/mBsp = 
I−1 (Mδe + MẇZδe/m)yy 
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• Characteristic equation for this system: s2 + 2ζspωsps + ω2 = 0,sp 

where the full approximation gives: 

Zw Mq Mẇ
2ζspωsp = − + + U0 

m Iyy Iyy 

ω2 ZwMq U0Mw 
= sp mIyy 

− 
Iyy 

•	 Given approximate magnitude of the derivatives for a typical aircraft, 
can develop a coarse approximate: 

2ζspωsp ≈ −
Mq 
Iyy 

⎫⎬
 ζsp ≈ −
Mq 
2


−1 
U0MwIyy 

ω2 U0Mw ⎭ 
→ 

sp ≈ − ωsp ≈ −U0Mw 
Iyy Iyy 

Numerical values for 747 • 
Frequency Damping 

rad/sec 

Full model 0.962 0.387 
Full Approximate 0.963 0.385 
Coarse Approximate 0.906 0.187 

Both approximations give the frequency well, but full approximation 
gives a much better damping estimate 

•	 Approximations showed that short period mode frequency is deter­

mined by Mw – measure of the aerodynamic stiffness in pitch. 

– Sign of Mw negative if cg sufficient far forward – changes sign 
(mode goes unstable) when cg at the stick fixed neutral point. 
Follows from discussion of CMα (see 2–11) 
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• For the Phugoid approximation, start again with: ⎤⎡⎤
⎡
 Xu Xw 0 −g cos Θ0m m 
−mg sin Θ0 

ΔXcu̇ u⎢⎢⎢⎢⎣


⎥⎥⎥⎥⎦


Zq+mU0⎥⎥⎥⎦


Zu Zw ⎢⎢⎢⎣


⎥⎥⎥⎦


⎢⎢⎢⎣

ΔZc


ΔMc

ẇ

q̇


w

q


m−Zẇ m−Zẇ m−Zẇ m−Zẇ

[Mq+(Zq+mU0)Γ] +
= 
[Mu+ZuΓ] [Mw+ZwΓ] −mg sin Θ0Γ 

Iyy Iyy Iyy Iyy 
θ̇ θ 00 0 1 0 

1. Changes to w and q are very small compared to u, so we can 

– Set ẇ ≈ 0 and q̇ ≈ 0 
– Set Θ0 = 0 

Xu Xw 0 −gm m 

⎡ ⎤
⎤
⎡
 ⎤⎡⎤⎡ 
ΔXcu̇ u⎢⎢⎢⎢⎣


⎥⎥⎥⎥⎦


Zq+mU0Zu Zw⎢⎢⎢⎣


⎥⎥⎥⎦


⎢⎢⎢⎣


⎥⎥⎥⎦


⎢⎢⎢⎣


⎥⎥⎥⎦


0


0


ΔZc


ΔMc

0

0


w

q


m−Zẇ m−Zẇ m−Zẇ

[Mq+(Zq+mU0)Γ] +
= 
[Mu+ZuΓ] [Mw+ZwΓ] 

Iyy Iyy Iyy 
θ̇ θ 00 0 1 0 

2. Use what is left of the Z­equation to show that with these ap­

proximations (elevator inputs) ⎤⎡⎤⎡⎤⎡ 
ZδeZu Zq+mU0Zw 

m−Zẇ m−Zẇ m−Zẇm−Zẇ⎢⎣

⎥⎦


⎢⎣

⎥⎦


w
 ⎣
 ⎦u−
 δe
= −
[Mw+ZwΓ] [Mq+(Zq+mU0)Γ] [Mδe +Zδe Γ][Mu+ZuΓ]q 

Iyy Iyy Iyy Iyy 

3. Use (Zẇ � m so Γ ≈ Mẇ ) and (Zq � mU0) so that: m


Zw
 mU0 w

Mw + Zw

Mẇ [Mq + U0Mẇ] qm 

⎤⎡⎤⎡ ⎥⎥⎥⎦ 

⎢⎢⎢⎣ 

Zu
 Zδe 
= 

Mu + Zu
Mẇ

u − Mẇ
− 

m Mδe + Zδe m 

δe
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4. Solve to show that ⎡
 ⎡
⎤
 ⎤


w

q


=

⎢⎢⎣


mU0Mu − ZuMq


ZwMq − mU0Mw


ZuMw − ZwMu


⎥⎥⎦
u +

⎢⎢⎣


mU0Mδe − Zδe Mq 

ZwMq − mU0Mw


Zδe Mw − ZwMδe 

⎥⎥⎦
δe 

ZwMq − mU0Mw ZwMq − mU0Mw 

5. Substitute into the reduced equations to get full approximation: ⎤� 
mU M Z M−0 u u q 
ZwMq −mU0Mw 

⎡ 
Xu Xw+ −g

u̇

θ̇
⎢⎣


m m
 ⎥⎦

u


= 
θZuMw−ZwMu 0ZwMq−mU0Mw⎡
 ⎤


Xδe Xw mU0Mδe −Zδe Mq+ m m ZwMq−mU0Mw⎢⎣

⎥⎦
δe
+


Zδe Mw−ZwMδe 
ZwMq−mU0Mw 

6. Still a bit complicated. Typically get that 

(1.4:4) – |MuZw| � |MwZu| 
(1:0.13) – |MwU0m| � |MqZw| 

– MuXw/Mw| � Xu small |

7. With these approximations, the longitudinal dynamics reduce to 
the coarse approximation 

ẋph = Aphxph + Bphδe 

where δe is the elevator input. 
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And
 ⎤⎡ 

u 
xph = Aph = 

θ 

⎢⎢⎣


Xu −g 
m 
−Zu 

0 
mU0 

⎥⎥⎦


⎤⎡ 

Bph =


⎢⎢⎢⎢⎢⎣


MδeMw 
Xδe − Xw 

m 
Zw+−Zδe Mw 

Mδe 

⎥⎥⎥⎥⎥⎦


mU0 

8. Which gives 

2ζphωph = −Xu/m 

ω2 gZu 
= ph −

mU0 

Numerical values for 747 

Frequency Damping 
rad/sec 

Full model 0.0673 0.0489 
Full Approximate 0.0670 0.0419 
Coarse Approximate 0.0611 0.0561 
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• Further insights: recall that � �� � � �� � 
U0 ∂Z U0 ∂L 

= + 2CL0 )QS ∂u 0 

− 
QS ∂u 0 

≡ −(CLu 

M2 

= −
1−M2 

CL0 − 2CL0 ≈ −2CL0 

so � � � � 
∂Z ρUoS 2mg

Zu ≡ = (−2CL0 ) = −
∂u 0 2 U0 

Then • 

mg2 
ωph = 

−gZu 
= 

mU0
2mU0 

g 
= 
√

2
U0 

which is exactly what Lanchester’s approximation gave Ω ≈
√

2 g 
U0 

Note that 

∂X ρUoS 
Xu ≡ = (−2CD0 ) = −ρUoSCD0∂u 0 2 

and 
2mg = ρU 2SCL0o 

so 
Xu XuU0

ζph = −
2mωph 

= −
2
√

2mg 
1 ρU 2SCD0o = √
2 ρU 2SCL0o � 

1 CD0 = √
2 CL0 

so the damping ratio of the approximate phugoid mode is inversely 
proportional to the lift to drag ratio. 
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Freq Comparison from elevator (Phugoid Model) – B747 at M=0.8. Blue– Full model, Black– Full approximate 
model, Magenta– Coarse approximate model 



Fall 2004 16.333 6–12


10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

|Gαde

|

Fr
eq

 (r
ad

/s
ec

)

Tr
an

sf
er

 fu
nc

tio
n 

fro
m

 e
le

va
to

r t
o 

fli
gh

t v
ar

ia
bl

es

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

|Gγde

|

Fr
eq

 (r
ad

/s
ec

)

10
−2

10
−1

10
0

05010
0

15
0

20
0

25
0

30
0

arg Gude

Fr
eq

 (r
ad

/s
ec

)
10

−2
10

−1
10

0

−3
50

−3
00

−2
50

−2
00

−1
50

−1
00−5

00

arg Gγde

Fr
eq

 (r
ad

/s
ec

)

Freq Comparison from elevator (Short Period Model) – B747 at M=0.8. Blue– Full model, Magenta– Approx­
imate model 
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Summary 

• Approximate longitudinal models are fairly accurate 

•	 Indicate that the aircraft responses are mainly determined by these 
stability derivatives: 

Property	 Stability derivative 

Damping of the short period Mq 

Frequency of the short period Mw 

Damping of the Phugoid Xu 

Frequency of the Phugoid Zu 
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•	 Given a change in α, expect changes in u as well. These will both 
impact the lift and drag of the aircraft, requiring that we re­trim 
throttle setting to maintain whatever aspects of the flight condition 
might have changed (other than the ones we wanted to change). We 
have:	 � � � � � � 

ΔL Lu Lα u 
= 

ΔD Du Dα Δα 

But to maintain L = W , want ΔL = 0, so u = Lu 
Δα � � 

−Lα


Giving ΔD = −Lα Du + Dα Δα
Lu 

2CL0CDα = CLα → Dα = QSCDαπeAR 
→	 Lα = QSCLα 

QS
Du = (2CD0 ) (4 − 16) 

U0 
QS

Lu = (2CL0 ) (4 − 17) 
U0 

CLα 2CD0ΔD = QS	 + CDα Δα−
2CL0 /U0 U0 

QS	 2C2 
L0 = 

CL0 

−CD0 + 
πeAR 

CLα Δα 

(T0 + ΔT ) − (D0 + ΔD) −ΔD 
tan Δγ =	 = � L0 + Δ�L L0 

CD0 2CL0 CLα Δα 
= 

CL0 

− 
πeAR CL0 

For 747 (Reid 165 and Nelson 416), AR = 7.14, so πeAR ≈ 18, 
CL0 = 0.654 CD0 = 0.043, CLα = 5.5, for a Δα = −0.0185rad 
(6–7) Δγ = −0.0006rad. This is the opposite sign to the linear 
simulation results, but they are both very small numbers. 
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