
16.333: Lecture #15 

Inertial Sensors 

Complementary filtering 

Simple Kalman filtering 
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       Complementary Filter (CF)

Often, there are cases where you have two different measurement sources for 
estimating one variable and the noise properties of the two measurements 
are such that one source gives good information only in low frequency region 
while the other is good only in high frequency region.  

You can use a complementary filter !
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Complementary Filter(CF) Examples

• CF1. Roll Angle Estimation

• CF2. Pitch Angle Estimation

• CF3. Altitude Estimation

• CF4. Altitude Rate Estimation



CF1.  Roll Angle Estimation

• High freq. : integrating roll rate (p) gyro output 

• Low freq. : using aircraft kinematics
- Assuming steady state turn dynamics, 

roll angle is related with turning rate, which is close to yaw rate (r)
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CF2.  Pitch Angle Estimation

• High freq. : integrating pitch rate (q) gyro output 

• Low freq. : using the sensitivity of accelerometers to gravity direction
- “gravity aiding”
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θ
θ

cos
sin
gA

gA

Z

X

−=
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

z

x

A
A1tanθ

outputster accelerome, −ZX AA

• Roll angle compensation is needed
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CF3.  Altitude Estimation
• Motivation : GPS receiver gives altitude output, but it has ~0.4 seconds of delay.

In order of overcome this, pressure sensor was added. 

• Low freq. : from GPS receiver

• High freq. : from pressure sensor 
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CF4.  Altitude Rate Estimation

• Motivation : GPS receiver gives altitude rate, but it has ~0.4 seconds of delay.
In order of overcome this, inertial sensor outputs were added. 

• Low freq. : from GPS receiver

• High freq. : integrating acceleration estimate in altitude direction 
from inertial sensors 
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Kalman Filter(KF) Examples

• KF1. Manipulation of GPS Outputs

• KF2. Removing Rate Gyro Bias Effect



KF 1. Manipulation of GPS Outputs

Background & Motivation

• Stand-alone GPS receiver gives position and velocity  

• position pseudo-ranges 
• velocity Doppler effect

• These are obtained by independent methods : 

and are certainly related )( vx=

Kalman filter can be used to combine them !

• Motivation : 
Position ~ 30 m
Velocity ~ 0.15 m/s

Typical Accuracies 

Many GPS receivers provide high quality velocity information

Use high quality velocity measurement to improve position estimate



KF 1. Kalman Filter Setup
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KF 2. Removing Rate Gyro Bias Effect

Background & Motivation

• In aircraft control, roll angle control is commonly used in inner-loop to create required 
lateral acceleration which is commanded from guidance outer-loop

• Biased roll angle estimate can cause steady-state error in cross-track
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Drawback : biased estimate

Complementary filter with roll & raw gyros (CF1) Single-Antenna GPS Based
Aircraft Attitude Determination
- Richard Kornfeld, Ph.D. (1999)

Drawback : sampling rate limit (GPS),
typical filter time constant ~ 0.5 sec. 
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KF 2. Kalman Filter Setup
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KF 2. Simulation Result

• Simulation for 10 degree bank angle hold 
• Roll rate gyro bias=0.03 rad/s, yaw rate gyro bias = 0.02 rad/s were used in simulation
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