
16.333: Lecture #2 

Static Stability


Aircraft Static Stability (longitudinal)


Wing/Tail contributions


0 
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Static Stability


• Static stability is all about the initial tendency of a body to 
return to its equilibrium state after being disturbed 

•	 To have a statically stable equilibrium point, the vehicle must develop 
a restoring force/moment to bring it back to the eq. condition 

•	 Later on we will also deal with dynamic stability, which is concerned 
with the time history of the motion after the disturbance 

– Can be SS but not DS, but to be DS, must be SS 

⇒	SS is a necessary, but not sufficient condition for DS 

•	 To investigate the static stability of an aircraft, can analyze response 
to a disturbance in the angle of attack 

– At eq. pt., expect moment about c.g. to be zero CMcg = 0 

– If then perturb α up, need a restoring moment that pushes nose 
back down (negative) 
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•	 Classic analysis: 

– Eq at point B 

– A/C 1 is statically stable 

•	 Conditions for static stability 

∂CM
CM = 0;	 < 0 

∂α 
≡ CMα


note that this requires CM |α0 
> 0


•	 Since CL = CLα (α − α0) with CLα > 0, then an equivalent condition 
for SS is that 

∂CM 
<	0 

∂CL 
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Basic Aerodynamics
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•	 Take reference point for the wing to be the aerodynamic center 
(roughly the 1/4 chord point)1 

•	 Consider wing contribution to the pitching moment about the c.g. 

•	 Assume that wing incidence is iw so that, if αw = αF RL + iw, then 

αF RL = αw − iw 

– With xk measured from the leading edge, the moment is: 

Mcg = (Lw cos αF RL + Dw sin αF RL)(xcg − xac) 

+(Lw sin αF RL − Dw cos αF RL)(zcg) + Macw 

– Assuming that αF RL � 1, 

Mcg ≈ (Lw + DwαAF RL)(xcg − xac) 

+(LwαF RL − Dw)(zcg) + Macw 

– But the second term contributes very little (drop) 

1The aerodynamic center (AC) is the point on the wing about which the coefficient of pitching moment is constant. On all airfoils 
the ac very close to the 25% chord point (+/­ 2%) in subsonic flow. 
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Non­dimensionalize: • 
L M 

CL = CM =
1
ρV 2S
 1
ρV 2Sc̄
2
 2


• Gives: 

CMcg = (CLw + CDw αF RL)( 
xcg 

c̄ 
− 

xac 

c̄ 
) + CMac 

• Define: 

– xcg = hc̄ (leading edge to c.g.) 

– xac 

Then • 

= h
̄n
c̄ (leading edge to AC) 

CMcg = (CLw + CDw αF RL)(h − h ) + C¯ Mn ac 

≈ (CLw )(h − h

= CLαw 

) + C¯ Mn ac 

(αw − αw0 )(h − h ) + C¯ Mn ac 

• Result is interesting, but the key part is how this helps us analyze the 
static stability: 

∂CMcg 

∂CLw 

= (h − h ) 0>n̄


since c.g. typically further back that AC 

– Why most planes have a second lifting surface (front or back) 
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Contribution of the Tail 
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• Some lift provided, but moment is the key part 

• Key items: 

1. Angle of attack αt = αF RL + it − �, � is wing downwash 

2. Lift L = Lw + Lt with Lw � Lt and


St

CL = CLw + η CLtS 

η = (1/2ρVt 
2)/(1/2ρVw 

2) ≈0.8–1.2 depending on location of tail 

3. Downwash usually approximated as 

d� 
� = �0 + αw

dα 
where �0 is the downwash at α0. For a wing with an elliptic 
distribution 

2CLw d� 2CLαw =� ≈ 
πAR 

⇒ 
dα πAR 
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• Pitching moment contribution: Lt and Dt are ⊥, � to V � not V 

¯– So they are at angle α = αF RL − � to FRL, so must rotate and 
then apply moment arms lt and zt. 

α + Dt sin ¯Mt = −lt [Lt cos ¯ α] 

α − Lt sin ¯zt [Dt cos ¯ α] + Mact−

¯• First term largest by far. Assume that α � 1, so that Mt ≈ −ltLt 

1 
Lt = ρV 2StCLt2 t 

1 ρV 2StCLtMt lt 2 tCMt	 = = 11 ρV 2Sc̄
−

c̄ ρV 2S2	 2 
ltSt 

= ηCLt−
Sc̄

Define the horizontal tail volume ratio VH = ltSt , so that Sc̄• 

CMt = −VHηCLt 

• Note: angle of attack of the tail αt = αw − iw + it − �, so that 

CLt = CLαt 
αt = CLαt 

(αw − iw + it − �) 

where � = �0 + �ααw 

So that • 

CMt	 = −VHηCLαt 
(αw − iw + it − (�0 + �ααw)) 

= VHηCLαt 
(�0 + iw − it − αw(1 − �α)) 
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• More compact form: 

CMt = CM0t 
+ CMαt 

αw 

= VHηCLαt 
(�0 + iw − it)⇒ CM0t 

= −VHηCLαt 
(1 − �α)⇒ CMαt


where we can chose VH by selecting lt, St and it


•	 Write wing form as CMw = CM0w 
+ CMαw 

αw 

= CMac − CLαw 
αw0 (h − hn̄)⇒ CM0w 

= CLαw 
(h − hn̄)⇒ CMαw 

And total is: • 

= CM0 + CMα αwCMcg 

⇒ CM0 = CMac − CLαw 
αw0 (h − hn̄) + VHηCLαt 

(�0 + iw − it) 

⇒ CMα = CLαw 
(h − hn̄) − VHηCLαt 

(1 − �α) 
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• For static stability need CM = 0 and CMα < 0 

– To ensure that CM = 0 for reasonable value of α, need CM0 > 0 
use it to trim the aircraft ⇒ 

• For CMα < 0, consider setup for case that makes CMα = 0 

– Note that this is a discussion of the aircraft cg location (“find h”) 

– But tail location currently given relative to c.g. (lt behind it), 
which is buried in VH ⇒ need to define it differently 

• Define lt = c̄(ht − h); ht measured from the wing leading edge, then 

VH = 
ltSt 

c̄S 
= 

St 

S 
(ht − h) 

which gives 

St 
n) − (ht − h)ηCLαt 

(1 − �α)CMα CLαw 
(h − h¯= 

S 
St St 

= h(CLαw 
+ η CLαt 

(1 − �α)) − CLαw 
hn̄ − htη CLαt 

(1 − �α)
S	 S 

•	 A bit messy, but note that if LT = Lw + Lt, then 

St
CLT = CLw + η CLtS 

so that 
St

CLT = CLαw 
(αw − αw0 ) + η CLαt 

(−�0 − iw + it + αw(1 − �α))
S


= CL0T 
+ CLαT 

αw


with CLαT 
= CLαw 

+ ηSt CLαt 
(1 − �α)S 



� � 

• � � �	 � 
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Now have that • 

h η−¯ tn

St


S

CLαt 

(1 − �α)CMα = hCLαT 
− CLαw 

h

• Solve for the case with CMα = 0, which gives 

CLαw St CLαth = h + η ht (1 − �α)n̄

CLαT 

S CLαT 

+ (γ 1)h¯ t−n 

CLαT •	 Note that with γ = CLαw 
≈ 1, then 

h
h = ≡ hN P 

γ 

which is called the stick fixed neutral point 

Can rewrite as 

CLαw St CLαtCMα = CLαT 
h − h − η ht (1 − �α)n̄


CLαT 
S CLαT 

= CLαT 
(h − hN P ) 

which gives the pitching moment about the c.g. as a function of the 
location of the c.g. with respect to the stick fixed neutral point 

– For static stability, c.g. must be in front of NP (hN P > h) 
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• Summary plot: (a = CLαT 
) and (hn = hN P ) 
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0 

Cm 
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(h - hn)�
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n 

n 

n 

� 

= C + a

h > h

h = h

h < h

Observations: • 

– If c.g. at hN P , then CMα = 0 

– If c.g. aft of hN P , then CMα > 0 (statically unstable) 

– What is the problem with the c.g. being too far forward? 
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Control Effects


•	 Can use elevators to provide incremental lift and moments 

–	Use this to trim aircraft at different flight settings, i.e. CM = 0 

�e 

Horizontal tail 

•	 Deflecting elevator gives: 

ΔCL = dCL δe = CLδe 
δe, with CLδe 

> 0dδe 

⇒ CL = CLα (α − α0) + CLδe 
δe 

Cm 

�Cm 

0 

�e = 0 

�e > 0 

� 

Original trim � 

Final trim 

ΔCm = dCm δe = Cmδe 
δe, with Cmδe 

< 0dδe 

⇒	Cm = Cm0 + Cmα α + Cmδe 
δe 

CL 

0 

Final 
trim 
pt. 

�CL 

�e = 0 

�e > 0 

� 

Original trim pt. 
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•	 For trim, need Cm = 0 and CLTRIM � � � � �	 � 
Cmα Cmδe 

αT RIM	 −Cm0= 
CLα CLδe 

(δe)TRIM CLTRIM + CLα α0 

So elevator angle needed to trim: 

α0)CLα Cm0 + Cmα (CLTRIM + CLα =(δe)TRIM Cmα CLδe 
− CLα Cmδe 

•	 Note that typically elevator down is taken as being positive 

•	 Also, for level flight, CLTRIM = W/(1/2ρV 2S), so expect (δe)TRIM 

to change with speed. 
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