16.333: Lecture #3

Frame Rotations

Euler Angles

Quaternions
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Euler Angles

e For general applications in 3D, often need to perform 3 separate
rotations to relate our “inertial frame” to our “body frame”

— Especially true for aircraft problems

e There are many ways to do this set of rotations - with the variations
be based on the order of the rotations

— All would be acceptable

— Some are more commonly used than others

e Standard: start with the body frame (z, y, 2) aligned with the inertial
(X,Y, Z), and then perform 3 rotations to re-orient the body frame.

[Rbtate by ¢ about Z = «/,1/, 2/

[Rbtate by 6 about v = 2”,¢", 2"

[Rbtate by ¢ about 2’ = z,y, 2 D)

Euler angles:
— 1 ~ Heading/yaw
— 6 ~ Pitch
— ¢ ~ Roll

Line of nodes
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e (Can write these rotations in a convenient form:
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e Note that the order that these rotations are applied matters and will
greatly change the answer — matrix multiplies of T; must be done
consistently.
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e To get the angular velocity in this case, we have to include three
terms:

[Mlabout Z
A bbout ¢/
[ghbout 2

which we combine to get &

e Want to write & in terms of its components in final frame (body)

— Use the rotation matrices

e Example: rotate 1) about Z = 2/
0

— In terms of X, Y, Z, frame rotation rate has components | 0 |,
(2
which is the same as in frame 2/, ¢/, 2/

— To transform a vector from 2, ¢/, 2/ to x, y, z, need to use T1(¢p)T5(0)

0
— Similar operation for 8 about 3/ = 3 = use T}(¢) on | ¢

e Final result:

0
wy= | w, | =TUO)T0) | 0 | +Ti(d) | 6| + |0
0
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e Visualization: Can write
S=¢+0+1

X

- = =

But ¢, 6, ¢ do not form a mu
orthogonal triad

Need to form the orthogonal p

tions onto the body frame z,

Wy 0 0 ¢
Wp = Wy = Tl(gb)Tg(ﬁ) O + Tl(Qb) 0 + 0
op (0 0 0

e Final form
Wy = gﬁi—w'sine
Wy = 0 cos ¢ + 1) cos Osin ¢
w, = —0Osing + 1 cosbcos @

e With inverse:

¢ = Wy + [w,sin ¢ + w, cos @] tan 0
Wy COS @ — W, sin @
Y = |wysin¢g + w, cos @] sec

D
I
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e Need to watch for singularities at || = £90°

o If we limit

0< ¢ <2n
T T
< <Z
2 -2
0< ¢ <27

then any possible orientation of the body can be obtained by per-
forming the appropriate rotations in the order given.

e These are a pretty standard set of Euler angles
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Quaternions

e Theorem by Euler states that any given sequence of rotations can be
represented as a single rotation about a single fixed axis

e Quaterions provide a convenient parameterization of this effective axis
and the rotation angle

_ b i,
7 by | [ Esin¢/2
b3 | | cos(/2
by
where E is a unit vector and ( is a positive rotation about E
e Notes:
—||b]] = 1 and thus there are only 3 degrees of freedom in this

formulation as well

— If b represents the rotational transformation from the reference
frame a to reference frame b, the frame a is aligned with frame b
when frame a is rotated by ( radians about £

e In terms of the Euler Angles:
sin = —2(baby + b103)
¢ = arctan?2 [Q(bzbg — biby), 1 —2(b] + b%)}
Y = arctan?2 [2(5162 — 6354)7 1 - 2(b§ + bg)}
e Pros:

— Singularity free; Computationally efficient to do state propagation
in time compared to Euler Angles

e Cons:
— Far less intuitive - less appealing

e Refs: Kuipers, Quaternions and rotation sequences, 1999 Princeton
University Press.
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