
Lecture # 12 

Aircraft Lateral Autopilots 

• Multi­loop closure 

• 

• 

Heading Control: linear 

Heading Control: nonlinear 
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Lateral Autopilots


•	 We can stabilize/modify the lateral dynamics using a variety of dif­

ferent feedback architectures. 
δa - -

p 1 
-
φ 

s 

δr -

Glat(s) 

-
r 1 

-
ψ 

s 

•	 Look for good sensor/actuator pairings to achieve desired behavior. 

•	 Example: Yaw damper 

– Can improve the damping on the Dutch­roll mode by adding a 
feedback on r to the rudder: δc = kr(rc − r)r 

3.33 – Servo dynamics Hr = s+3.33 added to rudder δa = Hrδ
c 

r r 

– System: 

1.618s3 + 0.7761s2 + 0.03007s + 0.1883 
Gδr

cr = −
s5 + 3.967s4 + 3.06s3 + 3.642s2 + 1.71s + 0.01223 
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Figure 2: Lateral pole­zero map Gδ r 
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•	 Note that the gain of the plant is negative (Kplant < 0), so if kr < 0, 
then K = Kplantkr > 0, so must draw a 180◦ locus (neg feedback) 
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Figure 3: Lateral pole­zero map. Definitely need kr < 0 

•	 Root locus with kr < 0 looks pretty good as we have authority over 
the four poles. 

– kr = −1.6 results in a large increase in the Dutch­roll damping 
and spiral/roll modes have combined into a damped oscillation. 

•	 Yaw damper looks great, but this implementation has a problem. 

– There are various flight modes that require a steady yaw rate 
(rss = 0). For example, steady turning flight. 

– Our current yaw damper would not allow this to happen – it would 
create the rudder inputs necessary to cancel out the motion !! 

– Exact opposite of what we want to have happen, which 
is to damp out any oscillations about the steady turn. 
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Yaw Damper: Part 2 

• Can avoid this problem to some extent by filtering the feedback signal. 

– Feedback only a high pass version of the r signal. 

– High pass cuts out the low frequency content in the signal 
⇒ steady state value of r would not be fed back to the controller. 

• New yaw damper: δc = kr(rc − Hw(s)r) where Hw(s) = τ s is the r τ s+1 
“washout” filter. 
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Figure 4: Washout filter with τ = 4.2 

• New control picture 

p φ1δa - - -

s 
Glat(s) 

δc r ψ1rrc - - - - -Hr(s)kr6– s 

�Hw(s) 
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Figure 5: Root Locus with the washout filter included. 

•	 Zero in Hw(s) traps a pole near the origin, but it is slow enough that 
it can be controlled by the pilot. 

•	 Obviously has changed the closed loop pole locations (� �), but ⇒ 
kr	 = −1.6 still seems to give a well damped response. 
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Figure 6: Impulse response of closed loop system with and without the Washout 
filter (τ = 4.2). Commanded rc = 0, and both have (δr)ss = 0, but without the 
filter, rss = 0, whereas with it, rss = 0. 

•	 For direct comparison with and without the filter, applied impulse as 
rc to both closed­loop systems and then calculated r and δr. 

•	 Bottom plot shows that control signal quickly converges to zero in 
both cases, i.e., no more control effort is being applied to correct the 
motion. 

•	 But only the one with the washout filter produces a zero control input 
even though the there is a steady turn ⇒ the controller will not try 
to fight a commanded steady turn. 
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Heading Autopilot Design


•	 So now have the yaw damper added correctly and want to control 
the heading ψ. 

– Need to bank the aircraft to accomplish this. 

– Result is a “coordinated turn” with angular rate ψ̇

Aircraft banked to angle φ so that vector sum of mg and mU0ψ̇ is• 
along the body z­axis 

– Summing in the body y­axis direction gives mu0ψ̇ cos φ = mg sin φ 

U0ψ̇
tan φ = 

g 

•	 Since typically φ � 1, we have 

U0ψ̇
φ ≈ 

g 

gives the desired bank angle for a specified turn rate. 
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Problem now is that ψ̇ tends to be a noisy signal to base out bank • 
angle on, so we generate a smoother signal by filtering it. 

– Assume that the desired heading is known ψd and we want ψ to 
follow ψd relatively slowly 

– Choose dynamics τ1ψ̇ + ψ = ψd


ψ 1

= ⇒ 

ψd τ1s + 1 

with τ1=15­20sec depending on the vehicle and the goals. 

– A low pass filter that eliminates the higher frequency noise. 

• Filtered heading angle satisfies 

1 
ψ̇ = (ψd − ψ)

τ1 

which we can use to create the desired bank angle: 

U0
φd = ψ̇ = 

U0 
(ψd − ψ) 

g τ1g 
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Roll Control


•	 Given this desired bank angle, we need a roll controller to ensure 
that the vehicle tracks it accurately. 

– Aileron is best actuator to use: δa = kφ(φd − φ)− kpp 

•	 To design kφ and kp, can just use the approximation of the roll mode 

I �
I �	 ¨ 

˙
xxṗ = Lpp + Lδa δa 

xxφ − Lpφ̇ = Lδa δaφ = p 

which gives 
φ Lδa = 
δa s(I �xxs − Lp) 

•	 For the design, add the aileron servo dynamics 

1 
Ha(s) = , δa = Ha(s)δ

c 
a0.15s + 1 a 

•	 PD controller δc = −kφ(sγ + 1) + kφφd, adds zero at s = −1/γa 

– Pick γ = 2/3 

Figure 7: Root Locus for roll loop – closed Loop poles for Kp = −20, Kφ = −30 
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Heading Autopilot 

• Putting the pieces together we get the following autopilot controller 
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U0 � � 

– 

τ1g 6+ ψd 

• Last step: analyze effect of closing the ψ → φd loop 

Figure 10: Heading loop root locus. Closed loop poles for gain U0/(gτ1). 8th order 
system, but RL fairly well behaved. 
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• Measure φ with a vertical gyro and ψ with a directional gyro 

• Add a limiter to φd or else we can get some very large bank angles 

• Design variables are Kφ, Kp, τ1, τ , and Kr 

• Multi­loop closure must be done carefully 

– Must choose the loop gains carefully so that each one is slower 
than the one “inside” 

⇒ can lead to slow overall response 

– Analysis on fully coupled system might show that the controllers 
designed on subsystem models interact with other modes (poles) 

⇒ several iterations might be required 

• Now need a way to specify ψd 
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Figure 11: Response to 15 deg step in ψc. Note the bank angle is approximately 30

degs, which is about the maximum allowed. Decreasing τ1 tends to increase φmax.
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Ground Track Control


• Consider scenario shown ­ use this to determine desired heading ψd


Figure 12: Heading definitions 

– Are initially at (0,0), moving along Xe (ψ0 = 0) 

– Want to be at (0,1000) moving along dashed line angled at ψref 

• Separation distance d = Yref − Ya/c (d0 = 1000) 

– Desired inertial y position ­ y position of aircraft 

ḋ = U0 sin(ψref − ψ) ≈ U0(ψref − ψ) 

• Want to smoothly decrease d to zero, use a filter so that 

ḋ = 
1 
d τd = 30 sec−

τd 
1 
d = U0(ψref − ψ)⇒ − 

τd 
1 1 

= ψ = ψref + d = ψref + (Yref − Ya/c)⇒
τdU0 τdU0


which includes a feedback on the aircraft inertial Y position.

⇒ Use this as the input ψd. 
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Figure 13: Simulink implementation – run ac3.m first
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Figure 14: Path following for ground track controller 
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Alternative Strategy


•	 Sanghyuk Park developed an alternative tracking algorithm that he 
presented this past summer1 

•	 Guidance logic selects a reference point on the desired trajectory and 
uses it to generate a lateral acceleration command. 

– Selection of Reference Point – Reference point is on the desired 
path at a distance (L1) forward of the vehicle – Figure 17. 

– Lateral Acceleration Command – determined by ascmd = 2V 2 
sin ηL1 

R

η
V

R

L1

desired path  
reference point

2η

aScmd

aircraft  

Figure 17: Diagram for Guidance Logic 

•	 Direction of acceleration depends on sign of angle between the L1 

line segment and the vehicle velocity vector. 

– If selected reference point to the right of the vehicle velocity vec­
tor, then the vehicle will be commanded to accelerate to the right 
(see Figure 17) ⇒ vehicle will tend to align its velocity direction 
with the direction of the L1 line segment. 

1Sanghyuk Park, John Deyst, and Jonathan How, “A New Nonlinear Guidance Logic for Trajectory Tracking,” AIAA GNC 2004. 
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•	 Figure 18 shows evolution of the guidance logic in one time step and 
Figure 19 shows the trajectory of the vehicle over several time steps. 

– Vehicle initially starts from a location far away from the desired 
path, and eventually converges to it. 

– If vehicle far from the desired path, then the guidance logic rotates 
the vehicle so that its velocity direction approaches the desired 
path at a large angle. 

– If vehicle close to the desired path, then the guidance logic rotates 
the vehicle so its velocity direction approaches the desired path at 
a small angle. 
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• Figure 20 defines the notation used for a linearization. 

d reference point

desired flight path

η
1

η
2

η
L1

V

η
1s

cmd
a

Figure 20: Linear Model for Straight­line Following Case 

– L1 is the distance from the vehicle to the reference point. 

– d is the cross­track error 

– V is the vehicle nominal speed. 

•	 Assuming η is small sin η ≈ η = η1 + η2 and 

d ḋ
η1 ≈ , η2 ≈

L1 V 

• Combining the above gives 

V 2 

ascmd = 2 sin η ≈ 2 
V

ḋ + 
V
d (1)

L1 L1 L1 

– Linearization yields a PD controller for the cross­track error. 

– Ratio of V and separation distance L1 is an important factor in 
determining the proportional and derivative controller gains. 

– Key points: NL form works significantly better than a PD and 
is much more tolerant to winds disturbances. 
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Implementation


•	 Can implement this command by assuming that vehicle maintains 
sufficient lift to balance weight, even though banked at angle φ. 

– Requires that the vehicle speed up and/or change to a larger α. 
Lift increment 

W 
ΔCL = 

L − mg ≡ (n − 1)
QS QS


where n ≡ L/W is the load factor.


– Assume that L cos φ = W , then L sin φ = mas, so that

as


tan φ = 
g 

•	 We can use this to develop φd that we apply to the roll controller. 

Kp


φ

δc– – φ1a? - ?	 - - - -Ha(s)Kφ6+ p s 

Glat(s)φd 
δc0 r ψ1r- - - - -Hs(s)Kr6– s 

τ s 
� 

τ s + 1 

Some simulations shown • 

– Works well – hardest part is determining where to place the ref­
erence point, which is L1 ahead along the path. 

– Recall that L1 acts like a gain in the controller – making it too 
small can drive the aircraft unstable. 
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Flight Test


•	 Guidance algorithm implemented and tested with two UAVs [Parent 
Child Unmanned Air Vehicle (PCUAV) project by Prof. Deyst] 

– Required lateral acceleration achieved using bank angle control 

– Nominal flight velocity of about 25 m/s, the choice of L1=150 m 
results in the associated crossover frequency at 0.4 rad/s. 

•	 Figure 24 shows the flight data for the Mini vehicle using the guidance 
logic in the lateral dynamics. 

– Plot shows the 2­dimensional trajectory of the Mini vehicle (–) 
with a commanded desired trajectory (­ ­). 

– Small numbers along the trajectory are the flight times recorded 
in the onboard avionics. 

– Lateral displacement between the vehicle and the desired path 
within ±2 meters for the 75% of its flight time and within ±3 
meters for 96% of the flight time 

. 

•	 A similar flight test was performed for the OHS Parent (see Figure 25) 

– After the transient period, the trajectory of the vehicle followed 
the commanded path within ±2 meters for the 78% of its flight 
time and within ±3 meters for 97% of the flight time. 
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Figure 24: Flight Data of MINI ­ Trajectory Following
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Figure 25: Flight Data of OHS Parent ­ Trajectory Following
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•	 Then demonstrated rendezvous from any arbitrary initial positions to 
a configuration of tight formation flight. 

– Figures 26 show the positions of the Parent and the Mini in the 
north­east 2­D map every 10 seconds. 

– OHS Parent vehicle follows the circular flight path, with no knowl­

edge of the Mini vehicle’s location. 

– Mini vehicle schedules its flight path and performs formation flight 
by receiving position information from the OHS Parent. 
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Figure 26: Flight Data ­ Rendezvous Trajectories of OHS and Mini (O:OHS, M:Mini)
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% newr.m 53 kk=1; 
% Analyze tracking algorithm by Park et al 54 while (~isempty(iii)) & (kk< length(t)­1) 
% AIAA GNC 2004 55 kk=kk+1; 
% 56 aim_point=path(iii,:); 
% Assumes that ac3.m has been run to generate syscl 57 

% Jonathan How 58 xedot=U0*cos(X(5))­X(1)*cos(X(4))*sin(X(5)); 
% MIT 16.333 Fall 2004 59 yedot=U0*sin(X(5))+X(1)*cos(X(4))*cos(X(5)); 
% 60 

% 61 v1=[xedot yedot]’; 
close all 62 v2=[aim_point(1)­xe aim_point(2)­ye]’; 
dt=1; % time step for the simulation 63 v1=v1/norm(v1); 
U0=235.9; 64 v2=v2/norm(v2); 
path=[]; 65 [v1 v2]; 

66 temp=cross([v1;0],[v2;0]); 
jcase=1; 67 eta=acos(v1’*v2)*sign(temp(3)); 
% 2 path cases considered 68 phi_d=atan(2*U0^2/L1*sin(eta)/9.81); 
if jcase==1 69 phi_d=max(min(phi_d,philim*pi/180),­philim*pi/180); 

t=[0:5*dt:2500]’; 70 

omp=.0025; 71 store=[store;[t(kk) X’ xe ye phi_d v2’]]; 
path=24000*[sin(omp*t) (1­cos(omp*t))]; 72 % propagate forward a step 
xe=0;ye=1500; 73 X=Ad*X+Bd*phi_d; 
X=[.1 0 0 0*pi/180 0*pi/180 0 0 0]’; 74 xe=xe+xedot*dt; 

else 75 ye=ye+yedot*dt; 
t=[0:dt:1350]’; 76 

path(:,1)=U0*t; 77 ii=find((xe­path(:,1)).^2+(ye­path(:,2)).^2 < L1^2); 
omp=.005; 78 iii=max(ii); 
path(:,2)=500*(­cos(2*pi*omp*t)+1).*exp(.002*t); 79 end 
xe=0;ye=­1000; 80 

X=[.1 0 0 ­15*pi/180 ­15*pi/180 0 0 0]’; 81 figure(1);clf 
end 82 plot(store(:,11),store(:,10),’m’); 

83 hold on;plot(path(:,2),path(:,1),’g’); 
% Discretize the dynamics with time step dt 84 legend(’veh’,’Path’);xlabel(’Y_e’); 
% system has the inner yaw and roll loops closed 85 ylabel(’x_e’);setlines(2);hold off 
[A,B,C,D]=ssdata(syscl); 86 if jcase==1 
syscld=c2d(ss(A,B,C,D),dt); 87 axis(’square’);axis(’equal’) 
[Ad,Bd,Cd,Dd]=ssdata(syscld); 88 print ­depsc park_1; jpdf(’park_1’) 
Bd=Bd(:,1);Dd=Dd(:,1); % only need first input 89 else 

90 orient tall 
% bank angle limit 91 print ­depsc park_1a; jpdf(’park_1a’) 
philim=30; 92 end 
% 93 

%inputs are phi_d and 0 94 figure(2);clf 
%state x=[v p r phi Psi xx xx xx] 95 plot(store(:,1),store(:,[5 12])*180/pi); 
L1=2000; % look ahead distance 96 axis([0 t(kk) ­philim*1.1 philim*1.1]) 
store=[]; 97 xlabel(’time’);ylabel(’\phi and \phi_d’); 

98 legend(’\phi’,’\phi_d’);setlines(2) 
% find the point on the path L1 ahead 99 if jcase==1 
ii=find((xe­path(:,1)).^2+(ye­path(:,2)).^2 < L1^2); 100 print ­depsc park_2; jpdf(’park_2’) 
iii=max(ii); 101 else 
% 102 print ­depsc park_2a; jpdf(’park_2a’) 
% 103 end 
% 104 return 
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