16.333 Lecture# 10

State Space Control

e Basic state space control approaches
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State Space Basics

e State space models are of the form
t(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
with associated transfer function
G(s)=C(sI —A)'B+ D
Note: must form symbolic inverse of matrix (s — A), which is hard.
e Time response: Homogeneous part & = Az, x(0) known

— Take Laplace transform
X(s)=(sI —A)'2(0) ==z@)=L""][(s] —A)"]z(0)

—Butcanshow(s]—A)_lziJrS%wa—;Jr...

S

so LM [(s] — A)7'] =T+ At + 5(At)* + ... = et

— Gives z(t) = eMx(0) where e is Matrix Exponential

<& Calculate in I\/IATLAB® using expm.m and not exp.m

e Time response: Forced Solution — Matrix case & = Azx + Bu
where z is an n-vector and wu is a m-vector. Cam show

t
z(t) = eAt:U(O)—F/ eA=7) Bu(r)dr
0

t
y(t) = CeAtx(O)—F/ Ce """ Bu(t)dr + Du(t)
0

— CeMx(0) is the initial response

— Ce ™ B is the impulse response of the system.

IMATLAB® is a trademark of the Mathworks Inc.
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Dynamic Interpretation

e Since A =TAT~! then

| | et — w{ —

e =TT 1 = V] ccc Up E
Mt T

‘ ‘ e - w, —

where we have written
T
T! = :
B

which is a column of rows.

e Multiply this expression out and we get that

n

et = eAitviwiT

1=1

e Assume A diagonalizable, then & = Az, x(0) given, has solution

z(t) = eMa(0) = TeMT1z(0)

= > Mv{w 2(0)}
i=1

= ZeAit’Uzﬂz’
i=1

e State solution is a linear combination of the system modes v;e™

el — Determines the nature of the time response
v; — Determines extent to which each state contributes to that mode

0B; — Determines extent to which the initial condition excites the mode
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e Note that the v; give the relative sizing of the response of each part
of the state vector to the response.

v(t) = [(1)] e”" mode 1

Vo(t) = [82] e mode 2

o Clearly e’ gives the time modulation

— \; real — growing/decaying exponential response

— \; complex — growing/decaying exponential damped sinusoidal

e Bottom line: The locations of the eigenvalues determine the pole
locations for the system, thus:

— They determine the stability and/or performance & transient be-
havior of the system.

— It is their locations that we will want to modify with the
controllers.
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Full-state Feedback Controller

e Assume that the single-input system dynamics are given by

r = Ax + Bu
y = Cx
so that D = 0.

— The multi-actuator case is quite a bit more complicated as we
would have many extra degrees of freedom.

e Recall that the system poles are given by the eigenvalues of A.

— Want to use the input u(t) to modify the eigenvalues of A to
change the system dynamics.

A B,C

i

K

e Assume a full-state feedback of the form:
uw=r— Kz
where 7 is some reference input and the gain K is R'*"

— If r =0, we call this controller a regulator
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e Find the closed-loop dynamics:

t = Ax+ B(r — Kx)
= (A— BK)x + Br
= A x + Br

y = Cx

e Objective: Pick K so that A, has the desired properties, e.g.,

— A unstable, want A, stable
— Put 2 poles at —2 423

e Note that there are n parameters in K and n eigenvalues in A, so it
looks promising, but what can we achieve?

e Example #1: Consider:

— Then
det(sI —A)=(s—1)(s—2)—1=5"=35s+1=0
so the system is unstable.

— Define u = — [/ﬁ ko } r = — Kz, then

11 1—k 1—k
Ay = A-BK = —[1][k1 ky] = .
12 0 1 2

— So then we have that

det(sI — Ay) = s>+ (k1 —3)s + (1 — 2k + k) = 0
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— Thus, by choosing k1 and k5, we can put \;(A.) anywhere in the
complex plane (assuming complex conjugate pairs of poles).

e To put the poles at s = —5, — 6, compare the desired characteristic
equation
(5+5)(s+6) =5+ 11s+30 =0

with the closed-loop one
s+ (ky — 3)x + (1 — 2ky + ko) = 0

to conclude that

ki —3=11 k1 =14
1 —2k; 4+ ky = 30 ko = 57
so that K = [ 14 57 ] which is called Pole Placement.

e Of course, it is not always this easy, as the issue of controllability
must be addressed.

e Example #2: Consider this system:

11
7=
0 2

with the same control approach

11 1 1 — ]Cl 1 — k2
A;=A—- BK = —[ ][lﬁ k?z]:

0 2 0 0 2
so that det(s] — Ay) = (s — 14+ k1)(s —2) =0

The feedback control can modify the pole at s = 1, but it cannot
move the pole at s = 2.

e This system cannot be stabilized with full-state feedback
control.

e What is the reason for this problem?
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— It is associated with loss of controllability of the e* mode.

e Basic test for controllability: rank M. =n

Hisis

M.=[B|AB | =

So that rank M, =1 < 2.

e Must assume that the pair (A, B) are controllable.
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Ackermann’s Formula

e The previous outlined a design procedure and showed how to do it
by hand for second-order systems.

— Extends to higher order (controllable) systems, but tedious.

e Ackermann’s Formula gives us a method of doing this entire design
process is one easy step.

K=1[0...01]M;'®4A)
~-M.=[B AB ... A"'B]

— ®y(s) is the characteristic equation for the closed-loop poles,
which we then evaluate for s = A.

— It is explicit that the system must be controllable because we
are inverting the controllability matrix.

o Revisit Example #1: ®4(s) = s* + 115 + 30
1 11 1 11
o L2 Lol = o

M,=[B|AB | = Ly

So

e Automated in Matlab: place.m & acker.m (see polyvalm.m too)
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e Origins? For simplicity, consider a third-order system (case #2), but
this extends to any order.

—a1 —a9 —as 1
A= 1 0 0 B=|0| C=][b by bs]
0 1 0 0

— This form is useful because the characteristic equation for the
system is obvious = det(s] — A) = 83 + a;5* + ass + a3 = 0

e (Can show that

—a] —ay —as 1
Ay=A-BK = 10 0= |0]||k ko ks]
0 1 0 0
i —a] — ]431 —as — kg —as — ]fg
= 1 0 0
0 1 0

so that the characteristic equation for the system is still obvious:
®y(s) = det(sI —Ay) = s°+(ay +k1)s* + (ay+ko)s+(az+ks) = 0
e \We then compare this with the desired characteristic equation devel-
oped from the desired closed-loop pole locations:
®y(s) = 5" + (a1)s* + (aa)s + (a3) = 0
to get that
CL1—|—]€1:CY1 /ﬁ:oq—al

an"—kn:an kn:an_an

e Pole placement is a very powerful tool and we will be using it for
most of our state space work.
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Aircraft State Space Control

e Can now design a full state feedback controller for the dynamics:
Tgp = AspTsp + Bepoe
with desired poles being at w, =3 and ( =0.6 = s = —1.8 £ 2.4i
Ga(s) = s> +3.65 +9

Ksp=place(Asp,Bsp, [roots([1 2*%0.6%3 372])’])

e Design controller u = [ —0.0264 —2.3463 ] [7“; ]

e With full model, could arrange it so phugoid poles remain in the same
place, just move the ones associated with the short period mode

s =—1.8£24i, —0.0033 % 0.0672i

ev=eig(A);

% damp short period, but leave the phugoid where it is
Plist=[roots([1 2*.6*x3 372])’ ev([3 4],1)°];
Kl=place(A,B(:,1),Plist)

= u=[0.0026 —0.0265 —2.3428 0.0363 ]

> £
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e Can also add the lag dynamics to short period model with 6 included

- - 4
Tsp = AgpTs + Byde; 0 = s+45§

— &5 = —dxs+ 40, 0 = x5

(&

Tgp | -Aw Bw L sp 0
MR ke Ik
e Add s = —3 to desired pole list

Plist=[roots([1 2*.6*x3 3°2])’,-.25,-3];

At2=[Asp2 Bsp2(:,1);zeros(1,3) -4];Bt2=[zeros(3,1);4];
Kt=place(At2,Bt2,Plist);

step(ss(At2-Bt2*Kt2,Bt2,[0 0 1 0],0),35)

w=[00011 —3.4617 —4.9124 0.5273 |

e No problem working with larger systems with state space tools

e Main control issue is finding “good” locations for closed-loop poles
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Estimators/Observers

e Problem: So far we have assumed that we have full access to the
state x(t) when we designed our controllers.

— Most often all of this information is not available.

e Usually can only feedback information that is developed from the
sensors measurements.

— Could try “output feedback”
u=Kr = u= Ky

— Same as the proportional feedback we looked at at the beginning
of the root locus work.

— This type of control is very difficult to design in general.

e Alternative approach: Develop a replica of the dynamic system
that provides an “estimate” of the system states based on the mea-
sured output of the system.

e New plan:

1. Develop estimate of z(t) that will be called z(?).
2. Then switch from u = —Kx(t) to u = —Kz(t).

e Two key questions:
— How do we find z(t)?

— Will this new plan work?
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Estimation Schemes

e Assume that the system model is of the form:

t = Az + Bu, x(0) unknown
y = Cx

where

1. A, B, and C are known.
2. u(t) is known
3. Measurable outputs are y(t) from C # [

e Goal: Develop a dynamic system whose state
z(t) = ()
for all time ¢ > 0. Two primary approaches:

— Open-loop.
— Closed-loop.

16.333 9-13
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Open-loop Estimator

e Given that we know the plant matrices and the inputs, we can just
perform a simulation that runs in parallel with the system

z(t) = Az + Bul(t)

e Then z(t) = x(t) V t provided that z(0) = x(0)

e Major Problem: We do not know z(0)

System A B,C y(t)
= z(t)
u(t)
Observer A,B,C y(t)
= Z(t)

e Analysis of this case. Start with:

t(t) = Ax+ Bu(t)
z(t) = Az + Bu(t)

e Define the estimation error: Z(t) = x(t) — z(t).
— Now want z(t) =0V ¢.

— But is this realistic?
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e Subtract to get:

d . . B ~
%(:ﬁ—x) =Alx—12) = I(t)= Az

which has the solution
i(t) = eMz(0)

— Gives the estimation error in terms of the initial error.

e Does this guarantee that x = 0 V 7
Or even that £ — 0 as t — 0o? (which is a more realistic goal).

— Response is fine if 2(0) = 0. But what if (0) # 07

e If A stable, then £ — 0 as ¢ — oo, but the dynamics of the estima-
tion error are completely determined by the open-loop dynamics of
the system (eigenvalues of A).

— Could be very slow.

— No obvious way to modify the estimation error dynamics.

e Open-loop estimation does not seem to be a very good idea.
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Closed-loop Estimator

e Obvious way to fix the problem is to use the additional information
available:

— How well does the estimated output match the measured output?

Compare: y=Cx with y=Cz

—Thenformy=y—9y=Cxz
System A B,C y(t)
— (1)
u(t)
2l , ,

Observer A B.C y(t)
— Z(t)

e Approach: Feedback 7 to improve our estimate of the state. Basic
form of the estimator is:

2(t) = Ai(t) + Bu(t) + | Lyj(t)
y(t) = Cu(t)

where L is a user selectable gain matrix.

e Analysis:
T=i—1 = [Az+ Bu| — [AZ 4+ Bu+ L(y — 9)]
= Alx —z)— L(Czx — Cx)
= AT — LCT=(A—-LO)x
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e So the closed-loop estimation error dynamics are now

i = (A— LC)% with solution &(t) = "L 7(0)

e Bottom line: Can select the gain L to attempt to improve the
convergence of the estimation error (and/or speed it up).

— But now must worry about observability of the system model.

e Note the similarity:

— Regulator Problem: pick K for A— BK
& Choose K € R (SISO) such that the closed-loop poles

det(s] — A+ BK) = ®.(s)

are in the desired locations.
— Estimator Problem: pick L for A — LC
& Choose L € R™! (SISO) such that the closed-loop poles

det(s] — A+ LC) = ®,(s)

are in the desired locations.

e These problems are obviously very similar — in fact they are called
dual problems.
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Estimation Gain Selection

e For regulation, were concerned with controllability of (A, B)

For a controllable system we can place the eigenvalues of
A — BK arbitrarily.

e For estimation, were concerned with observability of pair (A, C).

For an observable system we can place the eigenvalues of
A — LC' arbitrarily.

e Test using the observability matrix:

C
CA
rank M, = rank C A? =n

CAn—l

e The procedure for selecting L is very similar to that used for the
regulator design process.
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e One approach:

— Note that the poles of (A — LC) and (A — LC)! are identical.
— Also we have that (A — LC)!' = AT — CTLY

— So designing L’ for this transposed system looks like a standard
regulator problem (A — BK) where

A = AT
B = (7T
K = LT

So we can use

K, = acker(A",C',P), L=K!

e Note that the estimator equivalent of Ackermann’s formula is that

0
L=, (s)M' |
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Simple Estimator Example

e Simple system

[ —1 1.5
1 =2
C=[10], D=0

A =

— Assume that the initial conditions are not well known.
— System stable, but Ay (A) = —0.18

— Test observability:

k[ C ] . 1 0
Iran = ran
CA 115

e Use open and closed-loop estimators. Since the initial conditions are

not well known, use z(0) = [ 8 ]

e Open-loop estimator:

Az + Bu
= (Cx

SIS
|

N
|

e Closed-loop estimator:

T = AZ+ Bu+ Lj = At + Bu+ L(y — §)
= (A—-LC)z+ Bu+ Ly
y = Czx
— Which is a dynamic system with poles given by \;(A — LC') and

which takes the measured plant outputs as an input and generates
an estimate of .
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e Typically simulate both systems together for simplicity

e Open-loop case:

e Closed-loop case:

X

- |

X

S

]:
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r = Ax + Bu
y = Cx
i = A+ Bu
g = Ca

05
T B . z(0) | —1
% Y |0 |~ 0

0

Az + Bu
(A—LC)z+ Bu+ LCx

Uy

A 0
LC A-LC

B
B

[

e Example uses a strong u(t) to shake things up
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states

estimation error

states

estimation error

Open loop estimator
1 T - . T T
- N
- - S N
-
-
05 . N E
.7 =R T T T =24
e g - -- --" \.\.\. S~ -
o ===~ ~ S~ oo R
S o - > =
-
-0.5 X2 ]
_1 | | | | | | |
0 0.5 1 1.5 2 25 3 3.5 4
time
1
051 i
o i
-0.5 -
_1 | | | | | | |
0 0.5 1 1.5 2 25 3 3.5 4
time

1

Estimation error converges to zero, but very slowly.

Closed-loop estimator

T T T
0.5 |
O‘Qe.____:::_— ]
-0.5 X2 N
_1 | | | | | | |
0 0.5 1 1.5 2 25 3 3.5 4
time
1
0.5 |
0 -
s / |
_1 | | | | | | |
0 0.5 1 1.5 2 25 3 3.5 4
time

Figure 2: Closed-loop estimator. Convergence looks much better.
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Aircraft Estimation Example

e Take Short period model and assume that we can measure ¢g. Can
we estimate the motion associated with the short period mode?

Tsp = AspTsp + Bgpul
y = [O l]xsp
— Take z4,(0) = [—0.5; —0.05]"
e System stable, so could use an open loop estimator
e For closed-loop estimator, put desired poles at —3, —4

e For the various dynamics models as before

Csp=[0 1]; % sense q
Ke=place(Asp’,Csp’,[-3 -4]) ;Le=Ke’;

Open-loop estimator Closed-loop estimator

0.02 0 0.01

0.01 0
0

-0.01
§ -0.01 5 5
5 5 -10 5 -0.02
§ -0.02 % o
-0.03
-0.03

-0.04 -0.04

-0.05 —200 -0.05

time time time

Figure 3: Closed-loop estimator. Convergence looks much better.

e As expected, the OL estimator does not do well, but the closed-loop
one converges nicely
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Where to put the Estimator Poles?

e Location heuristics for poles still apply — use Bessel, ITAE, ...

— Main difference: probably want to make the estimator faster than
you intend to make the regulator — should enhance the control,
which is based on z(t).

— ROT: Factor of 2-3 in the time constant (w,, associated with the
regulator poles.

e Note: When designing a regulator, were concerned with “band-
width” of the control getting too high = often results in control
commands that saturate the actuators and/or change rapidly.

e Different concerns for the estimator:

— Loop closed inside computer, so saturation not a problem.

— However, the measurements y are often “noisy”, and we need to
be careful how we use them to develop our state estimates.

= High bandwidth estimators tend to accentuate the effect of sens-
ing noise in the estimate.

— State estimates tend to “track” the measurements, which are fluc-
tuating randomly due to the noise.

= Low bandwidth estimators have lower gains and tend to rely more
heavily on the plant model

— Essentially an open-loop estimator — tends to ignore the measure-
ments and just uses the plant model.
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e C(an also develop an optimal estimator for this type of system.

— Which is apparently what Kalman did one evening in 1958 while
taking the train from Princeton to Baltimore...

— Balances effect of the various types of random noise in the
system on the estimator:

r = Ax+ Bu+ B,w
y = Cx+vo

where:

<& w: “process noise” — models uncertainty in the system model.

<& w: “sensor noise” — models uncertainty in the measurements.

Final Thoughts

e Note that the feedback gain L in the estimator only stabilizes the
estimation error.

— If the system is unstable, then the state estimates will also go to
00, with zero error from the actual states.

e Estimation is an important concept of its own.

— Not always just “part of the control system”

— Critical issue for guidance and navigation system

e More complete discussion requires that we study stochastic processes
and optimization theory.

e Estimation is all about which do you trust more: your mea-
surements or your model.
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Combined Regulator and Estimator

e As advertised, we can change the previous control ©u = —Kx to the
new control u = — K2 (same K). We now have
t = Ax+ Bu
y = Cx
Tz = Ai+ Bu+ Ly —9)

= Oz

Na
|

with closed-loop dynamics
r| | A —BK 3 R
|7 |LC A-BK—-LC| |4 Fel = Aol

e Not obvious that this system will even be stable: \;(Aq) < 07

e To analyze, introduce ¥ = x — x, and the similarity transform

I 0 .
T[]_]]T

e Rewrite the dynamics in terms of the state [ ; ] =T [ i ]

Ag = T_lAclT = A_cl
and when you work through the math, you get

A—-—BK BK ] -

Aa = 0 A—LC
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e Absolutely key points:

1. )\2<Acl) = )\Z(ACI) Why?

2. Ag is block upper triangular, so can find poles by inspection:

det(s] — Ay) = det(s] — (A — BK)) - det(s] — (A — LC))

The closed-loop poles of the system consist of the
union of the regulator and estimator poles

e So we can design the estimator and regulator separately with confi-
dence that combination of the two will work VERY well.

e Compensator is a combination of the estimator and regulator.
r = Ai+ Bu+L(y—1)
= (A— BK — LC)z+ Ly
u = —Kz

=4 «jjc — Acxc + ch

U — _CC:EC

— Keep track of this minus sign. We need one in the feedback path,
but we can move it around to suit our needs.
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o Let GG.(s) be the compensator transfer function where
u

— = —C.(sI — Ac)_ch = —G,(s)
Yy

= —K(sI —(A—BK — LC))"'L
so by my definition, = u = —G.y = G.(—y)

e Reason for making the definition is that when we implement the
controller, we often do not just feedback —y(t), but instead have to
include a reference command r(t)

— Use servo approach and feed back e(t) = r(t) — y(t) instead

r e U Yy

Ge(s) G(s) |—1—

—So now u = Gee = G.(r — y).
— And if 7 = 0, then we still have u = G.(—y)

e Important points:
— Closed-loop system will be stable, but the compensator dynamics
need not be.

— Often very simple and useful to provide classical interpretations of
the compensator dynamics G (s).
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e Mechanics of closing the loop

G(s): @ = Ax+ Bu
y = Cx

Ge(s) @, = A.x.+ Bee

v = C.x,

ande=r—vy, u=G., y= Gu.

e Loop dynamics L = GG. = y = L(s)e

z = Ax + Bu = Ax + BC.x,
. = A.x.+ B.e

MR ML
v=loo]| 7]

e Now form the closed-loop dynamics by insertinge =r — vy
T A BC. x 0 x
- L] Cmte )
| A BC vl 0
| -B.C A. ||« B.|"

v = loo]|!]

Le
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Performance lIssue

e Often find with state space controllers that the DC gain of the closed
loop system is not 1. So y # r in steady state.

e Relatively simple fix is to modify the original controller with scalar N

u=r—Kr=u=Nr—Kux

e C(losed-loop system on page 5| becomes

t = Ax+ B(Nr — Kx) = Ayx + BNr

y =Cugx } Gu(s)=C(sI-A,) 'BN

— Analyze steady state step response = ys; = Gi(0)7rsiep
G4(0)=C(-A,) 'BN

_ B _ 1
— And pick N so that G4(0) =1 = N = C—A) 1B

e A bit more complicated with a combined estimator and regulator

— One simple way (not the best) of achieving a similar goal is to add

N to r and force G(0) =1
— Now the closed-loop dynamics on page [29) become:

, - . \
[56] = A, v + B, Nr

T 1
¢ — = > — N —
T (Ca(—=Aq)1By)

Yy — Ul

e Note that this fixes the steady state tracking error problems, but in
my experience can create strange transients (often NMP).
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Example: Compensator Design

B 1 :>:1';:Ax—|—Bu
24 s5+1 y=Cx

A_[_Ol _11] B—[?] C=[10]

e Regulator: Want regulator poles to have a time constant of 7. =
1/(Cwy) = 0.25 sec = AM(A — BK,) = —4 £ 45 which can be found
using place or acker

G(s)

where

K_r=acker(a,b, [-4+4%j;-4-4%j]);

to give K, = [31 7]

e Estimator: want the estimator poles to be faster, so use
7. = 1/(Cw,) = 0.1 sec. Use real poles, = \(A — L.C) = —10

L_e=acker(a’,c’,[-10 -10]’)’;

19
hich gives L, =
which gives [80]

e Form compensator G,(s)

ac=a-bxK_r-L_e*c;bc=L_e;cc=K_r;dc=0;

-19 1 19
e = [—112 —8] Pe= [80] Co=[s17]

(5+2.5553) w
G.(s) = 1149 _Y
() 24275+ 264 e

Low frequency zero, with higher frequency poles (like a lead)
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Figure 4: The compensator does indeed look like a high frequency lead (amplification
from 2-16 rad/sec). Plant pretty simple looking.
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10% ¢ AL EEIEE TR AT PR P EEREEEEE
i : : | — LooplL |;

Mag

Freq (rad/sec)

-100

-150

Phase (deg)

-200

-250

Freq (rad/sec)

Figure 5: The loop transfer function L. = G .G shows a slope change around w. = 5
rad /sec due to the effect of the compensator. Significant gain and phase margins.




Fall 2004

Magnitude (dB)

Phase (deg)

Bode Diagram
Gm = 14.3 dB (at 14.9 rad/sec), Pm = 45.8 deg (at 4.84 rad/sec)
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Figure 6: Quite significant gain and phase margins.
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Figure 7: Freeze the compensator poles and zeros and draw a root locus versus an

additional plant gain o, G(s) = G(s) = 71577y~ Note location of the closed-loop
poles!!
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Factor of N=1.0899 applied to Closed loop
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Figure 8: Closed-loop transfer — system bandwidth has increased substantially.
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Estimator Design (estl.m)

1 clear all

2 close all

3 figure(1);clf

4 set(gcf,’DefaultLinelLineWidth’,2)

5 set(gcf,’DefaultlineMarkerSize’,10)
6 figure(2);clf

7 set(gcf,’DefaultLineLineWidth’,2)

8 set(gcf,’DefaultlineMarkerSize’,10)

10 load b747 % get A B Asp Bsp
11 Csp=[0 1]; % sense q

13 Ke=place(Asp’,Csp’,[-3 -4]);Le=Ke’;
15 xo0=[-.5;-.05]; % start somewhere

17 t=[0:.01:10] ;N=floor(.15*length(t));

18 % hit on the system with an input

19 %u=0;u=[ones(15,1) ;-ones(15,1) ;ones(15,1)/2;-ones(15,1)/2;zeros(41,1)]/5;
20 u=0;u=[ones(N,1);-ones(N,1);ones(N,1)/2;-ones(N,1)/2]/20;

21 u(length(t))=0;

23 [y,x]=1sim(Asp,Bsp,Csp,0,u,t,x0);

24  plot(t,y)

25

26 % closed-loop estimator

27 % hook both up so that we can simulate them at the same time

28 /% bigger state = state of the system then state of the estimator
20 A_cl=[Asp zeros(size(Asp));LexCsp Asp-Le*Csp];

30 B_cl=[Bsp;Bspl;

31 C_cl=[Csp zeros(size(Csp));zeros(size(Csp)) Cspl;

32 D_cl=zeros(2,1);

33

34 % note that we start the estimators at zero, since that is

35 % our current best guess of what is going on (i.e. we have no clue :-) )
36 %

37 [y_cl,x_cl]l=1sim(A_c1,B_cl,C_cl,D_cl,u,t, [x0;0;0]);

38 figure(1)

39 subplot(221)

40 plot(t,x_cl(:,[1]),t,x_cl(:,[3]),’--")

41 ylabel(’x1’);title(’Closed-loop estimator’);xlabel(’time’);grid
42 subplot(222)

43 plot(t,x_cl(:,[2]),t,x_cl(:,[4]),’--")

44  ylabel(’x1’);xlabel(’time’);grid

45  subplot(223)

46 plot(t,x_cl(:,[1]1)-x_cl1(:,[3]))

47 ylabel(’x1 error’);xlabel(’time’);grid

48  subplot(224)

49 plot(t,x_cl(:,[2])-x_cl(:,[4]))

50 ylabel(’x2 error’);xlabel(’time’);grid

51 print -depsc spest_cl.eps

52 jpdf (’spest_cl’)

54 7}, open-loop estimator

55 % hook both up so that we can simulate them at the same time
56 / bigger state = state of the system then state of the estimator
57 A_ol=[Asp zeros(size(Asp));zeros(size(Asp)) Aspl;

58 B_ol=[Bsp;Bspl;

50 C_ol=[Csp zeros(size(Csp));zeros(size(Csp)) Cspl;

60 D_ol=zeros(2,1);

61

62 [y_ol,x_o0l]=1sim(A_ol,B_ol,C_ol,D_ol,u,t, [x0;0;01);

63 figure(2)

64 subplot(221)

65 plot(t,x_ol(:,[1]),t,x_01(:,[3]1),’--")

66 ylabel(’x1’);title(’Open-loop estimator’);xlabel(’time’);grid
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67  subplot(222)

68 plot(t,x_ol(:,[2]),t,x_01(:,[4]),’~--")
69 ylabel(’x1’);xlabel(’time’);grid

70  subplot(223)

71 plot(t,x_ol(:,[1])-x_01(:,[3]))

72 ylabel(’x1 error’);xlabel(’time’);grid
73 subplot(224)

74 plot(t,x_ol(:,[2])-x_01(:,[4]1))

75 ylabel(’x2 error’);xlabel(’time’);grid
76  print -depsc spest_ol.eps

77 jpdf (’spest_ol’)

78
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Regular/Estimator Design (reg est.m)

1 % Combined estimator/regulator design for a simple system

2 % G= 1/(s"2+s+1)

3 h

4 % Jonathan How

5 % Fall 2004

6 h

7 close allj;clear all

8 for ii=1:5

9 figure(ii);clf;set(gct, ’DefaultLineLineWidth’,2);set(gcf, ’DefaultlineMarkerSize’,10)
10 end

12 a=[0 1;-1 -1];b=[0 1]1’;c=[1 0];d=0;
13 k=acker(a,b, [-4+4%j;-4-4%j]);
14 1l=acker(a’,c’,[-10 -10]’)’;

15 h
16 % For state space for G_c(s)
17 h

18 ac=a-bxk-1*c;bc=1;cc=k;dc=0;

20 G=ss(a,b,c,d);
21 Ge=ss(ac,bc,cc,dc);

23 f=logspace(-1,2,400);

24 g=freqresp(G,f*j);g=squeeze(g);

25  gc=freqresp(Gec,f*j) ;gc=squeeze(gc) ;

26

27 figure(1);clf

28 subplot(211)

20 loglog(f,abs(g),f,abs(gc),’--");axis([.1 1e2 .2 1e2])
30 xlabel(’Freq (rad/sec)’);ylabel(’Mag’)

31 legend(’Plant G’,’Compensator Gc’);grid

32 subplot(212)

33 semilogx(f,180/pi*angle(g),f,180/pi*angle(gc),’—-’);
34 axis([.1 1le2 -200 50])

35 xlabel(’Freq (rad/sec)’);ylabel(’Phase (deg)’);grid
36 legend(’Plant G’,’Compensator Gc’)

37

38 L=g.*xgc;

39

40 figure(2);clf

41 subplot(211)

42 loglog(f,abs(L),[.1 1e2],[1 1]1);axis([.1 1e2 .2 1e2])
43 xlabel(’Freq (rad/sec)’);ylabel(’Mag’)

44 legend(’Loop L’);

45 grid

46 subplot(212)

47 semilogx(f,180/pi*phase(L.’),[.1 1e2],-180%[1 1]1);
48 axis([.1 1e2 -290 0])

49  xlabel(’Freq (rad/sec)’);ylabel(’Phase (deg)’);grid

50
51 % loop dynamics L = G Gc
52

53 al=[a b*cc;zeros(2) acl;

54 bl=[zeros(2,1);bc];

55 cl=[c zeros(1,2)];

56 dl=0;

57 figure(3)

58 rlocus(al,bl,cl,dl)

59 %

60 % closed-loop dynamics

61 % unity gain wrapped around loop L
62 h

63 acl=al-bl*cl;bcl=bl;ccl=cl;dcl=d;
64

65 N=inv(ccl*inv(-acl)*bcl)

66
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67 hold on;plot(eig(acl),’d’);hold off

6s  grid

60 %

70 % closed-loop freq response
1 h

72 Gcl=ss(acl,bcl*N,ccl,dcl);

73 gcl=freqresp(Gcl,f*j);gcl=squeeze(gcl);

74

75 figure(4);clf

76 loglog(f,abs(g),f,abs(gcl),’—-’);

77 axis([.1 1e2 .01 1e2])

78  xlabel(’Freq (rad/sec)’);ylabel(’Mag’)

79 legend(’Plant G’,’closed-loop G_{cl}’);grid

8o  title([’Factor of N=’,num2str(N),’ applied to Closed loop’]l)
81

g2  figure(5);clf

83 margin(al,bl,cl,dl)

84

85  figure(l);orient tall;print -depsc reg_estl.eps
g6  jpdf (’reg_estl’)

g7 figure(2);orient tall;print -depsc reg_est2.eps
88 jpdf (’reg_est2’)

go  figure(3);print -depsc reg_est3.eps

90 jpdf (’reg_est3’)

o1 figure(4);print -depsc reg_est4.eps

92 jpdf (’reg_est4d’)

93 figure(5);print -depsc reg_est5.eps

94  jpdf (’reg_est5’)
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