
16.333 Lecture 4 

Aircraft Dynamics 

Aircraft nonlinear EOM • 

• Linearization – dynamics 

Linearization – forces & moments • 

• Stability derivatives and coefficients 
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Aircraft Dynamics


•	 Note can develop good approximation of key aircraft motion (Phugoid) 
using simple balance between kinetic and potential energies. 

•	 Consider an aircraft in steady, level flight with speed U0 and height 
h0. The motion is perturbed slightly so that 

U0 U = U0 + u	 (1)→ 

h0 h = h0 + Δh	 (2)→ 

•	 Assume that E = 1 mU 2 + mgh is constant before and after the 2 
perturbation. It then follows that u ≈ −gΔh 

U0 

•	 From Newton’s laws we know that, in the vertical direction 
¨ mh = L −W 

1where weight W = mg and lift L = 2 ρSCLU 2 (S is the wing area). 
We can then derive the equations of motion of the aircraft: 

¨	 1 
mh = L −W = ρSCL(U 2 − U0

2)	 (3)
2 
1 

= ρSCL((U0 + u)2 − U0
2) ≈ 

1 
ρSCL(2uU0)(4) 

22 � � 
gΔh 

U0 = −(ρSCLg)Δh	 (5)≈ −ρSCL 
U0 

¨ ¨ Since h = Δh and for the original equilibrium flight condition L = 
1W	 = 2 (ρSCL)U 2 = mg, we get that 0 � �2

ρSCLg g
= 2 

m U0 

Combine these result to obtain: 
¨ Δh + Ω2Δh = 0 , Ω ≈	

g √
2 

U0 

•	 These equations describe an oscillation (called the phugoid oscilla­

tion) of the altitude of the aircraft about it nominal value. 

– Only approximate natural frequency (Lanchester), but value close. 
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•	 The basic dynamics are: 

�̇
I	 �̇

I 
F	 = mvc and T� = H 

1 
�̇	B ω × �vc Transport Thm. F = vc	 + BI�⇒	

m

�̇
B 

BI�
⇒ T� =	H + ω × �H 

•	 Basic assumptions are: 

1. Earth is an inertial reference frame 
2. A/C is a rigid body 
3. Body frame	B fixed to the aircraft (�i,�j, 

BI�•	 Instantaneous mapping of �vc and ω into the body frame: 

BI�ω = P�i + Q�j + R�k �vc = U�i + V�j + W�k 

⎡ ⎤	 ⎡ ⎤ 
P	 U ⎦ ⇒	 BIωB = ⎣ Q ⎦ ⇒ (vc)B = ⎣ V 
R W 

•	 By symmetry, we can show that Ixy = Iyz = 0, but value of Ixz 
depends on specific frame selected. Instantaneous mapping of the 
angular momentum 

H	= Hx
�i + Hy

�j + Hz
�k 

into the Body Frame given by ⎡ ⎤ ⎡	 ⎤⎡ ⎤ 
Hx Ixx 0 Ixz P 

HB = ⎣ Hy ⎦ = ⎣ 0 Iyy 0 ⎦⎣ Q ⎦ 

Hz Ixz 0 Izz R 



�
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•	 The overall equations of motion are then: 

1 
�̇
B 

F	 = vc + BI�ω × �vc 
m ⎡ ⎤ ⎡ ⎤ ⎡	 ⎤⎡ ⎤ 
X U̇	 0 −R Q U 

⇒	
m 
⎣ Y ⎦ = ⎣ V̇ ⎦ + ⎣ 0 −P ⎦⎣ V ⎦R 

˙Z W −Q P 0 W 

⎡	 ⎤ 
U	˙ +QW − RV

˙ ⎦
= ⎣ V +RU − P W

˙
W + P V	− QU 

�̇
B 

BI�T�	 = H + ω × �H 

⎡ ⎤ ⎡ ⎤ ⎡	 ⎤⎡ ⎤⎡ ⎤˙L IxxṖ + IxzR 0 −R Q Ixx 0 Ixz P 
⇒ ⎣ M	⎦ = ⎣ 

˙
IyyQ̇ ⎦ + ⎣ 0 −P ⎦⎣ 0 Iyy 0 ⎦⎣ Q ⎦R 

P 0 Ixz 0 Izz RN IzzR + IxzṖ −Q 

⎡	 ⎤˙IxxṖ + IxzR +QR(Izz − Iyy) + P QIxz ⎦= ⎣	 IyyQ̇ +P R(Ixx − Izz ) + (R2 − P 2)Ixz 
˙IzzR + IxzṖ +P Q(Iyy − Ixx)− QRIxz 

•	 Clearly these equations are very nonlinear and complicated, and we 
have not even said where �F and T�	come from. = Need to linearize!! ⇒ 

– Assume that the aircraft is flying in an equilibrium condition and 
we will linearize the equations about this nominal flight condition. 
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Axes


•	 But first we need to be a little more specific about which Body Frame 
we are going use. Several standards: 

1. Body Axes ­ X aligned with fuselage nose. Z perpendicular to 
X in plane of symmetry (down). Y perpendicular to XZ plane, to 
the right. 

2. Wind Axes ­ X aligned with �vc. Z perpendicular to X (pointed 
down). Y perpendicular to XZ plane, off to the right. 

3. Stability Axes ­ X aligned with projection of �vc into the fuselage 
plane of symmetry. Z perpendicular to X (pointed down). Y same. 

R E LATIVE WIND 
( ) 

( ) 

( ) 

� 

� 

B ODY 
Z-AXIS 

B ODY 
Y -AXIS 

X-AXIS 
WIND

X-AXIS 
S T AB ILIT Y 

X-AXIS 
B ODY 

•	 Advantages to each, but typically use the stability axes. 

– In different flight equilibrium conditions, the axes will be oriented 
differently with respect to the A/C principal axes ⇒ need to trans­

form (rotate) the principal inertia components between the frames. 

– When vehicle undergoes motion with respect to the equilibrium, 
Stability Axes remain fixed to airplane as if painted on. 
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•	 Can linearize about various steady state conditions of flight. 

– For steady state flight conditions must have 

F Faero + � Fthrust = 0 and T� = 0 �	 = � Fgravity + �

3 So for equilibrium condition, forces balance on the aircraft 
L = W and T = D 

˙ ˙ ˙ ˙ ˙– Also assume that Ṗ = Q = R = U = V = W = 0 

– Impose additional constraints that depend on flight condition: 

3 Steady wings­level flight → Φ = ˙ Θ = ˙Φ = ˙ Ψ = 0 

•	 Key Point: While nominal forces and moments balance to zero, 
motion about the equilibrium condition results in perturbations to 
the forces/moments. 

– Recall from basic flight dynamics that lift Lf = CLα α0 where: 0 

3 CLα = lift curve slope – function of the equilibrium condition 
3 α0 = nominal angle of attack (angle that wing meets air flow) 

– But, as the vehicle moves about the equilibrium condition, would 
expect that the angle of attack will change 

α	= α0 + Δα 

– Thus the lift forces will also be perturbed 

Lf	 = CLα (α0 + Δα) = Lf + ΔLf 
0 

•	 Can extend this idea to all dynamic variables and how they influence 
all aerodynamic forces and moments 



Fall 2004	 16.333 4–6


Gravity Forces 

•	 Gravity acts through the CoM in vertical direction (inertial frame +Z) 

– Assume that we have a non­zero pitch angle Θ0 

– Need to map this force into the body frame 

– Use the Euler angle transformation (2–15) ⎡ ⎤ ⎡	 ⎤ 
0 − sin Θ 

Fg = T1(Φ)T2(Θ)T3(Ψ) ⎣ 0 ⎦ = mg ⎣ sin Φ cos Θ ⎦ 
B 

mg	 cos Φ cos Θ 

•	 For symmetric steady state flight equilibrium, we will typically assume 
that Θ ≡ Θ0, Φ ≡ Φ0 = 0, so ⎡ ⎤ 

− sin Θ0 

Fg = mg ⎣ 0 ⎦ 
B 

cos Θ0 

•	 Use Euler angles to specify vehicle rotations with respect to the Earth 
frame 

Θ̇ = Q cos Φ − R sin Φ 

Φ̇ = P + Q sin Φ tan Θ + R cos Φ tan Θ 

Ψ̇ = (Q sin Φ + R cos Φ) sec Θ 

– Note that if Φ ≈ 0, then Θ̇ ≈ Q 

•	 Recall: Φ ≈ Roll, Θ ≈ Pitch, and Ψ ≈ Heading. 
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Linearization 

• Define the trim angular rates and velocities ⎡ ⎤ ⎡ ⎤ 
P Uo 

BIωo = ⎣ Q ⎦ (vc)
o = ⎣ 0 ⎦ 

B B 

R 0 

which are associated with the flight condition. In fact, these define 
the type of equilibrium motion that we linearize about. Note: 

– W0 = 0 since we are using the stability axes, and 

– V0 = 0 because we are assuming symmetric flight 

• Proceed with linearization of the dynamics for various flight conditions 

Nominal Perturbed Perturbed ⇒
Velocity Velocity Acceleration⇒ 

Velocities U0, U = U0 + u U̇ = u̇⇒ 
˙W0 = 0, W = w W = ẇ

V0 = 0, V = v 
⇒ 

V̇ = v̇⇒ 

Angular P0 = 0,

Rates Q0 = 0,


R0 = 0,


P = p Ṗ = ṗ 
Q = q 

⇒ 
Q̇ = q̇ 

R = r 
⇒ 

Ṙ = ṙ⇒ 

˙Angles Θ0, Θ = Θ0 + θ Θ = θ̇⇒ 
˙Φ0 = 0, Φ = φ Φ = φ̇⇒ 
˙Ψ0 = 0, Ψ = ψ Ψ = ψ̇⇒ 



�
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W C.G. 

0
VT 

VT0 
= U0 

XE 

X0 

X 

q 

� 

Z 

Z0 ZE 

� 

Θ 

� 

or 

�0 

�0 �0 

Horizontal 

U = U + u 

Down 

Figure 1: Perturbed Axes. The equilibrium condition was that the aircraft was angled up by Θ0 with 
velocity VT 0 = U0. The vehicle’s motion has been perturbed (X0 → X) so that now Θ = Θ0 +θ and 
the velocity is VT = VT 0. Note that VT is no longer aligned with the X­axis, resulting in a non­zero 
u and w. The angle γ is called the flight path angle, and it provides a measure of the angle of the 
velocity vector to the inertial horizontal axis. 
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• Linearization for symmetric flight 
U = U0 + u, V0 = W0 = 0, P0 = Q0 = R0 = 0. 

Note that the forces and moments are also perturbed. 

1 
[X0 + ΔX ] = U̇ +QW − RV u̇ + qw − rv ≈ u̇

m	
≈ 

1 
[Y0 + ΔY ] = V̇ +RU − P W 

m 
v̇ + r(U0 + u)− pw v̇ + rU0≈	 ≈ 

1 ˙[Z0 + ΔZ] = W + P V − QU ẇ + pv − q(U0 + u) 
m 

≈


ẇ − qU0
≈ ⎡ ⎤ ⎡ ⎤ 
ΔX	 u̇ 1 

1 ⎣ ΔY ⎦ = ⎣ v̇	+ rU0 ⎦ 2⇒ 
m 

ΔZ ẇ − qU0 3 

Attitude motion: • ⎡ ⎤ ⎡	 ⎤˙L IxxṖ + IxzR +QR(Izz − Iyy) + P QIxz ⎦⎣ M ⎦ = ⎣	 IyyQ̇ +P R(Ixx − Izz ) + (R2 − P 2)Ixz 
˙N IzzR + IxzṖ +P Q(Iyy − Ixx)− QRIxz ⎡ ⎤ ⎡	 ⎤ 

ΔL Ixxṗ + Ixzṙ 4
⎣ ΔM ⎦ = ⎣ Iyyq̇ ⎦ 5
⇒ 
ΔN Izzṙ	+ Ixzṗ 6 
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•	 Key aerodynamic parameters are also perturbed: 

Total Velocity 
2 2)1/2 ≈ U0 + uVT = ((U0 + u)2 + v + w 

Perturbed Sideslip angle 

β	 = sin−1(v/VT ) ≈ v/U0 

Perturbed Angle of Attack 

αx = tan−1(w/U) ≈ w/U0 

• To understand these equations in detail, and the resulting impact on 
the vehicle dynamics, we must investigate the terms ΔX . . . ΔN . 

– We must also address the left­hand side ( �F ,	T�) 

– Net forces and moments must be zero in equilibrium condition. 

– Aerodynamic and Gravity forces are a function of equilibrium con­

dition AND the perturbations about this equilibrium. 

•	 Predict the changes to the aerodynamic forces and moments using a 
first order expansion in the key flight parameters 

∂X ∂X ∂X ∂X	 ∂Xg 

ΔX = ΔU + ΔW + ΔẆ + ΔΘ + . . . + ΔΘ + ΔXc 

∂U ∂W ∂ Ẇ ∂Θ ∂Θ 
∂X ∂X ∂X ∂X ∂Xg 

˙= u + w + w + θ + . . . + θ + ΔXc 

∂U ∂W ∂ Ẇ ∂Θ	 ∂Θ 

•	 ∂X called stability derivative – evaluated at eq. condition. ∂U 

•	 Gives dimensional form; non­dimensional form available in tables. 

•	 Clearly approximation since ignores lags in the aerodynamics forces 
(assumes that forces only function of instantaneous values) 
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Stability Derivatives


•	 First proposed by Bryan (1911) – has proven to be a very effec­

tive way to analyze the aircraft flight mechanics – well supported by 
numerous flight test comparisons. 

•	 The forces and torques acting on the aircraft are very complex nonlin­

ear functions of the flight equilibrium condition and the perturbations 
from equilibrium. 

– Linearized expansion can involve many terms u, ˙ u, . . . , w, ˙ w, . . . u, ¨ w, ¨

– Typically only retain a few terms to capture the dominant effects. 

•	 Dominant behavior most easily discussed in terms of the: 

– Symmetric variables: U , W , Q & forces/torques: X, Z, and M 

– Asymmetric variables: V , P , R & forces/torques: Y , L, and N 

•	 Observation – for truly symmetric flight Y , L, and N will be exactly 
zero for any value of U , W , Q 

⇒ Derivatives of asymmetric forces/torques with respect to the sym­

metric motion variables are zero. 

•	 Further (convenient) assumptions: 

1. Derivatives of symmetric forces/torques with respect to the asym­

metric motion variables are small and can be neglected. 

2. We can neglect derivatives with respect to the derivatives of the 
motion variables, but keep ∂Z/∂ẇ and Mẇ ≡ ∂M/∂ẇ (aero­

dynamic lag involved in forming new pressure distribution on the 
wing in response to the perturbed angle of attack) 

3.	∂X/∂q is negligibly small. 
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∂()/∂() X Y Z L M N 

u 
v 
w 
p 
q 
r 

• 
0 
• 
0 
≈ 0 
0 

0 
• 
0 
• 
0 
• 

• 
0 
• 
0 
• 
0 

0 
• 
0 
• 
0 
• 

• 
0 
• 
0 
• 
0 

0 
• 
0 
• 
0 
• 

• Note that we must also find the perturbation gravity and thrust forces 
and moments 

∂Xg


∂Θ

∂Zg


= −mg cos Θ0 
0 ∂Θ


= −mg sin Θ0 
0 

• Aerodynamic summary: 

1A ΔX = ∂X 
∂U 0 u + ∂X 

∂W 0 w ⇒ ΔX ∼ u, αx ≈ w/U0 

2A ΔY ∼ β ≈ v/U0, p, r 

3A ΔZ ∼ u, αx ≈ w/U0, α̇x ≈ ẇ/U0, q 

4A ΔL ∼ β ≈ v/U0, p, r 

5A ΔM ∼ u, αx ≈ w/U0, α̇x ≈ ẇ/U0, q 

6A ΔN ∼ β ≈ v/U0, p, r 
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•	 Result is that, with these force, torque approximations, 
equations 1, 3, 5 decouple from 2, 4, 6 

– 1, 3, 5 are the longitudinal dynamics in u, w, and q 

⎤⎡⎤⎡ 
ΔX	 mu̇

ΔZ ⎦
 =
 ⎣
m( ẇ − qU0) ⎦


ΔM	 Iyyq̇
 ⎤⎡ 
∂Xg∂X ∂X θ + ΔXcu + w +
∂U ∂W ∂Θ0 0 0⎢⎢⎢⎢⎢⎣


∂Zg∂Z ∂Z ∂Z ∂Z w + θ + ΔZc˙u + w + q +≈ ∂ Ẇ∂U ∂W ∂Q ∂Θ0 0 00
 0 

∂M ∂M ∂M ẇ + ∂M q + ΔMcu + w +∂U 0 ∂W 0 ∂ Ẇ	 0 ∂Q 0 

– 2, 4, 6 are the lateral dynamics in v, p, and r 

⎤⎡⎤⎡ 
ΔY m(v̇ + rU0)
⎣
 ΔL
⎦
 =
 ⎣
 Ixxṗ + Ixzṙ
⎦


ΔN Izzṙ + Ixzṗ
 ⎤⎡ 

≈


⎢⎢⎢⎢⎣


∂Y ∂Y ∂Y v + 
0 p + r + +ΔY c 

∂V	 0 ∂P ∂R 0 

∂L v + ∂L 
0 p + ∂L r + ΔLc ∂V	 0 ∂P ∂R 0 

⎥⎥⎥⎥⎦ 

⎣ 

⎥⎥⎥⎥⎥⎦


∂N ∂N ∂N v + 
0 p + r + ΔNc 

∂V	 0 ∂P ∂R 0 
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Basic Stability Derivative Derivation


•	 Consider changes in the drag force with forward speed U 

D = 1/2ρVT 
2SCD 

2 2V 2 = (u0 + u)2 + v + wT 

∂VT 
2	 ∂VT 

2 

= 2(u0 + u) ⇒	 = 2u0
∂u	 ∂u 0 

∂VT 
2	 ∂VT 

2 

Note:	 = 0 and = 0 
∂v 0	 ∂w 0 

At reference condition: � � � � �� 
∂D ∂ ρVT 

2SCD 
= ⇒	Du ≡ 

∂u 0 ∂u 2 � 0� �	 � � � 
ρS 2 ∂CD	 ∂VT 

2 

= u0	 + CD02 ∂u 0	 ∂u 0 

ρS 2 ∂CD 
=	 + 2u0CD0u02 ∂u 0 

– Note ∂D is the stability derivative, which is dimensional.∂u 

•	 Define nondimensional stability coefficient CDu as derivative of 
CD with respect to a nondimensional velocity u/u0 

D	 ∂CD 
and CD0 ≡ (CD)0CD = 1 ρVT 

2S 
⇒ CDu	≡ 

∂u/u02	 0 

– So ( 0 corresponds to the variable at its equilibrium condition. •)
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Nondimensionalize: • � � � � � � 
∂D ρSu0 ∂CD 

= u0 + 2CD0∂u 0 2 ∂u 0 

QS ∂CD 
= + 2CD0 u0 ∂u/u0 0� � � � 

u0 ∂D 
= (CDu + 2CD0 )QS ∂u 0 

So given stability coefficient, can compute the drag force increment. 

• Note that Mach number has a significant effect on the drag: � � � � 

CDu = 
∂CD 

∂u/u0 0 

= 
u0 

a 
∂CD 

∂ 
� 
u 
a 

� 
0 

= M 
∂CD 

∂M 

where ∂CD 

∂M can be estimated from empirical results/tables. 

Aerodynamic Principles 

� = Constant 

CD 

0 
Mcr0 1 2 

= 0.1
CD 

M 

Mach number, M 

• Thrust forces � � � � 

CTu = 
∂CT 

∂u/u0 0 

⇒ 
∂T 
∂u 0 

= CTu 

1 
u0 
QS 

– For a glider, CTu = 0 

– For a jet, CTu ≈ 0 

– For a prop plane, CTu = −CD0 
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•	 Lift forces similar to drag 

L = 1/2ρVT 
2SCL � �	 � � � � 

∂L ρSu0 ∂CL 
=	 + 2CL0⇒ 

∂u 0 2 
u0 

∂u 0 � 
QS ∂CL 

=	 + 2CL0 u0 ∂u/u0 0 � � � � 
u0 ∂L 

=	 (CLu + 2CL0 )QS ∂u 0 

where CL0 is the lift coefficient for the eq. condition and CLu = 
M ∂CL 

∂M as before. From aerodynamic theory, we have that 

∂CL MCL|M=0CL =	 = CL√
1− M2 

⇒ 
∂M 1− M2 

M2 

⇒	CLu =
1− M2 

CL0 

•	 α Derivatives: Now consider what happens with changes in the angle 
of attack. Take derivatives and evaluate at the reference condition: 

– Lift: ⇒	CLα 

C2 
L	 2CL0 – Drag: CD = CDmin + 

πeAR 
⇒ CDα = 

πeAR
CLα 
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• Combine into X, Z Forces 

– At equilibrium, forces balance. 

– Use stability axes, so α0 = 0 

– Include the effect in the force balance of a change in α on the 
force rotations so that we can see the perturbations. 

– Assume perturbation α is small, so rotations are by cos α ≈ 1, 
sin α ≈ α 

X	 = T − D + Lα 

Z = −(L + Dα) 

CL 

Cx 

Cz 

z 

x 

V 

Note: � = �T at t = 0 

CD 

��(t) 

(i.e., Static Trim) 

•	 So, now consider the α derivatives of these forces: 
∂X ∂T ∂D ∂L 

=	 + L + α 
∂α ∂α 

− 
∂α ∂α 

∂T 
– Thrust variation with α very small 

∂α 0 

≈ 0 

– Apply at the reference condition (α = 0), i.e. CXα 

• Nondimensionalize and apply reference condition: 

CXα = −CDα + CL0 

2CL0 = CL0 − CLαπeAR 

∂CX 
= 

∂α 0 
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And for the Z direction • 
∂Z	 ∂D ∂L 

= D − α 
∂α 

−
∂α 

−
∂α 

Giving 
CZα = CD0 − CLα−

•	 Recall that CMα was already found during the static analysis 

•	 Can repeat this process for the other derivatives with respect to the 
forward speed. 

•	 Forward speed: 
∂X ∂T ∂D ∂L 

=	 + α 
∂u ∂u 

−
∂u ∂u 

So that� �� � � �� � � �� � 
u0 ∂X	 u0 ∂T u0 ∂D 

= 
QS ∂u 0 QS ∂u 0 

− 
QS ∂u 0 

⇒ CXu ≡ CTu − (CDu + 2CD0 ) 

•	 Similarly for the Z direction: 

∂Z ∂L ∂D 
= α 

∂u 
−
∂u 
−

∂u 
So that � �� � � �� � 

u0 ∂Z	 u0 ∂L 
= 

QS ∂u 0 

− 
QS ∂u 0 

(CLu + 2CL0 )CZu ≡ −

M2 

= −
1−M2 

CL0 − 2CL0 

•	 Many more derivatives to consider ! 
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Summary


•	 Picked a specific Body Frame (stability axes) from the list of alter­
natives 

⇒ Choice simplifies some of the linearization, but the inertias now 
change depending on the equilibrium flight condition. 

•	 Since the nonlinear behavior is too difficult to analyze, we needed 
to consider the linearized dynamic behavior around a specific flight 
condition 

⇒	Enables us to linearize RHS of equations of motion. 

•	 Forces and moments also complicated nonlinear functions, so we lin­

earized the LHS as well 

⇒ Enables us to write the perturbations of the forces and moments 
in terms of the motion variables. 

– Engineering insight allows us to argue that many of the stability 
derivatives that couple the longitudinal (symmetric) and lateral 
(asymmetric) motions are small and can be ignored. 

•	 Approach requires that you have the stability derivatives. 

– These can be measured or calculated from the aircraft plan form 
and basic aerodynamic data. 
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