16.333 Lecture 4

Aircraft Dynamics

Aircraft nonlinear EOM
Linearization — dynamics
Linearization — forces & moments

Stability derivatives and coefficients
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Aircraft Dynamics

e Note can develop good approximation of key aircraft motion (Phugoid)
using simple balance between kinetic and potential energies.

e Consider an aircraft in steady, level flight with speed U, and height
ho. The motion is perturbed slightly so that

Uy — U=Uy+u (1)

ho — h=ho+Ah (2)

e Assume that £/ = %mU2 + mgh is constant before and after the

perturbation. It then follows that u ~ —gﬁ—oh

e From Newton's laws we know that, in the vertical direction
mh=1L—W

where weight W = mg and lift L = %/)SCLU2 (S is the wing area).
We can then derive the equations of motion of the aircraft:

y 1
1 1
Ah
~ —pSCY (QTOUO) = —(pSCLg)Ah (5)

Since h = Ah and for the original equilibrium flight condition L =
W = 1(pSC1)UE = mg, we get that

PSOLQZQ(i)Q

m Uo

Combine these result to obtain:

Ah+QPAR=0 | Q%%\/Z
0

e These equations describe an oscillation (called the phugoid oscilla-
tion) of the altitude of the aircraft about it nominal value.

— Only approximate natural frequency (Lanchester), but value close.
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e The basic dynamics are:

= : - 1
F=mv., and T=H

I = - B 5>
= —F=10, + Plogxug, Transport Thm.
m
= B _
= T=H + PoxH
e Basic assumptions are: e e
o IS
1. Earth is an inertial reference frame R
2. A/Cis a rigid body ir
Z

3. Body frame B fixed to the aircraft (7, J,

e Instantaneous mapping of ¥, and /& into the body frame:

Blg=Pi+Qj+Rk #.=Ui+Vj+Wk

P U
== BIwB = Q == (Uc)B = V
R |44

e By symmetry, we can show that I,, = [,, = 0, but value of I,
depends on specific frame selected. Instantaneous mapping of the

angular momentum
H=H,+H,j+H.Fk

into the Body Frame given by

H, I, 0 1, P
Hgp=|H,|=|0 1, 0 |]|Q
HZ ]xz 0 [zz R
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e The overall equations of motion are then:

1 - :
“F ="+ Plgxa
m
X U 0 —R Q U
=—|Y|=|V|+| R 0-P V
"z W Q9 P 0| |wW
U+ QW — RV
= | V4+RU — PW
W+ PV — QU
- B 5
T = H + P'oxH
L I.,P+1I,.R 0 —R Q1 [IL. 0I.
= | M| = L, |+| R 0-P 01, O
N ILR+1I1.P —Q P 0| |I. 0L,

LoP + I.R +QR(I.. — I,)) + PQI,.
_ I,Q  +PR(IL, —L.)+(R*— P,

e Clearly these equations are very nonlinear and complicated, and we
have not even said where F' and T' come from. = Need to linearize!!

— Assume that the aircraft is flying in an equilibrium condition and
we will linearize the equations about this nominal flight condition.

P
Q
R
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Axes

e But first we need to be a little more specific about which Body Frame
we are going use. Several standards:

1. Body Axes - X aligned with fuselage nose. Z perpendicular to
X in plane of symmetry (down). Y perpendicular to XZ plane, to
the right.

2. Wind Axes - X aligned with .. Z perpendicular to X (pointed
down). Y perpendicular to XZ plane, off to the right.

3. Stability Axes - X aligned with projection of 7. into the fuselage
plane of symmetry. Z perpendicular to X (pointed down). Y same.

X-AXIS
(WIND)

e Advantages to each, but typically use the stability axes.

— In different flight equilibrium conditions, the axes will be oriented
differently with respect to the A/C principal axes = need to trans-
form (rotate) the principal inertia components between the frames.

— When vehicle undergoes motion with respect to the equilibrium,
Stability Axes remain fixed to airplane as if painted on.
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e Can linearize about various steady state conditions of flight.
— For steady state flight conditions must have
F = Fro + Favity + Finrust = 0 and T = 0
<& So for equilibrium condition, forces balance on the aircraft
L=WandT=D
— Also assumethat P=Q=R=U=V =W =0

— Impose additional constraints that depend on flight condition:

& Steady wings-level flight = d=d =0 =T = (

e Key Point: While nominal forces and moments balance to zero,
motion about the equilibrium condition results in perturbations to
the forces/moments.

— Recall from basic flight dynamics that lift L = C'r, oo where:

& Cr,, = lift curve slope — function of the equilibrium condition

<& g = nominal angle of attack (angle that wing meets air flow)

— But, as the vehicle moves about the equilibrium condition, would
expect that the angle of attack will change

a = oy + A«

— Thus the lift forces will also be perturbed
L' =Cp (g + Aa) = LT + ALY

e (Can extend this idea to all dynamic variables and how they influence
all aerodynamic forces and moments
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Gravity Forces

e Gravity acts through the CoM in vertical direction (inertial frame +Z2)

— Assume that we have a non-zero pitch angle O
— Need to map this force into the body frame
— Use the Euler angle transformation (2-15)

0 —sin ©
FL=T(®)T2(0)T5(¥) | 0 | =mg | sin®cosO
mg cos P cos O

e For symmetric steady state flight equilibrium, we will typically assume
that © = Oy, & = Py =0, so
—s8in O
F}, =mg 0
cos Oy

Z' o0
) (]
. | "

e Use Euler angles to specify vehicle rotations with respect to the Earth
frame

O = Qcosd — Rsind
O = P+ Qsin®tan® + Rcos P tan ©
U = (Qsin® + RcosP)secO

— Note that if ® ~ 0, then © =~ Q

e Recall: ® ~ Roll, © ~ Pitch, and ¥ ~ Heading.




Fall 2004
Linearization

e Define the trim angular rates and velocities

P

wp = | ¢
R

bl (UC)% =

16.333 4-7

0
0

which are associated with the flight condition. In fact, these define

the type of equilibrium motion that we linearize about. Note:

— Wy = 0 since we are using the stability axes, and

— Vi = 0 because we are assuming symmetric flight

e Proceed with linearization of the dynamics for various flight conditions

Nominal Perturbed = Perturbed
Velocity Velocity = Acceleration
Velocities U, U=Uy+u = U=u
W, =0, W=w = W =
Vo =0, V=v = V=02
Angular Py=0, P=p = P=p
Rates Qo =0, Q=q = Q=4
Ry =0, R=r = R=r
Angles Oy, O=06y+60 = O==0
Oy =0, O =0 = o = gb
Uy =0, U =1 = U =1
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q
Horizontal
Xg < ’.\
E 7 C.G.
Z
Y
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Figure 1: Perturbed Axes. The equilibrium condition was that the aircraft was angled up by O, with
velocity Vg = Upy. The vehicle's motion has been perturbed (Xy — X)) so that now © = O, +6 and
the velocity is Vi # Vrg. Note that Vi is no longer aligned with the X-axis, resulting in a non-zero
u and w. The angle ~ is called the flight path angle, and it provides a measure of the angle of the
velocity vector to the inertial horizontal axis.
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e Linearization for symmetric flight

U=Uy+u, Vy=Wy=0, Bh=0Qy= Ry=0.

Note that the forces and moments are also perturbed.

1 .
— [ Xo+AX] = U+QW —RV = 4+qu—rv=u
m
1 .
—[Yo+ AY] = V + RU — PW
m
~ 0+r(Uy+u) —pw ~ 0+1rU
1 .
E[ZOJrAZ} = W+ PV —-QU =~ w+pv—q(Uy+ u)
~ow — qU()
| AX U 1
= — | AY | = | v+1rUy 2
m AZ w — QU() 3
e Attitude motion:
L ]a:xp -+ ]a:zR +QR(IZZ o ]yy) + PQI:EZ
M| = 1,,Q  +PR(I,, —IL.)+ (R*>— P)I,.
N ]zzR -+ ]JCZP +PQ(Iyy o ]xx) o QR]$Z
AL e 4
= | AM | = Lyq 5

AN Li+IL.p| 6
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e Key aerodynamic parameters are also perturbed:

Total Velocity
Vi = (Uy+u)?+ 02+ u?) 2 = Uy+u
Perturbed Sideslip angle
B3 = sin"Hv/Vy) = v /Uy
Perturbed Angle of Attack
a, = tan H(w/U) ~ w/U

e To understand these equations in detail, and the resulting impact on
the vehicle dynamics, we must investigate the terms AX ... AN.

— We must also address the left-hand side (ﬁ f)

— Net forces and moments must be zero in equilibrium condition.

— Aerodynamic and Gravity forces are a function of equilibrium con-
dition AND the perturbations about this equilibrium.

e Predict the changes to the aerodynamic forces and moments using a
first order expansion in the key flight parameters

oX oX 0X .  0X 5X9 )
AX = SEAUS AW 4 S AW 4 2500 . Zo A0+ AX
O X O Oy O Axe
—aout T awY Taw Y Tae” T T 6o
0X

e 57 called stability derivative — evaluated at eq. condition.
e Gives dimensional form:; non-dimensional form available in tables.

e Clearly approximation since ignores lags in the aerodynamics forces
(assumes that forces only function of instantaneous values)
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Stability Derivatives

e First proposed by Bryan (1911) — has proven to be a very effec-
tive way to analyze the aircraft flight mechanics — well supported by
numerous flight test comparisons.

e The forces and torques acting on the aircraft are very complex nonlin-
ear functions of the flight equilibrium condition and the perturbations
from equilibrium.

— Linearized expansion can involve many terms u, u, i, . . ., w, w, w, . . .

— Typically only retain a few terms to capture the dominant effects.

e Dominant behavior most easily discussed in terms of the:

— Symmetric variables: U, W, Q) & forces/torques: X, Z, and M
— Asymmetric variables: V', P, R & forces/torques: Y, L, and N

e Observation — for truly symmetric flight Y, L, and NV will be exactly
zero for any value of U, W, ()

= Derivatives of asymmetric forces/torques with respect to the sym-
metric motion variables are zero.

e Further (convenient) assumptions:

1. Derivatives of symmetric forces/torques with respect to the asym-
metric motion variables are small and can be neglected.

2. We can neglect derivatives with respect to the derivatives of the
motion variables, but keep 0Z/0w and M, = OM /0w (aero-
dynamic lag involved in forming new pressure distribution on the
wing in response to the perturbed angle of attack)

3. 0X/0q is negligibly small.
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20/0)| X Y Z|L M N
u o (0 o0 o 0
v 0O e Oje 0O o
w e 0 ¢|/0 o O
P 0 e 0Oje 0O o
q ~0 0 e¢/0 o 0
r 0O e Oje 0O o

e Note that we must also find the perturbation gravity and thrust forces
and moments

0X9 079 ,
56 |, = —mg cos O 50 O = —mgsin O
e Aerodynamic summary:
1A AX:(%)Ou+(g—§/)Ow:>AX~u, a, ~w/U
2A AY ~ G=v/Uy, p, r
3A ANZ ~u, ap = w/Uy, &, = w/Uy, q
4A AL ~ B =~v/Uy p, r
5A AM ~ u, ap = w/Uy, &, = w/Uy, q

6A AN ~ B=v/Uy, p, T
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e Result is that, with these force, torque approximations,
equations 1, 3, 5 decouple from 2, 4, 6

— 1, 3, 5 are the longitudinal dynamics in u, w, and ¢

16.333 4-13

AX mau
AZ | = | m(w— qUy)
AM i I,,q
(G)out (Gv)ow + (56) 0+ AXC
~ (g—g)ou+(§—vzv)0w+(g—é)ow+(§—g)oq+(%—%g)09+AZC
_ (%5) v+ (55),w + (g—%)ow—F (%—g a+AM

— 2, 4, 6 are the lateral dynamics in v, p, and r

AY -m(@—l—TUo)
AN | L.r 4+ Lp
(G)ov+ (Fp)op+ (F)gr ++AY |
< | @ R () e Ar
(57)ov + (55)op + (57)r + ANC
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Basic Stability Derivative Derivation

e Consider changes in the drag force with forward speed U

D = 1/2,0‘/72501)

Vi = (ug+u)’+0v° +w
V7 V7
RAY M) A i
5 (up +u) = ( u ), U

2 2
Note: % = (0 and % = ()
ov /, ow /,
At reference condition:
o (), fa ()
ou ), ou
B oCp A%
-2 (4 (%), (%),
S oCp
= 7 (Uo <—8u )0+2uoC’DO)

— Note %—Z is the stability derivative, which is dimensional.

e Define nondimensional stability coefficient C'p, as derivative of
C'p with respect to a nondimensional velocity u/u

D 0Cp

— — d Cp,=(C
Ch V25 = Cp, (8u/u0)0 and Cp, = (Cp),

— So (e)( corresponds to the variable at its equilibrium condition.
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e Nondimensionalize:

oD _ pSuy 0Cp

(3, = 25 (w (), r2om)
QS ({ aCh
g ((3U/U0)O+QCDO)

(3)(2), - v

So given stability coefficient, can compute the drag force increment.

e Note that Mach number has a significant effect on the drag:
CD _ (9CD _ @ (901) . M(?CD
v oufug ) a d (%) ; oM

where g(Ii/I can be estimated from empirical results/tables.

CD I
— aCD =0.1 O = Constant =
oM ~ —
— | —
— I —

I

0 ; l

0 Mo 1 2
Mach number, M
Aerodynamic Principles

e [hrust forces

e aT
o= (), = (), =on2s

— For a glider, Cr, =0
— For a jet, Cp, = 0

— For a prop plane, Cr, = —Chp,
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e Lift forces similar to drag

L =1/2pVZSCy

dLY  pSug oCy,
- (30), = 2 (o (52), ~20m)
QS ([ aC;
g ((3U/U0)O+QCLO>

(%) (g—i)o = (Cp, +2C,)

where C7, is the lift coefficient for the eq. condition and (', =
Mg% as before. From aerodynamic theory, we have that

¢, — Crlio oc, M

—wz M 1w

e « Derivatives: Now consider what happens with changes in the angle
of attack. Take derivatives and evaluate at the reference condition:

— Lift: = OLa

C2 201,

— Drag: Cp=0C - (OnH =
rag: Cp Dy T Do =

min- e AR

Cr,
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e (Combine into X, Z Forces

— At equilibrium, forces balance.
— Use stability axes, so ag =0

— Include the effect in the force balance of a change in « on the
force rotations so that we can see the perturbations.

— Assume perturbation « is small, so rotations are by cosa ~ 1,
Sin v =~ «
X =T —-D+ La
= —(L+ Da)

N
|

j Note: a=oa;att=0
z (i.e., Static Trim)

e So, now consider the « derivatives of these forces:

oxX oT 0D L4 oL
da  Oa O “Ba
L : oT
— Thrust variation with « very small (—) ~ 0
da /

oC
— Apply at the reference condition (o = 0), i.e. Cx, = (8—X)
@ /o

e Nondimensionalize and apply reference condition:
Cx. = —CDQ + CLO

) 20,
= Oy~ 7614%

Cr.
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e And for the Z direction
Giving

e Recall that C);, was already found during the static analysis

e (an repeat this process for the other derivatives with respect to the
forward speed.

e Forward speed:

8X_8T_8D+ 8_L
ou Ou Ou a@u

TBHEL- GO

= CXU = CTU — (CDU + QCDO)

e Similarly for the Z direction:
07 oL oD

= —— — X—

Ou ou ou
(%) 4 B U oL
(@S) (au) - (@> (%)

c, = —(CLu + QOLO)

u

So that

M2
= ——7Cn — 201,

e Many more derivatives to consider !
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Summary

e Picked a specific Body Frame (stability axes) from the list of alter-
natives

=> Choice simplifies some of the linearization, but the inertias now
change depending on the equilibrium flight condition.

e Since the nonlinear behavior is too difficult to analyze, we needed
to consider the linearized dynamic behavior around a specific flight
condition

= Enables us to linearize RHS of equations of motion.

e Forces and moments also complicated nonlinear functions, so we lin-
earized the LHS as well

= Enables us to write the perturbations of the forces and moments
in terms of the motion variables.

— Engineering insight allows us to argue that many of the stability
derivatives that couple the longitudinal (symmetric) and lateral
(asymmetric) motions are small and can be ignored.

e Approach requires that you have the stability derivatives.

— These can be measured or calculated from the aircraft plan form
and basic aerodynamic data.
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