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Lecture #9

State Space Models

Subspace 1D

Thanks to Bart deMoor, P. Van Overschee, Bo Wahlberg, and M. Jansson

LL 208-211 & section 10.6

Copyright 1999 by Jonathan How



Fall99 E211 9-2

Introduction

e Assumed truth model form:

Tre1 = Az + Bup + wyg
yr = Cxp+ Dug + vg

—zisnx1l,yismxlanduisr x1

— w (process noise) and v (sensor noise) are assumed to be sta-
tionary, zero-mean, white Gaussian noises.

ol o1}

i.e. in this case we explicitly include the noises.

Wk
Uk

oo

e Objectives: Use the measured data yi, ug, k=1,..., N to

1. Estimate the system order n
2. Estimate a model that is similar to the true description,

3. Estimate the noise covariances so that we can design a Kalman
Filter.
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e Basic point: given the state response of the system (zy), it is a
simple linear regression to find the plant model matrices A, B, C, D.

— Reason: If x; known Vk, then we can rewrite

Tiy1 = A$k+BUk+’LUk

yr = Czp+ Duyg + vy
as
—Y—k=@q>k+Ek
where
- | Tk+1 . A B | Tk | Wk
ef] o-[22], wefz]. el

e Could then estimate the covariance matrix using the square of the
model residuals (as we did before)

A 1 N
R=— 1Y EE]
Nk§1 Tk

and then use this to solve for the Kalman filter gain K

e Primary motivation for Subspace approach:
If we can develop a reasonable estimate for the state xy from

the measured data, then it is relatively easy to develop a model
of the plant model matrices A, B,C, D.
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Subspace Identification

e Subspace ID based on the development of predictors for future
outputs using old values of the inputs and outputs.

— Predictors will depend on several unknown matrices.

— Difference these predictions with measured data (over all time)
to form the prediction error.

— Define a cost function that minimizes these prediction error

=> Minimize this cost to solve for the unknowns.

e Solution allows us to define one possible set of system states x, Vk

— Can then solve for the model matrices.
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Predictor Representation

e General model input/output form

Trr1 = Az + Bug + wi and yr = Cxy + Dug + vy

e For future outputs

Yk+1 = Cxpq1 + Dugq + vp
= C[Axy + Buy + wi] + Dugsq + Vg1

= C’Aa:;ﬁ—[CB D} U

+ (ka + 'Uk;.|_1)
Uk+1

Yk+2 = CTryo + Duggg + Vg
= C[Azis1 + Bugr + Wer1] + Dugy2 + Vi
= C [A(Aa:k + Buy + wk) + Bugy1 + wk+1] + Dugio + Vgyo

Uk
= CA2IEk+[CAB CB D] Uk+1 +(CAwk+C’wk+1+vk+2)
Uk+2
e Collecting terms we get
Yk C D 0 0 Uk Nk
Ypr1 | = | CA |z +| CB D 0 || ups1r |+ | Trsa

Yk+2 C A? CAB CB D || ugs2 Mk+2
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e The full form is then
Volk) = M5z + Saug(k) + 0o (k) (KP #1)

where
_ Yk Uk
ya(k) = : )ua(k) =
Yi+a-1 Uk+a-1
C D 0 -0
CB D 0
MG = : . Sy = : o
CA CA2B CA®3B ... D

and MY is the extended observability matriz

e Notes:

—va(k), ua(k), and n,(k) all contain present and future data

— All past information needed to predict the future response is
embedded in the present state xy.

o (KP #2) Since xy contains all past information, can show that
the mean-square optimal prediction of y,(k) given data upto
time kK —1is

S’a(k) = ngk

— noises white, so our best estimate of the future values is zero.

— u,(k) contains future inputs.
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Algorithm - First Cut

e Assume ¥,(k) known Vk =1,..., N, could write

Y, = [S’a<1) Yal2) -+ ya(N)] (am x N)
X=[:c1 xz---‘xN] (n x N)

=Y, =MX
e Interesting, but what does Y, look like? Let o = 3, then

01
y3(1) = | %2
RE
=Y; = [yg(l) ¥3(2) y3(3)] a block Hankel matrix
i | G2 | U3
= | Y% | Ys | Us
U3 | Us | U5

e If Y, not know, but we can estimate it (e.g. using least squares) as
Ya then:

— Y, is rank deficient (why?) — determine the system order.

— form low-rank factorization of Y to estimate M2 and X

-----

= Can do this factorization using an SVD (again).
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Low-rank Factorizations

e Assume that we do an SVD of a matrix and get

(1) -
----- 1D @ @|[4 0 000]]|(2) -
..... = Ce 010°000|]|(@3) -
..... 0 0 e 00 (4)
[ (5) -
(1) -
(1) (2 3)]]40000]]|(2) -
~ . - ||00000]](3) -
L 00000/|]|(4) -
| | (5) - J
2% (1)
= - |[2x@® ]

e This is a rank-one representation of a 3x5 matrix.
e How big an error is there in this approximation?
e Other form:

Yy =UsVT = |1 UQMZjl O} n

0 S| |V
~ Uy VT = [U@yz] , [ i/2V1T]

e Note that the number of singular values retained determines the
number of columns in U;



-
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Subspace Algorithm

e Previous Algorithm focused on finding an estimate for the state, but
it turns out to be better to instead focus on finding M?

—in fact subspace estimation refers to the estimation of the ex-
tended observability matrix M$

e Key remaining component then is to develop an algorithm to solve
for an estimate of Y, from the measured data.

e Three main steps:

1. Develop an estimate for the state zj that can be used in the

equation
Val(k) = M8z 4+ Spua(k) + na(k)

= Ty
2. Use & in the expression for our estimator ¥, (k)

3. Form block Hankel matrices (measured data and predicted re-
sponses), difference these to develop the prediction error, and
select parameters to optimize

min [ Y2 — 2774}

| A]|% = Trace(A*A)
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e Step #1: best linear mean-square estimate for x; given

r

| Ye—p | Uk—g | [
— Uf— u
yolk=B) = | 7 | ug(k=p) = | P | ua(k) = | M

| Yk-1 ] | Ug-1 | | Uk+a—1 |

is

Tk = Kl}’g(k‘ — ﬂ) + Kzllg(k _ ﬁ) + K3ua(k)

—yg(k — ) and ug(k — §) contain (truncated) past data

— u,(k) contains future input data

e [ is a design parameter — typically will set 8 = a. Corresponds to
the memory of the estimator.
— expect performance to improve as (3 increased (usually the case)

— numerical complexity clearly balloons with o and 3

e [Estimate Z; is non-causal since it uses future inputs

— the past input sequence is truncated to length §. If past and
future inputs are correlated, then it would be advantageous to
use future inputs as well (i.e. non-causal filter)

— should improve our estimate of Zj

— not a big deal since we are not working in real-time

10
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o Step #2: Use this Zj to develop §,(k). If we start with

Yolk) = M3z + Saun(k) + ne(k)

and replace x; with Zx to get

= Ya(k) = M2 + Saua(k) + eq(k)

= MS[Kiys(k — B) + Koug(k — 8) + Ksuu (k)]
+Suq (k) + eq(k)

= Ll}’ﬂ(k — ﬁ) + Lzuﬂ(k — ﬂ) + L3ua(k) + ea(k)

e e,(k) consists of the future process and sensor noises, as well as the
future state estimation error. Thus our best estimate is zero.

= Vo(k) = Liyg(k — B) + Loug(k — B) + Lauy(k)
or, for example, if k =3+ 1
Ya(l+ 8) = L1yp(1) + Loug(l) + Laua (8 + 1)

e So the best estimate of the future outputs is a linear combination
of the measured data.

11
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e Step #3: Form block Hankel matrices

e Collect all possible a-ahead predictors using data (first starts at
B + 1 to leave enough room to populate the old data columns).

Y7 = [9a(B+1) 9a(B+2) + FolN —a+1)]

B+ 96+ | [d(N—atD)]
96+ B+3) | oV - a+2)
9B +a) B ratD)| | G

— Y = [1Ys+4 LyUg+ LU,

Y24 — gimilar form, but populated with data

where
Ys = [ys(1) yp(2) -+ ys(N—a—pB+1)]
y(1)| y(@) |y (N—a—-8+1)]
_ y(?) y(3) | - y(N—-Oé—ﬁ)
_y(ﬁ) y(B+1)| - y(N '—a)
Us = [up(l) ug(2) - ug(N—a—pB+1)]
U, = :ua(5+1) u,(8+2) .- ua(N—cH—l)]

e Clearly these are all just block Hankel matrices populated with the
measured input and output data.

12
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Solution Algorithm

e Now pick L; to optimize

: data _ ~ypred)|2
g min Y™ = Y F

e Note that L3 unconstrained and in step #2 we showed that

| L1 Ly | =M K K» |

so we must have that

Rank ([ Ly Ly |) =n

e Given [ Li Lo ], can do a low-rank factorization and solve for M.

Note: number of columns of M2 = system order (why?)

13-
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e Given MY can solve for the matrix C'. To find the A, note that

[ C
| c4
J = [I(a—l)m 0(0_1)m><m] then /M) = 3
CAa—Z
CA ]
C A?

Jy = [O(a—l)mxm I(a—l)m] then JzMg =

L CAa_l -

= JlMgA = JZM?

which gives us

A= (WM M

e Similar techniques can be used to solve for B and D

— these are much easier to find since the transfer function from wuy
to yi is linear in B and D

14
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Solution Algorithm

e Now pick L; to optimize

: data _ ~rpred||2
LI,I%lzr,ng HYa Ya “F

e Note that Ls unconstrained and in step #2 we showed that

Ly Ly | = MK K> |

so we must have that

Rank (| Ly Ly |) =n

e Given [ Li L, ], can do a low-rank factorization and solve for M.

Note: number of columns of M% = system order (why?)

13-
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Core Algorithm

Let 6, = || Y& — (L)Y g + LyUg + LU, ||%
e AndT=[L; L]

e Since L3 unconstrained, we can solve for that directly

Ly = [Y&" — (L1 Yz + LyUp)| U},

— _Ygata— [Ll Lg] {Eg” UL

= ngam — LPs| U}

e Substitute in for L3 and use Ut = I — Ul U,
O = Y5 = (TPy + [Y3" — TP5| ULV
= [[YZ*U; - LPs U |I7

min b, = L = Ylayul(p,ubt

e Then we can do an SVD of L and look for the largest singular values.
By selecting n of them, we define the order of the system. (see
9-13)

15
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N4SID Algorithm

function [TH,bestchoice,nchoice,failflag] = ...

%N4SID
TH=N4SID(Z) or [TH,A0]=N4SID(Z,0RDER,NY,AUXORD,DKX,MAXSIZE,TSAMP)

h
h
h

TH:

Z

n4sid(z,order,1,auxord,dkx,maxsize,Tsamp,refine,arg,trace)
Estimates a state-space model using a sub-space method.

Returned as the estimated state-space model in the THETA format.
No model covariances are given.

: The output input data [y ul, with y and u as column vectors

For multi-variable systems, Z={yl y2 ... yp ul u2 ... un]

ORDER: The order of the model (Dimension of state vector). If entered

NY:

as a vector (e.g. 3:10) information about all these orders will be
given in a plot, Default; ORDER=1:10;

If ORDER is entered as ’best’, the default order among 1:10 is
chosen.

The number of outputs in the data matrix. Default NY =1.

AUXORD: An auxiliary order, that is used for the selection of state

DKX:

AOQ:

The

variables. Default 1.2*0RDER+3. If AUXORD is entered as a row vector
the best value (min pred error) in this vector will be selected.
This is a vector defining the structure: DKX =[D,K,X]
D=1 indicates that a direct term from input to output will be
estimated, while D=0 means that a delay from input to output
is postulated.
K=1 indicates that the K-matrix is estimated, while K=0 means that
K will be fixed to zero.
X=1 indicates that the initial state is estimated, X=0 that the
initial state is set to zero.
To define an arbitrary input delay structure NK, where NK(ku) is
the delay from input number ku to any of the outputs, let
DKX=[D,K,X,NK]. NK is thus a row vector of length=no of input
channels. When NK is specified, it overrides the value of D.
Default: DKX = [0, 1, 1]
TRACE: Letting the last given argument be ’trace’ gives info to screen
about fit and choice of AUXORD
MAXSIZE: See also AUXVAR.

The chosen value of AUXORD.

algorithm implements Van Overschee’s and De Moor’s method for

identification of general multivariable linear systems in state space.

See

also CANSTART, PEM.

M. Viberg, 8-13-1992, T. McKelvey, L. Ljung 9-26-1993.
Copyright (c) 1986-98 by The MathWorks, Inc.
$Revision: 3.5 $ $Date: 1997/12/02 03:40:05

16
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Notes

o Need to select o« and 3 (typically set o = 8 =~ 1.57)
e No nonlinear optimizations

e Then need to determine where to cut when we do the approximate
low-rank factorizations — same as seleting the model order.

— The model order includes the dynamics for both G and H.

e Note that N4SID explicitly allows you to try various model orders
(e.g. n=1:10)

e Note from the manual;

auzord: An auziliary order used by the algorithm. This can
be seen as a prediction horizon, and it should be larger than
the order. The default value is aurord = 1.2x order+8. The
choice of auzord could have a substantial influence on the model
quality, and there are no simple rules for how to choose it.

e Note distinction from OKID - we never once mentioned Markov
parameters.

e Many researchers in this area (Larimore [CVA], Verhaegen [MOESP],
and Overschee/DeMoor [N4SID])

17
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e Example: robot arm data that you already analyzed.

2 OKID model using OK model=8 SS model=10
10 E T T Y T T T T T T T T T T y LR

J

0T 9= 6 5905 9600000000000
10‘2;— v ?Q

10° 10" ] : 10
Freq

OKID model using OK model=8 SS model=10
— ' T .

| o o [~ e
or Jr— o s |
-100 » || o 8 h

L - 6 6-0-0-0 6600600000000 h

B
(1]
T 200
[1}]
17
s
a -300
®
-400 | n
®
~500 |- 1 : -
10° 10' 10°

Freq

Figure 1: TF’s

e Seems to provide a very reasonable fit to the data with a 10th order

model.

18



OKID model using OK model=8 SS model=10
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e Example: Consider the nonwhite noise example from before.

e 6th order system model in OKID.
e 4th order system model from N4SID.
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Figure 2: SIGNALS - NONWHITE NOISE EXAMPLE
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S8 G model using model of size 4 N
- Actual |}
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Figure 3: ESTIMATE AND ACTUAL G (NOTE EFFECT OF IMPERFECT POLE/ZERO CANCELATION OF THE DY-
NAMICS THAT ARE ASSOCIATED WITH H)
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r rr v v r Ty
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Figure 4: ESTIMATE AND ACTUAL H
20



Fall99 E211 9-21

Correlation function of residuals. Output # 1
1.2 —T T T T

25

lag

-
-

| L
~25 ~-20 -15 -10 -5 0 5 10 15 20 25
lag

Figure 5: RESIDUALS ON A VALIDATION SET OF DATA

e Reasonable TF fit and residuals are pretty good.

e Great thing is that this approach easily handles MIMO models
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Mag

SS G model using model of size 4




Mag

SS H model using model of size 4




Correlation function of residuals. Output # 1
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Summary

e What this indicates is that the state space methods are very good
ways of getting initial models

— few user inputs required
— simpler calculations (no local minima)
— easily handle MIMO systems.

e Problems with the state space methods is that there are few knobs

— can get a good model, but how get a great one?

e Suggest that you use the state space methods as a starting point for
the Box-Jenkins (PEM) optimizations.
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\begin{verbatim}

o\

o\

E211 System ID

Jonathan How

Fall 1999

Use the N4SID algorithm for the robot data

o° o oo

o\°

clear all;close all;
randn ('state', 44);
Ny=40;

load hw3 robot arm
y=z(:,1)7

u=z(:,2);
y=dtrend (y) ;u=dtrend(u) ;
z=[y ul;

fig=0;fig=fig+l;figure(fig);clf
plot ([z]);setlines;legend('y','u')

Nest=6;

[AOk’BOk’ COk’ DOk’ Gok] =okid (SiZe (y’ 2) ! size (U-I 2) , Ts,u, Yr 'batch' 7 (Nest) ‘|‘2) ’

o\

o\

[TH, AO]=N4SID (Z,ORDER,NY, AUXORD, DKX, MAXSIZE, TSAMP)

[th ss,AO0]=n4sid(z,4:10,1,(],[(1 1 1],[],Ts, "trace');
[A ss,B ss,C ss,D ss,K ss,X0 ss]=th2ss(th_ss);

Npts=512;
ghat=etfe([y ul], [128*4],Npts, Ts);
[wa,ghm,ghp]=getff (ghat,1,1);

o\

% models of G
[magl, phl]=dbode (Ack,Bok,Cok, Dok, Ts, 1,wa);
[mag2,ph2]=dbode (A ss,B ss,C ss,D ss,Ts,1,wa);
fig=fig+l;figure(fig) ;clf

subplot (211)
hh=loglog(wa,ghm, 'b."',wa,magl, 'r--',wa,mag2, 'md") ;

set (hh (1), "MarkerSize',12)

legend ('ETFE', "OKID', 'N4SID') ;

axis([1 150 .005 10071)

ylabel ('Mag') ;xlabel ('Freq')

title (['OKID model using OK model=',numZ2str(size (Aok,1)),"' SS
model="',num2str(size (A ss,1))])

subplot (212)

hh=semilogx (wa,ghp, 'b."',wa,phl-360, 'r--"',wa,ph2-360, 'md"') ;
set (hh (1), "MarkerSize',12)

legend ('ETFE', "OKID', 'N4SID') ;

axis([1 150 =540 90])

ylabel ('Phase (deqg)');xlabel ('Freq')

title (['OKID model using OK model=',numZ2str(size (Aok,1)),"' SS
model="',num2str(size (A ss,1))])

sreturn
figure (2) ;print -dpsc robot.ps
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CLARVFIChTIpN #)

NOoTE THAT TMeRe Is 4 VERY WEW
(JEFINED  FREQUENCY NECTOR  THAT YoU MUST,
USE  WHEN PLOTTING THE  ouTfuts FRoA
FET | ETFE  SPR ... (MAANAL 4-32)

DEFAULT IN ETFE IS To USE N= R
s  G(e™) IS THEN ESTIMATED AT Thg

SPeECIF\c  FREQUENCIES
we [LN] =
— T
(TR\I “TNPeE ETFE" TN  MATIAB - IT IS

T™TME THIRp LAST LWNE TN THE PROC-RAM)

<2 You WWNE To USE THIS FREQUENCY VECTOR
T GET BopE PLsTs THAT ARE USEFUL.

CAN Do BodefLOT ( ETFE (z))

oR
o = ETFE (2) SEE CObE
FoRLECT URE &
[, ¢) = Geree(e, i)

/

CGRRECT w To VUSE FoR fLOTTING
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» MoQEL VDESCRIPTIONS - ©N 3-1p HE DefFINES
“ARY 221" THE FOLLOWING :
G- qY—nK B(q) Alg)= 1+ A.1‘+...+«,\‘7 .
k(q) Y
L blq) - \:,+\nq,"+ e b’.\bt} ‘f“
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—~ A 2 4 ANQ (‘M,-l-\) TERM  UNDERSTo0 0.

W\ 1]

22\ - Yl,‘s {\(,.32 , AK = |

a;"“e(op - 9 (b + b, q{‘) - kgt b2 g™

THIS WAS WHAT WE
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Would LooK LKE.,
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