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16.323 Lecture 9


Constrained Optimal Control


Bryson and Ho – Section 3.x and Kirk – Section 5.3
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Spr 2008	 16.323 9–1 
Constrained Optimal Control


•	 First consider cases with constrained control inputs so that u(t) ∈ U 
where U is some bounded set. 
– Example: inequality constraints of the form C(x, u, t) ≤ 0 

– Much of what we had on 6–3 remains the same, but algebraic con­

dition that Hu = 0 must be replaced 

– Note that C(x, t) ≤ 0 is a much harder case 

•	 Augment constraint to cost (along with differential equation con­

straints) � tf � � 
Ja = h(x(tf ), tf ) + H − p T ẋ + νT C dt 

t0 

•	 Find the variation (assume t0 and x(t0) fixed): 
tf � 

δJa = hxδxf + htf δtf + Hxδx + Huδu + (Hp − ẋT )δp(t) 
t0 

−p T (t)δẋ + CTδν + νT {Cxδx + Cuδu} dt 

+	 H − p T ẋ + νT C (tf )δtf 

Now IBP 
tf tf 

− 
t0 

p T (t)δẋdt = −p T (tf ) (δxf − ẋ(tf )δtf ) + 
t0 

ṗT (t)δxdt 

then combine and drop terminal conditions for simplicity: 
tf �� � � � 

δJa = Hx + ṗT + νT Cx δx + Hu + νT Cu δu 
t0 

+(Hp − ẋT )δp(t) + CTδν dt 
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Clean up by defining augmented Hamiltonian • 

Ha(x, u, p, t) = g + p T (t)a + νT (t)C 

where (see 2–12) � 

νi(t) 
≥ 0 if Ci = 0 active 
= 0 if Ci < 0 inactive 

– So that νiCi = 0 ∀ i. 

• So necessary conditions for δJa = 0 are that for t ∈ [t0, tf ] 

ẋ = a(x, u, t) 

ṗ = −(Ha)
T 
x 

(Ha)u = 0 

– With appropriate boundary conditions and νiCi(x, u, t) = 0 

Complexity here is that typically will have sub-arcs to the solution • 
where the inequality constraints are active (so Ci(x, u, t) = 0) and 
then not (so νi = 0). 
– Transitions between the sub-arcs must be treated as corners that 

are at unspecified times - need to impose the equivalent of the 
Erdmann-Weirstrass corner conditions for the control problem, as 
in Lecture 8. 
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•	 Design the control inputs that minimize the cost functional �	 4 

min J = −x(4) + u 2(t)dt 
u 0 

with ẋ = x + u, x(0) = 0, and u(t) ≤ 5. 

•	 Form augmented Hamiltonian: 

H = u 2 + p(x + u) + ν(u − 5) 

•	 Note that, independent of whether the constraint is active or not, we 
have that 

ṗ = −Hx = −p � p(t) = ce−t 

and from transversality BC, know that p(4) = ∂h/∂x = −1, so have 
that c = −e4 and thus p(t) = −e4−t 

•	 Now let us assume that the control constraint is initially active for 
some period of time, then ν ≥ 0, u = 5, and 

Hu = 2u + p + ν = 0 

so we have that 
ν = −10 − p = −10 + e 4−t 

– Question: for what values of t will ν ≥ 0? 

ν = −10 + e 4−t ≥ 0 

→ e 4−t ≥ 10 

→ 4 − t ≥ ln(10) 

→ 4 − ln(10) ≥ t 

– So provided t ≤ tc = 4 − ln(10) then ν ≥ 0 and the assumptions 
are consistent.


Now consider the inactive constraint case:
• 
1 

Hu = 2u + p = 0 � u(t) = − p(t)
2
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•	 The control inputs then are 

5 t ≤ tc
u(t) =
 1 
2e


4−t
 t ≥ tc


which is continuous at tc. 

•	 To finish the solution, find the state in the two arcs x(t) and enforce 
continuity at tc, which gives that: 

5et − 5 t ≤ tc 
4−t + (5 − 25e−4)e

x(t) =
 −
1 
4

t)
e
 t ≥ tc


•	 Note that since the corner condition was not specified by a state con­

straint, continuity of λ and H at the corner is required – but we did 
not need to use that in this solution, it will occur naturally. 
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Pontryagin’s Minimum Principle 
•	 For an alternate perspective, consider general control problem state­

ment on 6–1 (free end time and state). Then on 6–2, 

δJa = hx − p T (tf ) δxf + htf + H (tf )δtf (9.13) 
tf �� �	 � 

+ Hx + ṗT δx + Huδu + (Hp − ẋT )δp(t) dt 
t0 

now assume we have a trajectory that satisfies all other differential 
equation and terminal constraints, then all remains is 

tf 

⇒	δJa = 
t0 

[Hu(t)δu(t)] dt (9.14) 

•	 For the control to be minimizing, need δJa ≥ 0 for all admissible 
variations in u (i.e., δu for which Cuδu ≤ 0) 
– Equivalently, need δH = Hu(t)δu(t) ≥ 0 for all time and for all 

admissible δu 

– Gives condition that Hu = 0 if control constraints not active 

– However, at the constraint boundary, could have Hu = 0 and 
whether we need Hu > 0 or Hu < 0 depends on the direction 
(sign) of the admissible δu. 

Figure 9.1: Examples of options for δH = Hu(t)δu(t). Left: unconstrained min, 
so need Hu = 0. Middle: constraint on left, so at min value, must have δu ≥ 0 
⇒ need Hu ≥ 0 so that δH ≥ 0. Right: constraint on right, so at min value, must 
have δu ≤ 0 need Hu ≤ 0 so that δH ≥ 0.⇒ 
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•	 The requirement that δH ≥ 0 says that δH must be non-improving 
to the cost (recall trying to minimize the cost) over the set of possible 
δu. 
– Can actually state a stronger condition: H must be minimized over 

the set of all possible u 

•	 Thus for control constrained problems, third necessary condition 

Hu = 0 

must be replaced with a more general necessary condition 

u �(t) = arg min H(x, u, p, t) 
u(t)∈U 

– So must look at H and explicitly find the minimizing control inputs 
given the constraints - not as simple as just solving Hu = 0 

– Known as Pontryagin’s Minimum Principle 

– Handles “edges” as well, where the admissible values of δu are 
“inwards” 

•	 PMP is very general and applies to all constrained control problems – 
will now apply it to a special case in which the performance and the 
constraints are linear in the control variables. 
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PMP Example: Control Constraints 
• Consider simple system y = G(s)u, G(s) = 1/s2 with |u(t)| ≤ um 

– Motion of a rigid body with limited control inputs – can be used to 
model many different things 

• Want to solve the minimum time-fuel problem 
tf 

min J = (1 + b|u(t)|)dt 
0 

– The goal is to drive the state to the origin with minimum cost. 

– Typical of many spacecraft problems – |u(t)|dt sums up the fuel 
used, as opposed to u2(t)dt that sums up the power used. 

• Define x1 = y, x2 = ẏ ⇒ dynamics are ẋ1 = x2, ẋ2 = u 

• First consider the response if we apply ±1 as the input. Note: 
– If u = 1, x2(t) = t + c1 and 

x1(t) = 0.5t2 + c1t + c2 = 0.5(t + c1)
2 + c3 = 0.5x2(t)

2 + c3 

– If u = −1, x2(t) = −t + c4 and 

x1(t) = −0.5t2 + c4t + c5 = −0.5(t + c4)
2 + c6 = −0.5x2(t)

2 + c6 
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Figure 9.2: Possible response curves – what is the direction of motion? 
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• Hamiltonian for the system is: �� � � � � � � � � 0 1 x1 0 
H = 1 + b u + p1 p2 + u| | 

0 0 x2 1 

= 1 + b|u| + p1x2 + p2u 

• First find the equations for the co-state: 

ṗ1 = −Hx1 = 0 p1 = c1 
xṗ = −HT ⇒ 

ṗ2 = −Hx2 = −p1 

→ 
p2 = −c1t + c2→ 

– So p2 is linear in time 

• To find optimal control, look at the parts of H that depend on u: 

H̃ = b|u| + p2u 

– Recall PMP: given constraints, goal is to find u that minimizes 
H (or H̃) 

– Sum of two functions |u| and u - sign of which depends on sign and 
relative size of p2 compared to b > 0 
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• Three cases to consider (plots use um = 1.5): 

1. p2 > b > 0 → choose u�(t) = −um 

Figure 9.3: b = 1, p2 = 2, so p2 > b > 0 
fopt1 

2. p2 < −b → choose u�(t) = um 

Figure 9.4: b = 1, p2 = −2, so p2 < −b 

3. −b < p2 < b → choose u�(t) = 0 

Figure 9.5: b = 1, p2 = 1, so −b < p2 < b 
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•	 The resulting control law is: ⎧ ⎨ −um b < p2(t) 
u(t) = ⎩ 

0 −b < p2(t) < b 
um p2(t) < −b 

•	 So the control depends on p2(t) - but since it is a linear function of 
time, it is only possible to get at most 2 switches 
– Also, since ẋ2(t) = u, and since we must stop at tf , then must 

have that u = ±um at tf 

•	 To complete the solution, impose the boundary conditions (transver­

sality condition), with x2(tf ) = 0 

H(tf ) + ht(tf ) = 0 → 1 + b|u(tf )| + p2(tf )u(tf ) = 0 

– If u = um, then 1 + bum + p2(tf )um = 0 implies that 

1 
p2(tf ) = −(b + ) < −b 

um 

which is consistent with the selection rules. 

– And if u = −um, then 1 + bum − p2(tf )um = 0 implies that 

1 
p2(tf ) = (b + ) > b 

um 

which is also consistent. 

– So the terminal condition does not help us determine if u = ±um, 
since it could be either 
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So first look at the case where u(tf ) = um. Know that • 

p2(t) = c2 − c1t


and p2(tf ) = −(b + 1 ) < −b.
um 

– Assume that c1 > 0 so that we get some switching. 

Figure 9.6: Possible switching case, but both tf and c1 are unknown at this point. 

– Then set p2(t1) = −b to get that t1 = tf − 1/(umc1) 

– And p2(t2) = b gives t2 = tf − (2b + 1/um)/c1


Now look at the state response:
• 

– Starting at the end: ÿ = um, gives y(t) = um/2t2 + c3t + c4, where 
ẏ = y = 0 at tf gives us that c3 = −umtf and c4 = um/2tf 

2 , so 

y(t) = 
um
t2 um

t2 = 
um 

(t − tf )
2− umtft + f2 2 2 

– But since ẏ(t) = umt + c3 = um(t − tf ), then
 y(t) = 
ẏ(t)2 

2um 

– State response associated with u = um is in lower right quadrant 
of the y/ẏ phase plot 
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•	 Between times t2 –t1, control input is zero ⇒ coasting phase. 

– Terminal condition for coast same as the start of the next one: 

y(t1) = 
u

2 
m 

(t1 − tf )
2 =

2u

1 

mc1 
2 

and ẏ(t1) = −1/c1 

– On a coasting arc, ẏ is a constant (so ẏ(t2) = −1/c1), and thus 

y(t2) − 
(t1 

c

− 

1 

t2)

2u

1 

mc
= 2 

1 

which gives that 

1 1 1	 2b 1 
y(t2) = 2 + tf − − (tf − ( + ))

2umc1 c1 umc1 c1 umc1 

1 1 1 
= (2b + ) = (2b + )ẏ(t2)

2 

2um c1
2 2um 

• So the first transition occurs along the curve
 y(t) = (2b + 
1 

2um 
) ̇y(t)2 

•	 For the first arc, things get a bit more complicated. 
Clearly u(t) = −um, with IC y0, ẏ0 so 

ẏ(t) = −umt + c5 = −umt + ẏ0 

y(t) = − 
u

2 
m
t2 + c5t + c6 = − 

u

2 
m
t2 + ẏ0t + y0 

– Now project forward to t2 

1 2(b + 1/um) 
ẏ(t2) = −umt2 + ẏ0 = ẏ(t1) = −

c1 
→ c1 = 

tf − ẏ0/um 
um 2 y(t2) = t2 + ẏ0t2 + y0−	
2 

and use these expressions in the quadratic for the switching curve 
to solve for c1, t1, t2 
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•	 The solutions have a very distinctive Bang–Off–Bang pattern 
– Two parabolic curves define switching from +um to 0 to −um 

Figure 9.7: y0 = 2 ẏ0 = 3 b = 0.75 um = 1.5 

•	 Switching control was derived using a detailed evaluation of the state 
and costate 
– But final result is a switching law that can be written wholly in 

terms of the system states. 

June 18, 2008 
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Figure 9.8: y0 = 2 ẏ0 = 3 b = 2 um = 1.5 

Figure 9.9: y0 = 2 ẏ0 = 3 b = 0.1 um = 1.5 

June 18, 2008 
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• Clearly get a special result as b → 0, which is the solution to the 
minimum time problem 
– Control inputs are now just Bang–Bang 

– One parabolic curve defines switching from +um to −um 

Figure 9.10: Min time: y0 = 2 ẏ0 = 3 b = 0 um = 1.5 

• Can show that the switching and final times are given by 

t1 = ẏ(0) + y(0) + 0.5ẏ2(0) tf = ẏ(0) + 2 y(0) + 0.5ẏ2(0) 
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• Trade-off: coasting is fuel efficient, but it takes a long time. 
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Figure 9.11: Summary of switching times for various fuel weights
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Min time fuel

% Min time fuel for double integrator

% 16.323 Spring 2008

% Jonathan How

figure(1);clf;%

if jcase==1;y0=2;yd0=3; b=.75;u_m=1.5;% baseline

elseif jcase==2;y0=2;yd0=3; b=2;u_m=1.5;% fuel exp

elseif jcase==3;y0=2;yd0=3; b=.1;u_m=1.5;% fuel cheap

elseif jcase==4;y0=2;yd0=3; b=0;u_m=1.5;% min time

elseif jcase==5;y0=-4;yd0=4; b=1;u_m=1.5;% min time

end


% Tf is unknown - put together the equations to solve for it

alp=(1/2/u_m+2*b) % switching line

% middle of 8--6: t_2 as a ftn of t_f

T2=[1/u_m (2*b+1/u_m)*yd0/u_m]/(2*b+2/u_m);%

% bottom of 8--7: quadratic for y(t_2) in terms of t_2

% converted into quad in t_f

T_f=roots(-u_m/2*conv(T2,T2)+yd0*[0 T2]+[0 0 y0] - ...

alp*conv(-u_m*T2+[0 yd0],-u_m*T2+[0 yd0]));%

t_f=max(T_f);t=[0:.01:t_f]’; %


c_1=(2*b+2/u_m)/(t_f-yd0/u_m);% key parameters for p(t)

c_2=c_1*t_f-(b+1/u_m);% key parameters for p(t)

t_1=t_f-1/(u_m*c_1); t_2=t_f-(2*b+1/u_m)/c_1;%switching times


G=ss([0 1;0 0],[0 1]’,eye(2),zeros(2,1));

arc1=[0:.001:t_2]’; arc2=[t_2:.001:t_1]’;arc3=[t_1:.001:t_f]’; %

if jcase==4;arc2=[t_2 t_2+1e-6]’;end

[Y1,T1,X1]=lsim(G,-u_m*ones(length(arc1),1),arc1,[y0 yd0]’); %

[Y2,T2,X2]=lsim(G,0*ones(length(arc2),1),arc2,Y1(end,:)’); %

[Y3,T3,X3]=lsim(G,u_m*ones(length(arc3),1),arc3,Y2(end,:)’); %

plot(Y1(:,1),Y1(:,2),’Linewidth’,2); hold on%

plot(Y2(:,1),Y2(:,2),’Linewidth’,2); plot(Y3(:,1),Y3(:,2),’Linewidth’,2);%

ylabel(’dy/dt’,’Fontsize’,18); xlabel(’y(t)’,’Fontsize’,12);%

text(-4,3,’y=-1/(2u_m)(dy/dt)^2’,’Fontsize’,12)%

if jcase ~= 4; text(-5,0,’y=-(1/(2u_m)+2b)(dy/dt)^2’,’Fontsize’,12);end

text(4,4,’-’,’Fontsize’,18);text(-4,-4,’+’,’Fontsize’,18);grid;hold off

title([’t_f = ’,mat2str(t_f)],’Fontsize’,12)%


hold on;% plot the switching curves

if jcase ~= 4;kk=[0:.1:5]’; plot(-alp*kk.^2,kk,’k--’,’Linewidth’,2);plot(alp*kk.^2,-kk,’k--’,’Linewidth’,2);end

kk=[0:.1:5]’;plot(-(1/(2*u_m))*kk.^2,kk,’k--’,’Linewidth’,2);plot((1/(2*u_m))*kk.^2,-kk,’k--’,’Linewidth’,2);%

hold off;axis([-4 4 -4 4]/4*6);


figure(2);p2=c_2-c_1*t;%

plot(t,p2,’Linewidth’,4);%

hold on; plot([0 max(t)],[b b],’k--’,’Linewidth’,2);hold off; %

hold on; plot([0 max(t)],-[b b],’k--’,’Linewidth’,2);hold off; %

hold on; plot([t_1 t_1],[-2 2],’k:’,’Linewidth’,3);hold off; %

text(t_1+.1,1.5,’t_1’,’Fontsize’,12)%

hold on; plot([t_2 t_2],[-2 2],’k:’,’Linewidth’,3);hold off; %

text(t_2+.1,-1.5,’t_2’,’Fontsize’,12)%

title([’b = ’,mat2str(b),’ u_m = ’,mat2str(u_m)],’Fontsize’,12);%

ylabel(’p_2(t)’,’Fontsize’,12); xlabel(’t’,’Fontsize’,12);%

text(1,b+.1,’b’,’Fontsize’,12);text(1,-b+.1,’-b’,’Fontsize’,12)%

axis([0 t_f -3 3]);grid on; %

%

if jcase==1

print -f1 -dpng -r300 fopt5a.png;;print -f2 -dpng -r300 fopt5b.png;

elseif jcase==2

print -f1 -dpng -r300 fopt6a.png;print -f2 -dpng -r300 fopt6b.png;

elseif jcase==3

print -f1 -dpng -r300 fopt7a.png;print -f2 -dpng -r300 fopt7b.png;

elseif jcase==4

print -f1 -dpng -r300 fopt8a.png;print -f2 -dpng -r300 fopt8b.png;

end
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•	 Can repeat this analysis for minimum time and energy problems using 

the PMP 
– Issue is that the process of a developing a solution by analytic con­

struction is laborious and very hard to extend to anything nonlinear 
and/or linear with more than 2 states 

•	 Need to revisit the problem statement and develop a new approach. 
•	 Goal: develop the control input sequence 

Mi
− ≤ ui(t) ≤ Mi 

+ 

that drives the system (nonlinear, but linear control inputs) 

ẋ = A(x, t) + B(x, t)u 

from an arbitrary state x0 to the origin to minimize maneuver time 
tf 

min J = dt 
t0 

Solution: form the Hamiltonian • 

H	 = 1 + p T (t){A(x, t) + B(x, t)u} 

=	 1 + p T (t){A(x, t) + b1(x, t) b2(x, t) · · · bm(x, t) u}
m

= 1 + p T (t)A(x, t) + p T (t)bi(x, t)ui(t)

i=1


Now use the PMP: select ui(t) to minimize H, which gives •	 ⎧ ⎨ Mi 
+ if pT (t)bi(x, t) < 0 

ui(t) = ⎩ Mi
− if pT (t)bi(x, t) > 0 

which gives us the expected Bang-Bang control

Then solve for the costate
•	 � �T

∂A ∂B 
ṗ = −Hx 

T = − + u p
∂x ∂x 

– Could be very complicated for a nonlinear system. 
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Note: shown how to pick u(t) given that pT (t)bi(x, t) = 0 

– Not obvious what to do if pT (t)bi(x, t) = 0 for some finite time 
interval. 

– In this case the coefficient of ui(t) is zero, and PMP provides no 
information on how to pick the control inputs. 

– Will analyze this singular condition in more detail later. 

• To develop further insights, restrict the system model further to LTI, 
so that 

A(x, t) Ax B(x, t) B→	 → 

– Assume that [A,B] controllable 

– Set Mi 
+ = −Mi

− = umi 

•	 Just showed that if a solution exists, it is Bang-Bang 

– Existence: if R(λi(A)) ≤ 0, then an optimal control exists that 
transfers any initial state x0 to the origin. 

� Must eliminate unstable plants from this statement because the 
control is bounded. 

– Uniqueness: If an extremal control exists (i.e. solves the necessary 
condition and satisfies the boundary conditions), then it is unique. 

� Satisfaction of the PMP is both necessary and sufficient for time-

optimal control of a LTI system. 

•	 If the eigenvalues of A are all real, and a unique optimal control exists, 
then each control input can switch at most n − 1 times. 
– Still need to find the costates to determine the switching times – 

but much easier in the linear case. 
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• Goal: develop the control input sequence 

Mi
− ≤ ui(t) ≤ Mi 

+ 

that drives the system 

ẋ = A(x, t) + B(x, t)u 

from an arbitrary state x0 to the origin in a fixed time tf and optimizes 
the cost � m
tf �


min J = ci|ui(t)|dt

t0 i=1


Solution: form the Hamiltonian • 
m

H = ci|ui(t)| + p T (t){A(x, t) + B(x, t)u}
i=1 �m m

= ci|ui(t)| + p T (t)A(x, t) + p T (t)bi(x, t)ui(t) 
i=1 i=1 
m

= ci|ui(t)| + p T (t)bi(x, t)ui(t) + p T (t)A(x, t) 
i=1 

• Use the PMP, which requires that we select ui(t) to ensure that for 
all admissible ui(t)

m m
�� � �� � 

ci|ui�(t)| + p T (t)bi(x, t)ui
�(t) ≤ ci|ui(t)| + p T (t)bi(x, t)ui(t) 

i=1 i=1 

• If the components of u are independent, then can just look at 

ci|u�i (t)| + p T (t)bi(x, t)u
�
i (t) ≤ ci|ui(t)| + p T (t)bi(x, t)ui(t) 

– As before, this boils down to a comparison of ci and pT (t)bi 

– Resulting control law is: ⎧ ⎨ Mi
− if ci < pT (t)bi 

u�i (t) = ⎩ 
0 if −ci < pT (t)bi < ci 
Mi 

+ if pT (t)bi < −ci 
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0 1 0 
Consider G(s) = 1/s2 A = B = •	 ⇒ 

0 0 1 

tf 

min J = |u(t)|dt 
t0 

– Drive state to the origin with tf fixed. 

•	 Gives H = |u| + p1x2 + p2u 
– Final control u(tf ) = um p2(tf ) < −1 p2(t) = c2 − c1t⇒ 

•	 As before, integrate EOM forward from 0 to t2 using −um, then from 
t2 to t1 using u = 0, and from t1 to tf using um 

– Apply terminal conditions and solve for c1 and c2 

Figure 9.12: Min Fuel for varying final 
times 

Figure 9.13: Min fuel for fixed final 
time, varying IC’s 

•	 First switch depends on IC and tf ⇒ no clean closed-form solution for 
switching curve 
– Larger tf leads to longer coast. 

– For given tf , there is a limit to the IC from which we can reach the 
origin. 
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•	 If specified completion time tf > Tmin = ẏ(0) + 2 y(0) + 0.5ẏ2(0), 
then 

t2 = 0.5 (ẏ(0) + tf ) − (ẏ(0) − tf )2 − (4y(0) + 2 ̇y2(0)) 

t1 = 0.5 (ẏ(0) + tf ) + (ẏ(0) − tf )2 − (4y(0) + 2 ̇y2(0)) 

June 18, 2008 
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Goal: for a fixed final time and terminal constraints • 

1 tf 

min J = u TRu dt R > 0 
2 0 

• Again use special dynamics: 

ẋ = A(x, t) + B(x, t)u 

H =
1 
u TRu + p T { A(x, t) + B(x, t)u}

2 
• Obviously with no constraints on u, solve Hu = 0, to get 

u = −R−1BT p(t) 

But with bounded controls, must solve: 

1 
u �(t) = arg min u TRu + p TB(x, t)u 

u(t)∈U 2 

which is a constrained quadratic program in general 
– However, for diagonal R, the effects of the controls are independent 

m

u �(t) = arg min 
� 1 

Riiu 2 
i + p T biui 

u(t)∈U 
i=1 

2 

– In the unconstrained case, each ui(t) can easily be determined by 
minimizing 

1 2 

2 
Riiui + p T biui → ũi = −Rii

−1 p T bi 

• The resulting controller inputs are ui(t) = sat(ũi(t)) ⎧ ⎨ Mi
− if ũi < Mi

− 

ui(t) = ũi if Mi
− < ũi < Mi 

+ ⎩ 
Mi 

+ if Mi 
+ < ũi 
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Min Fuel

% Min fuel for double integrator

% 16.323 Spring 2008

% Jonathan How

%

c=1;

t=[0:.01:t_f];

alp=(1/2/u_m) % switching line

T_2=roots([-u_m/2 yd0 y0] + conv([-u_m yd0],[-2 t_f+yd0/u_m])-alp*conv([-u_m yd0],[-u_m yd0]));%

t_2=min(T_2);

yd2=-u_m*t_2+yd0;yd1=yd2;

t_1=t_f+yd1/u_m;

c_1=2/(t_1-t_2);c_2=c_1*t_1-1;


G=ss([0 1;0 0],[0 1]’,eye(2),zeros(2,1));

arc1=[0:.001:t_2]’; arc2=[t_2:.001:t_1]’;arc3=[t_1:.001:t_f]’; %

[Y1,T1,X1]=lsim(G,-u_m*ones(length(arc1),1),arc1,[y0 yd0]’); %

[Y2,T2,X2]=lsim(G,0*ones(length(arc2),1),arc2,Y1(end,:)’); %

[Y3,T3,X3]=lsim(G,u_m*ones(length(arc3),1),arc3,Y2(end,:)’); %

plot(Y1(:,1),Y1(:,2),zzz,’Linewidth’,2); hold on%

plot(Y2(:,1),Y2(:,2),zzz,’Linewidth’,2); plot(Y3(:,1),Y3(:,2),zzz,’Linewidth’,2);%

ylabel(’dy/dt’,’Fontsize’,18); xlabel(’y(t)’,’Fontsize’,12);%

text(-4,3,’y=-1/(2u_m)(dy/dt)^2’,’Fontsize’,12)%

text(4,4,’-’,’Fontsize’,18);text(-4,-4,’+’,’Fontsize’,18);grid on;hold off

title([’t_f = ’,mat2str(t_f)],’Fontsize’,12)%


hold on;% plot the switching curves

kk=[0:.1:8]’; plot(-alp*kk.^2,kk,’k--’);plot(alp*kk.^2,-kk,’k--’);

hold off;axis([-4 4 -4 4]/4*6);


figure(2);%

p2=c_2-c_1*t;%

plot(t,p2,’Linewidth’,4);%

hold on; plot([0 t_f],[c c],’k--’,’Linewidth’,2);hold off; %

hold on; plot([0 t_f],-[c c],’k--’,’Linewidth’,2);hold off; %

hold on; plot([t_1 t_1],[-2 2],’k:’,’Linewidth’,3);hold off; %

text(t_1+.1,1.5,’t_1’,’Fontsize’,12)%

hold on; plot([t_2 t_2],[-2 2],’k:’,’Linewidth’,3);hold off; %

text(t_2+.1,-1.5,’t_2’,’Fontsize’,12)%

title([’c = ’,mat2str(c),’ u_m = ’,mat2str(u_m)],’Fontsize’,12);%

ylabel(’p_2(t)’,’Fontsize’,12); xlabel(’t’,’Fontsize’,12);%

text(1,c+.1,’c’,’Fontsize’,12);text(1,-c+.1,’-c’,’Fontsize’,12)%

axis([0 t_f -3 3]);grid on; %


return


figure(1);clf

y0=2;yd0=3;t_f=5.8;u_m=1.5;zzz=’-’;minu;

figure(1);hold on

y0=2;yd0=3;t_f=16;u_m=1.5;zzz=’k--’;minu;

figure(1);hold on

y0=2;yd0=3;t_f=32;u_m=1.5;zzz=’r:’;minu;

figure(1);

axis([-6 6 -6 6])

legend(’5.8’,’16’,’32’)

print -f1 -dpng -r300 uopt1.png;


figure(1);clf

y0=2;yd0=2;t_f=8;u_m=1.5;zzz=’-’;minu

figure(1);hold on

y0=6;yd0=2;t_f=8;u_m=1.5;zzz=’k--’;minu

figure(1);hold on

y0=15.3;yd0=2;t_f=8;u_m=1.5;zzz=’r:’;minu

figure(1);axis([-2 25 -6 6])

print -f1 -dpng -r300 uopt2.png;
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