
16.333 Lecture # 10


State Space Control 

• Basic state space control approaches 
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State Space Basics 

•	 State space models are of the form 

ẋ(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t) 

with associated transfer function


G(s) = C(sI − A)−1B + D


Note: must form symbolic inverse of matrix (sI − A), which is hard. 

•	 Time response: Homogeneous part ẋ = Ax, x(0) known 

– Take Laplace transform 

X(s) = (sI − A)−1 x(0) ⇒ x(t) = L−1 (sI − A)−1 x(0) 

I A A2 
– But can show (sI − A)−1 = + 

s2 + 
s3 + . . . s 

1so L−1 (sI − A)−1 = I + At + 2! (At)2 + . . . = eAt 

– Gives x(t) = eAtx(0) where eAt is Matrix Exponential 
13	Calculate in MATLAB R�	using expm.m and not exp.m 

•	 Time response: Forced Solution – Matrix case ẋ = Ax + Bu 
where x is an n­vector and u is a m­vector. Cam show 

t 

x(t) = eAtx(0) + eA(t−τ )Bu(τ )dτ 
0 

t 

y(t) = CeAtx(0) + CeA(t−τ )Bu(τ )dτ + Du(t) 
0 

– CeAtx(0) is the initial response 

– CeA(t)B is the impulse response of the system. 

1MATLAB R� is a trademark of the Mathworks Inc. 
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Dynamic Interpretation


• Since A = T ΛT −1, then ⎡ ⎤⎡ ⎤⎡ ⎤
Te

At 
| | λ1t 

. . . 
− w

..
1 − ⎦e = T e ΛtT −1 = ⎣ v1 ⎦⎣ ⎦⎣ .· · · vn 

| | λnt Te − wn − 

where we have written ⎡ ⎤
T− w
.
1 − ⎦.T −1 = ⎣ . 
T− wn − 

which is a column of rows. 

• Multiply this expression out and we get that 
n

At λit T e = e viwi 
i=1 

• Assume A diagonalizable, then ẋ = Ax, x(0) given, has solution 

x(t) = eAtx(0) = T e ΛtT −1 x(0) 
n

= eλitvi{wi
Tx(0)}

i=1 
n

λit = e viβi 

i=1 

• State solution is a linear combination of the system modes vie
λi 

eλit – Determines the nature of the time response 

vi – Determines extent to which each state contributes to that mode 

βi – Determines extent to which the initial condition excites the mode 
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•	 Note that the vi give the relative sizing of the response of each part 
of the state vector to the response. 

1 
v1(t) = e−t mode 1 

0 

0.5 
v2(t) = e−3t mode 2 

0.5 

•	 Clearly eλit gives the time modulation 

– λi real – growing/decaying exponential response 

– λi complex – growing/decaying exponential damped sinusoidal 

•	 Bottom line: The locations of the eigenvalues determine the pole 
locations for the system, thus: 

– They determine the stability and/or performance & transient be­

havior of the system. 

– It is their locations that we will want to modify with the 
controllers. 
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Full­state Feedback Controller 

• Assume that the single­input system dynamics are given by 

ẋ = Ax + Bu 

y = Cx 

so that D = 0. 

– The multi­actuator case is quite a bit more complicated as we 
would have many extra degrees of freedom. 

• Recall that the system poles are given by the eigenvalues of A. 

– Want to use the input u(t) to modify the eigenvalues of A to 
change the system dynamics. 

r u y 

− 
OO // A, B, C //

x 
�� 

K 

Assume a full­state feedback of the form:• 

u = r − Kx 

where r is some reference input and the gain K is R1×n 

– If r = 0, we call this controller a regulator 



� � � � 

� � 
�	 � 

Fall 2004	 16.333 9–5 

•	 Find the closed­loop dynamics: 

ẋ = Ax + B(r − Kx) 

= (A − BK)x + Br 

= Aclx + Br 

y	 = Cx 

•	 Objective: Pick K so that Acl has the desired properties, e.g., 

– A unstable, want Acl stable 

– Put 2 poles at −2± 2j 

•	 Note that there are n parameters in K and n eigenvalues in A, so it 
looks promising, but what can we achieve? 

•	 Example #1: Consider: 

1 1 
ẋ = 

1 2 

1 
x + u 

0 

– Then 

det(sI − A) = (s − 1)(s − 2)− 1 = s 2 s + 1 = 0 − 3

so the system is unstable. 

– Define u = k1 k2 x = −Kx, then − � � � �
1 1 1 � � 1− k1 1− k2 

Acl = A−BK = k1 k2 = 
1 2 

− 
0 1 2 

– So then we have that 

det(sI − Acl) = s 2 + (k1 − 3)s + (1− 2k1 + k2) = 0 
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– Thus, by choosing k1 and k2, we can put λi(Acl) anywhere in the 
complex plane (assuming complex conjugate pairs of poles). 

•	 To put the poles at s = −5, − 6, compare the desired characteristic 
equation 

(s + 5)(s + 6) = s 2 + 11s + 30 = 0 

with the closed­loop one 

2 s	 + (k1 − 3)x + (1− 2k1 + k2) = 0 

to conclude that 

k1 − 3 = 11 k1 = 14 
1− 2k1 + k2 = 30 k2 = 57 

so that K = 14 57 , which is called Pole Placement. 

•	 Of course, it is not always this easy, as the issue of controllability 
must be addressed. 

•	 Example #2: Consider this system: 

1 1 
ẋ = 

0 2 

1 
x + u 

0 

with the same control approach 

1 1 1 � � 1− k1 1− k2 
Acl = A − BK = k1 k2 = 

0 2 
− 

0 0 2 

so that det(sI − Acl) = (s − 1 + k1)(s − 2) = 0 

The feedback control can modify the pole at s = 1, but it cannot 
move the pole at s = 2. 

•	 This system cannot be stabilized with full­state feedback 
control. 

•	 What is the reason for this problem? 
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– It is associated with loss of controllability of the e2t mode. 

Basic test for controllability: rank Mc =
n• � � � � � 

B AB 
1 1


=

1

0

1

0

Mc
 =


0 2 

So that rank Mc 1
=
 < 2. 

• Must assume that the pair (A, B) are controllable.
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Ackermann’s Formula


•	 The previous outlined a design procedure and showed how to do it 
by hand for second­order systems. 

– Extends to higher order (controllable) systems, but tedious. 

•	 Ackermann’s Formula gives us a method of doing this entire design 
process is one easy step. 

K = 0 . . . 0 1 M−1Φd(A)c 

– Mc = B AB . . . An−1B 

– Φd(s) is the characteristic equation for the closed­loop poles, 
which we then evaluate for s = A. 

– It is explicit that the system must be controllable because we 
are inverting the controllability matrix. 

•	 Revisit Example #1: Φd(s) = s2 + 11s + 30 � � � � � � � 
1 1 1 1 1 � 1 

= B AB = =Mc 0 1 2 0 0 1 

So ⎞ � � 
1 1 

�−1 
⎛� �2 � � � 1 1 1 1 

K = 0 1 ⎝ + 11 + 30I⎠ 
0 1 1 2 1 2 � � 43 14 � � 

= 0 1 = 14 57

14 57


• Automated in Matlab: place.m & acker.m (see polyvalm.m too)
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•	 Origins? For simplicity, consider a third­order system (case #2), but 
this extends to any order. ⎡	 ⎤ ⎡ ⎤ 

−a1 −a2 −a3	 1 
A = ⎣	 1 0 0 ⎦ B = ⎣ 0 ⎦ C = b1 b2 b3 

0 1 0 0 

– This form is useful because the characteristic equation for the 
2system is obvious ⇒ det(sI − A) = s3 + a1s + a2s + a3 = 0 

Can show that •	 ⎡ ⎤ ⎡ ⎤ 
−a1 −a2 −a3 1 

Acl = A − BK = ⎣ 1 0 0 ⎦ − ⎣ 0 ⎦ k1 k2 k3 

0 1 0 0 ⎡	 ⎤ 
−a1 − k1	 −a2 − k2 −a3 − k3 

= ⎣	 1 0 0 ⎦ 

0 1 0 

so that the characteristic equation for the system is still obvious: 

2Φcl(s) = det(sI − Acl) = s 3 + (a1 + k1)s + (a2 + k2)s + (a3 + k3) = 0 

•	 We then compare this with the desired characteristic equation devel­

oped from the desired closed­loop pole locations: 

2Φd(s) = s 3 + (α1)s + (α2)s + (α3) = 0 

to get that ⎫ 
a1 + k1 = α1 ⎬ k1 = α

.
1 − a1 

..	 ..	 . ⎭ 
an + kn = αn kn = αn − an 

• Pole placement is a very powerful tool and we will be using it for 
most of our state space work. 
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Aircraft State Space Control


• Can now design a full state feedback controller for the dynamics: 

ẋsp = Aspxsp + Bspδe 

with desired poles being at ωn = 3 and ζ = 0.6 ⇒ s = −1.8 ± 2.4i 

φd(s) = s 2 + 3.6s + 9 

Ksp=place(Asp,Bsp,[roots([1 2*0.6*3 3^2])’]) 

w •	 Design controller u = −0.0264 −2.3463 
q 

•	 With full model, could arrange it so phugoid poles remain in the same 
place, just move the ones associated with the short period mode 

s = −1.8 ± 2.4i, −0.0033 ± 0.0672i 

ev=eig(A);

% damp short period, but leave the phugoid where it is

Plist=[roots([1 2*.6*3 3^2])’ ev([3 4],1)’];

K1=place(A,B(:,1),Plist)
 ⎤
⎡
⎢⎢⎢⎣


u

w
⎥⎥⎥⎦⇒ u = 0.0026 −0.0265 −2.3428 0.0363

q

θ
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•	 Can also add the lag dynamics to short period model with θ included 

ẋsp = Ãspxsp + ˜ δa δa =
4 

δcBsp e ; e s + 4	 e 

→ ẋδ = −4xδ + 4δe
c, δa = xδe 

ẋsp = 
˜Ãsp Bsp xsp 0 

+ δc 
e⇒ 

ẋδ	 0 −4 xδ 4 

• Add s = −3 to desired pole list 

Plist=[roots([1 2*.6*3 3^2])’,­.25,­3];

At2=[Asp2 Bsp2(:,1);zeros(1,3) ­4];Bt2=[zeros(3,1);4];

Kt=place(At2,Bt2,Plist);

step(ss(At2­Bt2*Kt2,Bt2,[0 0 1 0],0),35)
 ⎤
⎡
⎢⎢⎢⎣


w

q

θ

xδ


⎥⎥⎥⎦ 
u = 0.0011 −3.4617 −4.9124 0.5273 

0 5 10 15 20 25 30 35
−0.25

−0.2

−0.15

−0.1

−0.05

0

Step Response

Time (sec)

θ 
ra

ds

• No problem working with larger systems with state space tools 

• Main control issue is finding “good” locations for closed­loop poles 
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Estimators/Observers


Problem: So far we have assumed that we have full access to the • 
state x(t) when we designed our controllers. 

– Most often all of this information is not available. 

•	 Usually can only feedback information that is developed from the 
sensors measurements. 

– Could try “output feedback” 

ˆu = Kx ⇒ u = Ky 

– Same as the proportional feedback we looked at at the beginning 
of the root locus work. 

– This type of control is very difficult to design in general. 

•	 Alternative approach: Develop a replica of the dynamic system 
that provides an “estimate” of the system states based on the mea­

sured output of the system. 

•	 New plan: 

1. Develop estimate of x(t) that will be called x̂(t). 
2. Then switch from u = −Kx(t) to u = −Kx̂(t). 

•	 Two key questions: 

– How do we find x̂(t)? 

– Will this new plan work? 
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Estimation Schemes 

• Assume that the system model is of the form: 

ẋ = Ax + Bu , x(0) unknown 

y = Cx 

where 

1. A, B, and C are known. 
2. u(t) is known 
3. Measurable outputs are y(t) from C = I 

• Goal: Develop a dynamic system whose state 

x̂(t) = x(t)


for all time t ≥ 0. Two primary approaches:


– Open­loop. 

– Closed­loop. 



Fall 2004	 16.333 9–14


Open­loop Estimator


•	 Given that we know the plant matrices and the inputs, we can just 
perform a simulation that runs in parallel with the system 

ẋ̂(t) = Ax̂ + Bu(t) 

•	 Then x̂(t) ≡ x(t) ∀ t provided that x̂(0) = x(0) 

•	 Major Problem: We do not know x(0) 

System A,B,C 
⇒ x(t) 

y(t) 
//

u(t) 

//

//
Observer A,B,C 

⇒ x̂(t) 

ŷ(t) 
//

•	 Analysis of this case. Start with: 

ẋ(t) = Ax + Bu(t) 

ẋ̂(t) = Ax̂ + Bu(t) 

•	 Define the estimation error: x̃(t) = x(t) − x̂(t). 

– Now want x̃(t) = 0 ∀ t. 

– But is this realistic? 
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•	 Subtract to get: 

d 
(x − x̂) = A(x − x̂) ⇒ ẋ̃(t) = Ax̃

dt

which has the solution 

x̃(t) = eAtx̃(0) 

– Gives the estimation error in terms of the initial error. 

•	 Does this guarantee that x̃ = 0 ∀ t? 
Or even that x̃ → 0 as t →∞? (which is a more realistic goal). 

– Response is fine if x̃(0) = 0. But what if x̃(0) = 0? 

•	 If A stable, then x̃ → 0 as t →∞, but the dynamics of the estima­

tion error are completely determined by the open­loop dynamics of 
the system (eigenvalues of A). 

– Could be very slow. 

– No obvious way to modify the estimation error dynamics. 

•	 Open­loop estimation does not seem to be a very good idea. 
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Closed­loop Estimator


•	 Obvious way to fix the problem is to use the additional information 
available: 

– How well does the estimated output match the measured output? 

Compare: y = Cx with ŷ = Cx̂

– Then form ỹ = y − ŷ ≡ Cx̃

System A,B,C 
→ x(t) 

y(t) 
//

+��

��

u(t) 

//

//

L 

Observer A,B,C 
→ x̂(t) 

ŷ(t) 
//

− 
OO

•	 Approach: Feedback ỹ to improve our estimate of the state. Basic 
form of the estimator is: 

ẋ̂(t) = Ax̂(t) + Bu(t) + Lỹ(t)


ŷ(t) = Cx̂(t)


where L is a user selectable gain matrix.


•	 Analysis: 

x̃̇ = ẋ− ẋ̂ = [Ax + Bu] [Ax̂ + Bu + L(y − ŷ)]− 

= A(x − x̂) − L(Cx − Cx̂) 

= Ax̃− LCx̃ = (A − LC)x̃ 
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•	 So the closed­loop estimation error dynamics are now 

ẋ̃ = (A − LC)x̃	 with solution x̃(t) = e(A−LC)t x̃(0) 

•	 Bottom line: Can select the gain L to attempt to improve the 
convergence of the estimation error (and/or speed it up). 

– But now must worry about observability of the system model. 

•	 Note the similarity: 

– Regulator Problem: pick K for A −BK 

3 Choose K ∈ R1×n (SISO) such that the closed­loop poles 

det(sI − A + BK) = Φc(s) 

are in the desired locations. 

– Estimator Problem: pick L for A − LC 

3 Choose L ∈ Rn×1 (SISO) such that the closed­loop poles 

det(sI − A + LC) = Φo(s) 

are in the desired locations. 

•	 These problems are obviously very similar – in fact they are called 
dual problems. 
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Estimation Gain Selection 

• For regulation, were concerned with controllability of (A, B) 

For a controllable system we can place the eigenvalues of 
A − BK arbitrarily. 

• For estimation, were concerned with observability of pair (A, C). 

For an observable system we can place the eigenvalues of 
A − LC arbitrarily. 

• Test using the observability matrix: ⎤⎡ 

rank Mo
 � rank


⎢⎢⎢⎢⎢⎣


C

CA

CA2


... 
CAn−1 

⎥⎥⎥⎥⎥⎦

= n


• The procedure for selecting L is very similar to that used for the 
regulator design process. 
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• One approach: 

– Note that the poles of (A − LC) and (A − LC)T are identical. 

– Also we have that (A − LC)T = AT − CTLT 

– So designing LT for this transposed system looks like a standard 
regulator problem (A − BK) where 

A AT ⇒ 
B CT ⇒ 
K LT ⇒ 

So we can use 

Ke = acker(AT, CT , P ) , L ≡ KT 
e 

• Note that the estimator equivalent of Ackermann’s formula is that
⎤
⎡


L = Φe(s)M−1 
o 

⎢⎢⎢⎣


0 
... 
0

1


⎥⎥⎥⎦
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Simple Estimator Example 

• Simple system � � � � � � −1 1.5 1 .5 
A = , B = , x(0) = 

−0

1 −2 0 −1 

C = 1 0 , D = 0 

– Assume that the initial conditions are not well known. 

– System stable, but λmax(A) = −0.18 

– Test observability: 

C

rank


CA


1 0 
= rank 

−1 1.5 

• Use open and closed­loop estimators. Since the initial conditions are 
0 

not well known, use x̂(0) = 
0 

• Open­loop estimator: 

ẋ̂ = Ax̂ + Bu 

ŷ = Cx̂

• Closed­loop estimator: 

ẋ̂ = Ax̂ + Bu + Lỹ = Ax̂ + Bu + L(y − ŷ) 

= (A − LC)x̂ + Bu + Ly 

ŷ = Cx̂

– Which is a dynamic system with poles given by λi(A − LC) and 
which takes the measured plant outputs as an input and generates 
an estimate of x. 
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• Typically simulate both systems together for simplicity 

• Open­loop case: 

ẋ = Ax + Bu 

y = Cx 

ẋ̂ = Ax̂ + Bu 

ŷ = Cx̂ ⎤
⎡

−0.5

−1
ẋ
 A 0 x ⎢⎢⎢⎣


⎥⎥⎥⎦

B x(0) 

= + u , = 
x̂(0)

⇒ 
ẋ̂ 0 A x̂ B


y

� 

C
 0 x 
= 

ŷ 0 C x̂

• Closed­loop case: 

ẋ = Ax + Bu 

ẋ̂ = (A − LC)x̂ + Bu + LCx 

ẋ
 A 0 x B 
= u 

B
⇒ 

ẋ̂ LC A − LC x̂
+ 

• Example uses a strong u(t) to shake things up 

0 
0 
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Figure 1: Open­loop estimator. Estimation error converges to zero, but very slowly.
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Figure 2: Closed­loop estimator. Convergence looks much better.
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Aircraft Estimation Example


• Take Short period model and assume that we can measure q. Can 
we estimate the motion associated with the short period mode? 

ẋsp = Aspxsp� + Bspu 

y = 0 1 xsp 

– Take xsp(0) = [−0.5; −0.05]T 

•	 System stable, so could use an open loop estimator 

•	 For closed­loop estimator, put desired poles at −3, −4 

•	 For the various dynamics models as before 

Csp=[0 1]; % sense q

Ke=place(Asp’,Csp’,[­3 ­4]);Le=Ke’;
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Figure 3: Closed­loop estimator. Convergence looks much better. 

•	 As expected, the OL estimator does not do well, but the closed­loop 
one converges nicely 
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Where to put the Estimator Poles? 

•	 Location heuristics for poles still apply – use Bessel, ITAE, ... 

– Main difference: probably want to make the estimator faster than 
you intend to make the regulator – should enhance the control, 
which is based on x̂(t). 

– ROT: Factor of 2–3 in the time constant ζωn associated with the 
regulator poles. 

•	 Note: When designing a regulator, were concerned with “band­

width” of the control getting too high ⇒ often results in control 
commands that saturate the actuators and/or change rapidly. 

Different concerns for the estimator: • 

– Loop closed inside computer, so saturation not a problem. 

– However, the measurements y are often “noisy”, and we need to 
be careful how we use them to develop our state estimates. 

⇒ High bandwidth estimators tend to accentuate the effect of sens­

ing noise in the estimate. 

– State estimates tend to “track” the measurements, which are fluc­

tuating randomly due to the noise. 

⇒ Low bandwidth estimators have lower gains and tend to rely more 
heavily on the plant model 

– Essentially an open­loop estimator – tends to ignore the measure­

ments and just uses the plant model. 
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•	 Can also develop an optimal estimator for this type of system. 

– Which is apparently what Kalman did one evening in 1958 while 
taking the train from Princeton to Baltimore... 

– Balances effect of the various types of random noise in the 
system on the estimator: 

ẋ = Ax + Bu + Bww 

y = Cx + v 

where:


3 w: “process noise” – models uncertainty in the system model.

3 v: “sensor noise” – models uncertainty in the measurements.


Final Thoughts


•	 Note that the feedback gain L in the estimator only stabilizes the 
estimation error. 

– If the system is unstable, then the state estimates will also go to 
∞, with zero error from the actual states. 

•	 Estimation is an important concept of its own. 

– Not always just “part of the control system” 

– Critical issue for guidance and navigation system 

•	 More complete discussion requires that we study stochastic processes 
and optimization theory. 

•	 Estimation is all about which do you trust more: your mea­
surements or your model. 
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Combined Regulator and Estimator


•	 As advertised, we can change the previous control u = −Kx to the 
new control u = −Kx̂ (same K). We now have 

ẋ = Ax + Bu 

y = Cx 

ẋ̂ = Ax̂ + Bu + L(y − ŷ) 

ŷ = Cx̂

with closed­loop dynamics � � �	 � � � 
ẋ A −BK x 
ẋ̂

= 
LC A − BK − LC x̂

⇒ ẋcl = Aclxcl 

•	 Not obvious that this system will even be stable: λi(Acl) < 0? 

•	 To analyze, introduce x̃ = x − x̂, and the similarity transform 

I 0 
T =	 = T−1 

I −I 

x x •	 Rewrite the dynamics in terms of the state = T 
x̃ x̂

Acl ⇒ T−1AclT ≡ Acl 

and when you work through the math, you get 

Acl = 
A − BK BK 

!!! 
0 A − LC 
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•	 Absolutely key points: 

1.	λi(Acl) ≡ λi(Acl) why? 
2.	Acl is block upper triangular, so can find poles by inspection: 

det(sI − Acl) = det(sI − (A − BK)) · det(sI − (A − LC)) 

The closed­loop poles of the system consist of the 
union of the regulator and estimator poles 

•	 So we can design the estimator and regulator separately with confi­

dence that combination of the two will work VERY well. 

•	 Compensator is a combination of the estimator and regulator. 

ẋ̂ = Ax̂ + Bu + L(y − ŷ) 

= (A − BK − LC)x̂ + Ly 

u = −Kx̂

⇒ ẋc = Acxc + Bcy 

u = −Ccxc 

– Keep track of this minus sign. We need one in the feedback path, 
but we can move it around to suit our needs. 
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•	 Let Gc(s) be the compensator transfer function where

u


= −Cc(sI − Ac)
−1Bc = −Gc(s) 

y 
= −K(sI − (A − BK − LC))−1L 

so by my definition, ⇒ u = −Gcy ≡ Gc(−y) 

•	 Reason for making the definition is that when we implement the 
controller, we often do not just feedback −y(t), but instead have to 
include a reference command r(t) 

– Use servo approach and feed back e(t) = r(t)− y(t) instead 

r 
//
e 

// Gc(s) 
u 

// G(s) 
y 

//

− 

OO

– So now u = Gce = Gc(r − y). 

– And if r = 0, then we still have u = Gc(−y) 

•	 Important points: 

– Closed­loop system will be stable, but the compensator dynamics 
need not be. 

– Often very simple and useful to provide classical interpretations of 
the compensator dynamics Gc(s). 



� � 

� � 
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• Mechanics of closing the loop 

G(s) : ẋ = Ax + Bu 

y = Cx 

Gc(s) : ẋc = Acxc + Bce 

u = Ccxc 

and e = r − y, u = Gce, y = Gu. 

• Loop dynamics L = GGc ⇒ y = L(s)e 

ẋ = Ax + Bu = Ax + BCcxc 

ẋc = Acxc + Bce � � � � � � � � 
ẋ A BCc x 0 

= + e 
ẋc 0 Ac xc Bc � � x 

y = C 0 
xc 

• Now form the closed­loop dynamics by inserting e = r − y � � � � � � � �� � �� 
ẋ A BCc x 0 � � x 

= 
ẋc 0 Ac xc 

+ 
Bc 

r − C 0 
xc � � � � � � 

A BCc x 0 
= + r −BcC Ac xc Bc � � x 

y = C 0 
xc 



�

�


� � � � 

�
 � 
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Performance Issue


•	 Often find with state space controllers that the DC gain of the closed 
loop system is not 1. So y = r in steady state. 

•	 Relatively simple fix is to modify the original controller with scalar N 

u = r − Kx ⇒ u = N r − Kx 

•	 Closed­loop system on page 5 becomes 

ẋ = Ax + B(N r − Kx) = Aclx + BN r 
Gcl(s) = C(sI−Acl)

−1BN 
y = Cx 

– Analyze steady state step response ⇒ yss = Gcl(0)rstep


Gcl(0) = C(−Acl)
−1BN


– And pick N so that Gcl(0) = 1 ⇒ N = 1 
(C(−Acl)

−1B) 

•	 A bit more complicated with a combined estimator and regulator 

– One simple way (not the best) of achieving a similar goal is to add 
N to r and force Gcl(0) = 1 

– Now the closed­loop dynamics on page 29 become: ⎫⎪⎪⎪⎬

ẋ	 x 

=	Acl + BclN r 
ẋc 1 

N	= → 
(Ccl(−Acl)−1Bcl) 

xc
 ⎪⎪⎪⎭ 
x 

y = Ccl xc 

• Note that this fixes the steady state tracking error problems, but in 
my experience can create strange transients (often NMP). 
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Example: Compensator Design


1 ẋ = Ax + Bu 
G(s) = 

s2 + s + 1 
⇒ 

y = Cx 

where � 
0 1 

� � 
0 
� � � 

A = B = C = 1 0 −1 −1 1 

•	 Regulator: Want regulator poles to have a time constant of τc = 
1/(ζωn) = 0.25 sec ⇒ λ(A − BKr) = −4 ± 4j which can be found 
using place or acker 

K_r=acker(a,b,[­4+4*j;­4­4*j]); 

to give Kr = [ 31 7 ] 

•	 Estimator: want the estimator poles to be faster, so use 
τe = 1/(ζωn) = 0.1 sec. Use real poles, ⇒ λ(A − LeC) = −10 

L_e=acker(a’,c’,[­10 ­10]’)’; 

19 
which gives Le = 

80 

•	 Form compensator Gc(s) 

ac=a­b*K_r­L_e*c;bc=L_e;cc=K_r;dc=0; 

Ac = 
−19 1	 19 � � 

Bc = Cc = 31 7 −112	 80−8 

(s + 2.5553) u 
Gc(s) = 1149	 = 

s2 + 27s + 264 e 

Low frequency zero, with higher frequency poles (like a lead) 
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Figure 4: The compensator does indeed look like a high frequency lead (amplification 
from 2–16 rad/sec). Plant pretty simple looking. 
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Figure 5: The loop transfer function L = GcG shows a slope change around ωc = 5 
rad/sec due to the effect of the compensator. Significant gain and phase margins. 
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Figure 6: Quite significant gain and phase margins.
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Figure 7: Freeze the compensator poles and zeros and draw a root locus versus an 
˜additional plant gain α, G(s) ⇒ G(s) = (s2+

α
s+1) . Note location of the closed­loop 

poles!! 
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Figure 8: Closed­loop transfer – system bandwidth has increased substantially.
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Estimator Design (est1.m)


1 clear all 
2 close all 
3 figure(1);clf 
4 set(gcf,’DefaultLineLineWidth’,2) 
5 set(gcf,’DefaultlineMarkerSize’,10) 
6 figure(2);clf 
7 set(gcf,’DefaultLineLineWidth’,2) 
8 set(gcf,’DefaultlineMarkerSize’,10) 
9 

10 load b747 % get A B Asp Bsp 
11 Csp=[0 1]; % sense q 
12 

13 Ke=place(Asp’,Csp’,[­3 ­4]);Le=Ke’; 
14 

15 xo=[­.5;­.05]; % start somewhere 
16 

17 t=[0:.01:10];N=floor(.15*length(t)); 
18 % hit on the system with an input 
19 %u=0;u=[ones(15,1);­ones(15,1);ones(15,1)/2;­ones(15,1)/2;zeros(41,1)]/5; 
20 u=0;u=[ones(N,1);­ones(N,1);ones(N,1)/2;­ones(N,1)/2]/20; 
21 u(length(t))=0; 
22 

23 [y,x]=lsim(Asp,Bsp,Csp,0,u,t,xo); 
24 plot(t,y) 
25 

26 % closed­loop estimator 
27 % hook both up so that we can simulate them at the same time 
28 % bigger state = state of the system then state of the estimator 
29 A_cl=[Asp zeros(size(Asp));Le*Csp Asp­Le*Csp]; 
30 B_cl=[Bsp;Bsp]; 
31 C_cl=[Csp zeros(size(Csp));zeros(size(Csp)) Csp]; 
32 D_cl=zeros(2,1); 
33 

34 % note that we start the estimators at zero, since that is 
35 % our current best guess of what is going on (i.e. we have no clue :­) ) 
36 % 
37 [y_cl,x_cl]=lsim(A_cl,B_cl,C_cl,D_cl,u,t,[xo;0;0]); 
38 figure(1) 
39 subplot(221) 
40 plot(t,x_cl(:,[1]),t,x_cl(:,[3]),’­­’) 
41 ylabel(’x1’);title(’Closed­loop estimator’);xlabel(’time’);grid 
42 subplot(222) 
43 plot(t,x_cl(:,[2]),t,x_cl(:,[4]),’­­’) 
44 ylabel(’x1’);xlabel(’time’);grid 
45 subplot(223) 
46 plot(t,x_cl(:,[1])­x_cl(:,[3])) 
47 ylabel(’x1 error’);xlabel(’time’);grid 
48 subplot(224) 
49 plot(t,x_cl(:,[2])­x_cl(:,[4])) 
50 ylabel(’x2 error’);xlabel(’time’);grid 
51 print ­depsc spest_cl.eps 
52 jpdf(’spest_cl’) 
53 

54 % open­loop estimator 
55 % hook both up so that we can simulate them at the same time 
56 % bigger state = state of the system then state of the estimator 
57 A_ol=[Asp zeros(size(Asp));zeros(size(Asp)) Asp]; 
58 B_ol=[Bsp;Bsp]; 
59 C_ol=[Csp zeros(size(Csp));zeros(size(Csp)) Csp]; 
60 D_ol=zeros(2,1); 
61 

62 [y_ol,x_ol]=lsim(A_ol,B_ol,C_ol,D_ol,u,t,[xo;0;0]); 
63 figure(2) 
64 subplot(221) 
65 plot(t,x_ol(:,[1]),t,x_ol(:,[3]),’­­’) 
66 ylabel(’x1’);title(’Open­loop estimator’);xlabel(’time’);grid 
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67 subplot(222) 
68 plot(t,x_ol(:,[2]),t,x_ol(:,[4]),’­­’) 
69 ylabel(’x1’);xlabel(’time’);grid 
70 subplot(223) 
71 plot(t,x_ol(:,[1])­x_ol(:,[3])) 
72 ylabel(’x1 error’);xlabel(’time’);grid 
73 subplot(224) 
74 plot(t,x_ol(:,[2])­x_ol(:,[4])) 
75 ylabel(’x2 error’);xlabel(’time’);grid 
76 print ­depsc spest_ol.eps 
77 jpdf(’spest_ol’) 
78 
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Regular/Estimator Design (reg est.m)


1 % Combined estimator/regulator design for a simple system 
2 % G= 1/(s^2+s+1) 
3 % 
4 % Jonathan How 
5 % Fall 2004 
6 % 
7 close all;clear all 
8 for ii=1:5 
9 figure(ii);clf;set(gcf,’DefaultLineLineWidth’,2);set(gcf,’DefaultlineMarkerSize’,10) 

10 end 
11 

12 a=[0 1;­1 ­1];b=[0 1]’;c=[1 0];d=0; 
13 k=acker(a,b,[­4+4*j;­4­4*j]); 
14 l=acker(a’,c’,[­10 ­10]’)’; 
15 % 
16 % For state space for G_c(s) 
17 % 
18 ac=a­b*k­l*c;bc=l;cc=k;dc=0; 
19 

20 G=ss(a,b,c,d); 
21 Gc=ss(ac,bc,cc,dc); 
22 

23 f=logspace(­1,2,400); 
24 g=freqresp(G,f*j);g=squeeze(g); 
25 gc=freqresp(Gc,f*j);gc=squeeze(gc); 
26 

27 figure(1);clf 
28 subplot(211) 
29 loglog(f,abs(g),f,abs(gc),’­­’);axis([.1 1e2 .2 1e2]) 
30 xlabel(’Freq (rad/sec)’);ylabel(’Mag’) 
31 legend(’Plant G’,’Compensator Gc’);grid 
32 subplot(212) 
33 semilogx(f,180/pi*angle(g),f,180/pi*angle(gc),’­­’); 
34 axis([.1 1e2 ­200 50]) 
35 xlabel(’Freq (rad/sec)’);ylabel(’Phase (deg)’);grid 
36 legend(’Plant G’,’Compensator Gc’) 
37 

38 L=g.*gc; 
39 

40 figure(2);clf 
41 subplot(211) 
42 loglog(f,abs(L),[.1 1e2],[1 1]);axis([.1 1e2 .2 1e2]) 
43 xlabel(’Freq (rad/sec)’);ylabel(’Mag’) 
44 legend(’Loop L’); 
45 grid 
46 subplot(212) 
47 semilogx(f,180/pi*phase(L.’),[.1 1e2],­180*[1 1]); 
48 axis([.1 1e2 ­290 0]) 
49 xlabel(’Freq (rad/sec)’);ylabel(’Phase (deg)’);grid 
50 % 
51 % loop dynamics L = G Gc 
52 % 
53 al=[a b*cc;zeros(2) ac]; 
54 bl=[zeros(2,1);bc]; 
55 cl=[c zeros(1,2)]; 
56 dl=0; 
57 figure(3) 
58 rlocus(al,bl,cl,dl) 
59 % 
60 % closed­loop dynamics 
61 % unity gain wrapped around loop L 
62 % 
63 acl=al­bl*cl;bcl=bl;ccl=cl;dcl=d; 
64 

65 N=inv(ccl*inv(­acl)*bcl) 
66 



Fall 2004 16.333 9–40


67 hold on;plot(eig(acl),’d’);hold off 
68 grid 
69 % 
70 % closed­loop freq response 
71 % 
72 Gcl=ss(acl,bcl*N,ccl,dcl); 
73 gcl=freqresp(Gcl,f*j);gcl=squeeze(gcl); 
74 

75 figure(4);clf 
76 loglog(f,abs(g),f,abs(gcl),’­­’); 
77 axis([.1 1e2 .01 1e2]) 
78 xlabel(’Freq (rad/sec)’);ylabel(’Mag’) 
79 legend(’Plant G’,’closed­loop G_{cl}’);grid 
80 title([’Factor of N=’,num2str(N),’ applied to Closed loop’]) 
81 

82 figure(5);clf 
83 margin(al,bl,cl,dl) 
84 

85 figure(1);orient tall;print ­depsc reg_est1.eps 
86 jpdf(’reg_est1’) 
87 figure(2);orient tall;print ­depsc reg_est2.eps 
88 jpdf(’reg_est2’) 
89 figure(3);print ­depsc reg_est3.eps 
90 jpdf(’reg_est3’) 
91 figure(4);print ­depsc reg_est4.eps 
92 jpdf(’reg_est4’) 
93 figure(5);print ­depsc reg_est5.eps 
94 jpdf(’reg_est5’) 
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