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16.323 Lecture 9

Constrained Optimal Control

Bryson and Ho — Section 3.x and Kirk — Section 5.3
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Constrained Optimal Control

e First consider cases with constrained control inputs so that u(t) € U
where U is some bounded set.

— Example: inequality constraints of the form C(x,u,t) <0

— Much of what we had on 6—3 remains the same, but algebraic con-
dition that H,, = 0 must be replaced

— Note that C(x,t) < 0 is a much harder case

e Augment constraint to cost (along with differential equation con-
straints)

Ly
Jo=h(x(ty), ty) + / [H — pTX + I/TC} dt

to

e Find the variation (assume ty and x(t) fixed):

ty
0Jy = hx0Xxp+ hy oty + / [Hy0x + Hydu + (H, — x")0p(t)
to

—p(t)0%x + Clév + v’ {Cyox + Cuou}] dt
+ [H — pTX + I/TC} (tf)5tf

e Now IBP
ty ty
~ [ BTkt = ~pty) (s — x(t)ots) + [ b (e)5d
to to

then combine and drop terminal conditions for simplicity:
t

57, = [ {[Hy+ p" +07C 6x + [Ha + 7Cy] 6u
to

+(Hp, —x")dp(t) + Cov} dt
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e Clean up by defining augmented Hamiltonian
H,(x,u,p,t) = g +p' (t)a+v"(1)C
where (see 2-12)

ui(t) >0 if C;=0 active
' =0 if C; <0 inactive

— So that v;C; = 0 V 1.

e So necessary conditions for §.J, = 0 are that for ¢ € [ty, t/]

x = a(x,u,t)
P = _(Ha>£
(Hy)u = 0

— With appropriate boundary conditions and v;,C;(x,u,t) = 0

e Complexity here is that typically will have sub-arcs to the solution
where the inequality constraints are active (so Cj(x,u,t) = 0) and
then not (so v; = 0).

— Transitions between the sub-arcs must be treated as corners that
are at unspecified times - need to impose the equivalent of the
Erdmann-Weirstrass corner conditions for the control problem, as
in Lecture 8.
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Constrained Example

e Design the control inputs that minimize the cost functional

4
min J = —x(4) —|—/ u?(t)dt
Y 0
with & = x + u, x(0) = 0, and u(t) < 5.

e Form augmented Hamiltonian:
H =vu*+p(x +u) +v(u—>5)

e Note that, independent of whether the constraint is active or not, we
have that

p=—-H,=-p = pt)=ce”
and from transversality BC, know that p(4) = 0h/0x = —1, so have
that ¢ = —e and thus p(t) = —el™!

e Now let us assume that the control constraint is initially active for
some period of time, then v > 0, u = 5, and

H,=2u+p+v=0

so we have that

v=—10—p=—10+¢e*"!

— Question: for what values of ¢ will v > 07
v =—10+¢e"">0
— e >10
— 4 —t> ln(l())
— 4 —1n(10) > ¢
— So provided t < t. = 4 — In(10) then v > 0 and the assumptions

are consistent.

e Now consider the inactive constraint case:

1
H,=2u+p=0=u(t) = —ép(t)

June 18, 2008
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e The control inputs then are

which is continuous at t..

e To finish the solution, find the state in the two arcs x(t) and enforce
continuity at ., which gives that:

{56t—5 t <t,

x(t) = _111644 + (5 —25e Yel) t >t

e Note that since the corner condition was not specified by a state con-
straint, continuity of A and H at the corner is required — but we did
not need to use that in this solution, it will occur naturally.

June 18, 2008
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Pontryagin’s Minimum Principle

For an alternate perspective, consider general control problem state-
ment on 6-1 (free end time and state). Then on 6-2,

5Lf:(mf-pww»5xf+[mf+f4(@yﬁf (9.13)

+ / ! [(Hx +p") 6x + Hydu + (Hy, — x")op(t)] dt

0

now assume we have a trajectory that satisfies all other differential
equation and terminal constraints, then all remains is

:&@:/ﬂmﬁmmmﬁ (9.14)

0

For the control to be minimizing, need dJ, > 0 for all admissible
variations in u (i.e., du for which C\you < 0)

— Equivalently, need 0 H = Hy(t)ou(t) > 0 for all time and for all
admissible du

— Gives condition that H,, = 0 if control constraints not active

— However, at the constraint boundary, could have H, # 0 and
whether we need H, > 0 or H, < 0 depends on the direction
(sign) of the admissible Ju.

3.5 3.5
3 3
25 25
2 2
T T
1.5 1.5
uort 1 1

0.5 0.5
oo

-0.5 0 0.5 1 0 -0.5 0 0.5 1 0 -0.5 0 0.5 1

ure 9.1: Examples of options for §H = Hy(t)du(t). Left: unconstrained min,
need H, = 0. Middle: constraint on left, so at min value, must have du > 0
need H, > 0 so that 0 H > 0. Right: constraint on right, so at min value, must

have du < 0 = need H, < 0 so that 0H > 0.
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e The requirement that 0 H > 0 says that 0 H must be non-improving
to the cost (recall trying to minimize the cost) over the set of possible

ou.

— Can actually state a stronger condition: H must be minimized over
the set of all possible u

e Thus for control constrained problems, third necessary condition
H,=0

must be replaced with a more general necessary condition
u*(t) = arg< min H(x,u,p,?)
u(t)eld
— So must look at H and explicitly find the minimizing control inputs
given the constraints - not as simple as just solving H,, =0
— Known as Pontryagin’s Minimum Principle

— Handles “edges” as well, where the admissible values of du are
“inwards”

e PMP is very general and applies to all constrained control problems —
will now apply it to a special case in which the performance and the
constraints are linear in the control variables.

June 18, 2008
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PMP Example: Control Constraints

e Consider simple system y = G(s)u, G(s) = 1/s* with |u(t)] < uy,
— Motion of a rigid body with limited control inputs — can be used to
model many different things

e Want to solve the minimum time-fuel problem

minJ — /tf(1 - blu(t)))dt

— The goal is to drive the state to the origin with minimum cost.

— Typical of many spacecraft problems — [ |u(t)|dt sums up the fuel
used, as opposed to [ u?(¢)dt that sums up the power used.

o Define x1 =y, 9 = y = dynamics are 1 = 29, 9 = u

e First consider the response if we apply #1 as the input. Note:
—lfu=1, z5(t) =t + 1 and
21(t) = 0.5t2 4+ 1t + ¢ = 0.5(t + ¢1)? + ¢3 = 0.529(t)* + c3
—If u=—1, z9(t) = —t + ¢4 and
21(t) = —0.5t% + st + ¢5 = —0.5(t + ¢4)? + ¢ = —0.529(t)% + ¢4

2 = Pl
—u=+1]
—u=-1H

1.5¢

1M

0.5r

=< 0

_0.5,

_1,

_1.5,

-2

-2 -1 0 1 2

X

Figure 9.2: Possible response curves — what is the direction of motion?
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e Hamiltonian for the system is:

H = 1+bfu+ [ p M{[g (1)] [2]4“”}

= 1+ b]u] + 129 + pou

e First find the equations for the co-state:

p=-H = {pl—Hxlo — p=a

pp=—Hy,,=—p1 — p=—cit+c

— So py is linear in time

e To find optimal control, look at the parts of H that depend on u:
H = b]u] + pau

— Recall PMP: given constraints, goal is to find u that minimizes
H (or H)

— Sum of two functions |u| and u - sign of which depends on sign and
relative size of py compared to b > (

June 18, 2008
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e Three cases to consider (plots use u,, = 1.5):

1. pp > b > 0 — choose u*(t) = —u,y,

2
s
:
0.5
0
-0.5
-1

-1.5

2

1

b|u|+pzu
T2

Figure 9.3: b=1,p2 =2,s0py > b >0

2. po < —b — choose u*(t) = uy,

2
s
:
0.5
0
-0.5
-

-1.5

%

b|u|+pzu
T2

Figure 9.4: b=1,py = —2, so ps < —b

3. =b < ps < b — choose u*(t) =0

1

b|u|+pzu
T2

Figure 9.5: b=1,po =1,s0 =b<py < b

June 18, 2008
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e The resulting control law is:

—Um b < pQ(t)
u(t) = 0 —b< polt)< b
U po(t) < —b

e So the control depends on py(t) - but since it is a linear function of
time, it is only possible to get at most 2 switches

— Also, since #2(t) = u, and since we must stop at t;, then must
have that u = Fu,, at ¢s

e To complete the solution, impose the boundary conditions (transver-
sality condition), with zs(ts) =0
H(tp) + hnlt) =0 — 1+ blult))] + palt Julty) = 0
—If u = wy,, then 1+ bu,, + pa(ts)uy, = 0 implies that
1
pg(tf) = —(b—|— U,_) < —=b
which is consistent with the selection rules.
— And if u = —u,,, then 1+ bu,, — pa(ts)u,, = 0 implies that
1
pg(tf) = (b—|- u—) > b
which is also consistent.

— So the terminal condition does not help us determine if u = +u,,,
since it could be either

June 18, 2008
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e So first look at the case where u(tf) = u,,. Know that
pg(t) = Cy — Clt

and po(ts) = —(b+ ﬁ) < —b.
— Assume that ¢; > 0 so that we get some switching.

b=1, um=1 .5, took c1=2

t

Figure 9.6: Possible switching case, but both ¢; and ¢; are unknown at this point.

— Then set po(t1) = —b to get that t; =t; — 1/(upcy)
— And pa(te) = b gives to =ty — (2b+ 1/uy) /1

e Now look at the state response:

— Starting at the end: §j = u,,, gives y(t) = u,,/2t* + cst + c4, where
y =y =0 at t; gives us that c3 = —u,,t; and ¢y = u,,/2t3, so

Uy U, U,
y(t) — 7752 — Uptst + 7?5?0 = 7(75 — tf)2

o B _y(t)?
— But since §(t) = upt + c3 = up(t — ty), then | y(t) = 5
Um

— State response associated with u = u,, is in lower right quadrant
of the y/y phase plot

June 18, 2008
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e Between times to—t1, control input is zero = coasting phase.

— Terminal condition for coast same as the start of the next one:
1
t) = t —t)? =
and y(t1) = —1/c;

— On a coasting arc, ¥ is a constant (so y(t2) = —1/¢1), and thus

(h—ty) 1
1 20,5

Um
2

y(t2) —

which gives that

1 1 1 2b 1
ty) = — |ty — — (tr — (—
y( 2) 2umc% +cl (f U, C1 (f (01 +umcl)))
1 .1 1
— (2b4+ — )= = (2b+ —)(t))?
2+ ) = 2+ 7))

. . L.
e So the first transition occurs along the curve | y(t) = (2b + 2—)y(t)2
U,

e For the first arc, things get a bit more complicated.
Clearly u(t) = —yy,, with IC 4o, 9o so

y(t) = —upt+cs = —unt+ 1y
U o Um 5 .
y(t) = —775 +c5t—|—06:—7t + Yot + Yo

— Now project forward to ¢,

Y(ts) = —upts + 9o = y(t1) = T as

U 9 .
y(t2) = —7% + Yol2 + Yo

and use these expressions in the quadratic for the switching curve
to solve for ¢y, t1, to

June 18, 2008
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e The solutions have a very distinctive Bang—Off-Bang pattern

— Two parabolic curves define switching from +u,, to 0 to —u,,

b=075u =15
m
3 .

lf =6.30414231010558

:t.;.-"fnﬁuh)_(dyld()z

y=—(1/(21.4m)+2b)(f.‘lyt’<§lt)2

dy/dt

Figure 9.7: yo =24 =30=0.75 u,, = 1.5

e Switching control was derived using a detailed evaluation of the state
and costate

— But final result is a switching law that can be written wholly in
terms of the system states.

June 18, 2008
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b=2uy =15 1, = 7.52052447473883

S0
-1F
I!
& \
3l i i i ; : . — & : : . .
0 1 2 3 4 5 ] T & -4 -2 0 2 4 6
1 yit)
Figure 9.8: yo=29y=3b0=2u,, =1.5
b=01y =15 1, = 5682947537517
3 . 6 : :
2} 4 4:""'--._____‘
—
t, ""'““---.,__“__-y:-"Tf: (dyidt)’
H | 2 T—
e
™Y
= 0 bb S 5 0 =(1/{2u_}+2b)idyldt)®
a’ ¥ \ 3| g wER
1 1 2t
‘2
2 4 +
3 : & : ; :
0 1 2 3 4 5 & -4 -2 0 2 4 6
1 yit)

Figure 9.9: yo =235 =30=0.1 u,, = 1.5
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o Clearly get a special result as b — 0, which is the solution to the
minimum time problem
— Control inputs are now just Bang—Bang

— One parabolic curve defines switching from 4u,, to —u,,

......
-
"m.

e
",
.,

....
..,
......
...,

4 2 0 2 4 5
¥(t)

Figure 9.10: Min time: yp =21y =30=0u,, =1.5

.

e (Can show that the switching and final times are given by

t1 = 9(0) + /5(0) + 0.552(0) ;= 5(0) + 24/y(0) + 0.552(0)

June 18, 2008
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e Trade-off: coasting is fuel efficient, but it takes a long time.

14 T T T
T2
\III\IIT‘f :
12—\-|-\Fue| \:
10
P‘i—
- 8r
|_
6_ \\\\\\‘\\\\
-IH-IJI-IH—I!Hlin\ﬁl\lhl,l“::"'Hlll\lll\|||\||\\ll\l"‘
I-I-A-[.[-'.I
On .’~,~
~/
= ~’~, 7]
~,
~,
.,.
On .l.‘./.
2 M| M| | !
107° 107 107 10° 10
Figure 9.11: Summary of switching times for various fuel weights
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Min time fuel

1 % Min time fuel for double integrator

2 % 16.323 Spring 2008

3 % Jonathan How

4 figure(1);clf;’

5 if jcase==1;y0=2;yd0=3; b=.75;u_m=1.5;% baseline

6 elseif jcase==2;y0=2;yd0=3; b=2;u_m=1.5;% fuel exp

7 elseif jcase==3;y0=2;yd0=3; b=.1;u_m=1.5;% fuel cheap
8 elseif jcase==4;y0=2;yd0=3; b=0;u_m=1.5;% min time

9 elseif jcase==5;y0=-4;yd0=4; b=1;u_m=1.5;% min time
10 end

12 % Tf is unknown - put together the equations to solve for it
13 alp=(1/2/u_m+2%b) % switching line

14 % middle of 8--6: t_2 as a ftn of t_f

15 T2=[1/u_m (2%b+1/u_m)*yd0/u_m]/(2*b+2/u_m) ;%

16 % bottom of 8--7: quadratic for y(t_2) in terms of t_2

17 % converted into quad in t_f

18 T_f=roots(-u_m/2*conv(T2,T2)+yd0*[0 T2]+[0 0 yO] - ...

19 alp*conv(-u_m*T2+[0 ydO],-u_m*T2+[0 yd0])) ;%

20 t_f=max(T_f);t=[0:.01:t_f1’; %

c_1=(2*b+2/u_m)/(t_f-yd0/u_m) ;% key parameters for p(t)
23 c_2=c_1xt_f-(b+1/u_m);% key parameters for p(t)
t_1=t_f-1/(u_m*c_1); t_2=t_f-(2%b+1/u_m)/c_1;%switching times

25
26 G=ss([0 1;0 0],[0 1]’,eye(2),zeros(2,1));

27 arcl=[0:.001:t_2]’; arc2=[t_2:.001:t_1]’;arc3=[t_1:.001:t_f1’; %

28 if jcase==4;arc2=[t_2 t_2+le-6]’;end

29 [Y1,T1,X1]=1sim (G, -u_m*ones (length(arcl),1) ,arcl, [y0 yd0]’); %

30 [Y2,T2,X2]=1sim(G,O*ones (length(arc2),1),arc2,Y1(end,:)’); %

31 [¥Y3,T3,X3]=1sim(G,u_m*ones (length(arc3),1) ,arc3,Y2(end,:)’); %

32 plot(Y¥1(:,1),Y1(:,2),’Linewidth’,2); hold onJ

33 plot(Y2(:,1),Y2(:,2), ’Linewidth’,2); plot(Y¥Y3(:,1),Y3(:,2),’Linewidth’,2);%
34 ylabel(’dy/dt’,’Fontsize’,18); xlabel(’y(t)’,’Fontsize’,12);%

35 text(-4,3,’y=-1/(2u_m) (dy/dt)~2’, ’Fontsize’,12)7%

36 if jcase "= 4; text(-5,0,’y=-(1/(2u_m)+2b) (dy/dt)"2’,’Fontsize’,12) ;end
37 text(4,4,’-’,’Fontsize’,18);text(-4,-4,’+’, ’Fontsize’,18);grid;hold off
38 title([’t_f = ’,mat2str(t_f)],’Fontsize’,12)%

39

40  hold on;% plot the switching curves

41 if jcase "= 4;kk=[0:.1:5]’; plot(-alp*kk."2,kk,’k--’,’Linewidth’,2);plot(alp*kk."~2,-kk,’k--’,’Linewidth’,2) ;end
42 kk=[0:.1:5]’;plot(-(1/(2*u_m))*kk."2,kk, ’k--,’Linewidth’,2) ;plot((1/(2*u_m))*kk."2,-kk, ’k--’,’Linewidth’,2) ;%
43 hold off;axis([-4 4 -4 4]/4%6);

44

45 figure(2);p2=c_2-c_1*t;%

46 plot(t,p2,’Linewidth’,4);%

47 hold on; plot([0 max(t)],[b bl,’k--’,’Linewidth’,2);hold off; %

48  hold on; plot([0 max(t)],-[b bl,’k--’,’Linewidth’,2);hold off; %

49 hold on; plot([t_1 t_1],[-2 2],’k:’,’Linewidth’,3);hold off; %

50 text(t_1+.1,1.5,°t_1’,’Fontsize’,12)%

51 hold on; plot([t_2 t_2],[-2 2],’k:’,’Linewidth’,3);hold off; %

52 text(t_2+.1,-1.5,°t_2’,’Fontsize’,12)%

53 title([’b = ’,mat2str(b),’ u_m = ’,mat2str(u_m)],’Fontsize’,12);%

54 ylabel(’p_2(t)’,’Fontsize’,12); xlabel(’t’,’Fontsize’,12);%

55 text(l,b+.1,’b’,’Fontsize’,12);text(1,-b+.1,’-b’,’Fontsize’,12)%

s6 axis([0 t_f -3 3]);grid on; %

57 h

58 1f jcase==

50 print -fl1 -dpng -r300 foptba.png;;print -f2 -dpng -r300 fopt5b.png;

60 elseif jcase==2

61 print -f1 -dpng -r300 fopt6a.png;print -f2 -dpng -r300 fopt6b.png;

62 elseif jcase==

63 print -f1 -dpng -r300 fopt7a.png;print -f2 -dpng -r300 fopt7b.png;

64 elseif jcase==

65 print -f1 -dpng -r300 fopt8a.png;print -f2 -dpng -r300 fopt8b.png;

66 end
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Minimum Time Problems

e Can repeat this analysis for minimum time and energy problems using

the PMP

— Issue is that the process of a developing a solution by analytic con-
struction is laborious and very hard to extend to anything nonlinear
and/or linear with more than 2 states

e Need to revisit the problem statement and develop a new approach.
e Goal: develop the control input sequence
M; < ui(t) < M
that drives the system (nonlinear, but linear control inputs)
x = A(x,t) + B(x,t)u

from an arbitrary state x; to the origin to minimize maneuver time

ty
min J = / dt
to

e Solution: form the Hamiltonian

H = 1+p'(t){A(x,t) + B(x,t)u}
= 1+p (){A(x,t) + [bl(x t) ba(x,t) --+ by(x,t) | u}

— 1+ pl(tH)A(x,1) +Zp b, (x, t)u;(t)

e Now use the PMP: select uz(t) to minimize H, which gives

M if pl(t)bi(x,t) <0
ui(t) =
M. if pl(t)bi(x,t) >0

which gives us the expected Bang-Bang control
e Then solve for the costate

oA 0B \'
ool - (24492)',

— Could be very complicated for a nonlinear system.

June 18, 2008
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e Note: shown how to pick u(t) given that p?(¢)b;(x,t) # 0
— Not obvious what to do if p’(¢)b;(x,t) = 0 for some finite time
interval.
— In this case the coefficient of u;(t) is zero, and PMP provides no
information on how to pick the control inputs.

— Will analyze this singular condition in more detail later.

e To develop further insights, restrict the system model further to LTI,
so that
Ax,t) - Ax  B(x,t) — B
— Assume that [A, B] controllable
—Set M" = =M, = uy,

e Just showed that if a solution exists, it is Bang-Bang
— Existence: if R(\;(A)) < 0, then an optimal control exists that
transfers any initial state x( to the origin.
< Must eliminate unstable plants from this statement because the
control is bounded.
— Uniqueness: If an extremal control exists (i.e. solves the necessary
condition and satisfies the boundary conditions), then it is unique.

<& Satisfaction of the PMP is both necessary and sufficient for time-
optimal control of a LTI system.

e If the eigenvalues of A are all real, and a unique optimal control exists,
then each control input can switch at most n — 1 times.

— Still need to find the costates to determine the switching times —
but much easier in the linear case.
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Min Fuel Problems

e Goal: develop the control input sequence

M; < ui(t) < M

that drives the system
x = A(x,t) + B(x,t)u

from an arbitrary state x; to the origin in a fixed time ¢ and optimizes

tf m
minJ:/ > cilui(t)|dt
to =1

e Solution: form the Hamiltonian

the cost

m

H = 3 alult)] + (AR, 0) + Blx, t)u}
_ Z cilui(t)| + p" (1) A(x, t) + Z p' (t)by(x, t)ui(t)
= Z cilui(t) + p' (£)bi(x, t)ui(t)] + p' (1) A(x, 1)

e Use the PMP, which requires that we select u;(t) to ensure that for
all admissible w;(t)

m

> [eui®] + " (i, i (0] < 3 [erfuslt) |+ BT (b, st

i=1
e If the components of u are independent, then can just look at

e (6)] 4+ T (b, )i (1) < eilus()] + P (1) bi(x D (t)

— As before, this boils down to a comparison of ¢; and p” (t)b;

— Resulting control law is:

M if ¢ <pl(t)b;

U*(t): 0 if —¢ <pT(t)bi < ¢
M if pl(t)b; < —¢

June 18, 2008
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01

5=[1)
00 1

ty
minJ:/ ()t
t

0

— Drive state to the origin with ¢ fixed.

o Consider G(s)=1/s* = A=

o Gives H = ]u\ + p1xo + Pou
— Final control u(ts) = w,, = paolty) < —1 pa(t) = co — 1t

e As before, integrate EOM forward from 0 to ¢y using —u,,, then from
to to t; using u = 0, and from ¢; to ¢y using wuy,
— Apply terminal conditions and solve for ¢; and ¢

t =32

6
- { 4} -
; Wdvid? =1i{2u ny?
y=-112u,_)dyldty i
{ 2p 3
. Y
kY
= \
. 2 i
= i
=) i

dy/dt

o \
yit) yit)

Figure 9.12: Min Fuel for varying final Figure 9.13: Min fuel for fixed final
times time, varying I1C’s

o First switch depends on IC and ¢ ;= no clean closed-form solution for
switching curve
— Larger ¢ leads to longer coast.
— For given ¢, there is a limit to the IC from which we can reach the

origin.
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o If specified completion time ¢; > T, = y(0) + 2\/y )+ 0.532(0),
then

ta = 05{(500) +17) — /310~ 1~ (4y(0) +2%0) |

— { (0) + ) + 1/ (5(0) — £ +2y2<0>>}
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Minimum Energy Problem

e Goal: for a fixed final time and terminal constraints

1 [ .
minJ:§/ u’ Ru dt R>0
0

e Again use special dynamics:
x = A(x,t)+ B(x,t)u
1
H = §uTRu +p' { A(x,t) + B(x,t)u}

e Obviously with no constraints on u, solve H,, = 0, to get

u=-R'B'p(t)

e But with bounded controls, must solve:

1
u”(t) = arg min [—uTRu +p’ B(x, t)u]
u(t)eu | 2

which is a constrained quadratic program in general

— However, for diagonal R, the effects of the controls are independent

— 1
Z éRmU? + priuz']
i=1

— In the unconstrained case, each u;(t) can easily be determined by

u*(t) = arg min
( ) gu(t)EU

minimizing

1

1
iRHuzQ + prZ'u@' — ZNL@‘ = —Ri_»lprZ'

e The resulting controller inputs are u;(t) = sat(u;(t))

Ul<t> = w; if Mi_ <u < Mz+
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Min Fuel

% Min fuel for double integrator
% 16.323 Spring 2008

% Jonathan How

%

c=1;

t=[0:.01:t_£f];

alp=(1/2/u_m) % switching line
T_2=roots([-u_m/2 yd0 yO] + conv([-u_m yd0],[-2 t_f+yd0/u_m])-alp*conv([-u_m ydO0], [-u_m yd0]));%
t_2=min(T_2);

10  yd2=-u_m¥t_2+yd0;ydl=yd2;

11 t_1=t_f+ydl/u_m;

12 c_1=2/(t_1-t_2) ;c_2=c_1xt_1-1;

© 0w N e U A W N e

14 G=ss([0 1;0 0],[0 1]’,eye(2),zeros(2,1));

15 arcl=[0:.001:t_2]’; arc2=[t_2:.001:t_1]’;arc3=[t_1:.001:t_f]1’; %
16 [Y1,T1,X1]=1sim(G,-u_m*ones(length(arc1),1),arcl, [y0 yd0]’); %
17 [Y2,T2,X2]=1sim (G, O*ones (length(arc2),1) ,arc2,Y1(end,:)’); %

18 [Y3,T3,X3]=1sim(G,u_m*ones (length(arc3),1) ,arc3,Y2(end,:)’); %
19 plot(Y1(:,1),Y1(:,2),zzz,’Linewidth’,2); hold onj

20 plot(¥2(:,1),Y2(:,2),zzz, ’Linewidth’,2); plot(Y¥3(:,1),Y3(:,2),zzz, ’Linewidth’,2);%
21 ylabel(’dy/dt’,’Fontsize’,18); xlabel(’y(t)’,’Fontsize’,12);%

22 text(-4,3,’y=-1/(2u_m) (dy/dt)"2’, ’Fontsize’,12)%

23 text(4,4,’-’,’Fontsize’,18);text(-4,-4,’+’,’Fontsize’,18);grid on;hold off
24 title([’t_f = ’,mat2str(t_f)], ’Fontsize’,12)¥%

25

26 hold on;% plot the switching curves

27 kk=[0:.1:8]’; plot(-alpxkk."2,kk,’k--’);plot(alp*kk."2,-kk,’k--’);
28 hold off;axis([-4 4 -4 4]/4%6);

29

30 figure(2);%

31 p2=c_2-c_1*t;%

32 plot(t,p2,’Linewidth’,4);%

33 hold on; plot([0 t_f],[c c],’k--’,’Linewidth’,2);hold off; %

34 hold on; plot([0 t_f],-[c c],’k--’,’Linewidth’,2);hold off; %

35  hold on; plot([t_1 t_1],[-2 2],’k:’,’Linewidth’,3);hold off; %
36 text(t_1+.1,1.5,°t_1’,’Fontsize’,12)%

37 hold on; plot([t_2 t_2],[-2 2],’k:’,’Linewidth’,3);hold off; %
38  text(t_2+.1,-1.5,°t_2’,’Fontsize’,12)%

39 title([’c = ’,mat2str(c),’ u_m = ’,mat2str(u_m)],’Fontsize’,12);%
40 ylabel(’p_2(t)’,’Fontsize’,12); xlabel(’t’,’Fontsize’,12);%

41 text(l,c+.1,’c’,’Fontsize’,12);text(1,-c+.1,’-c’,’Fontsize’,12)%
42 axis([0 t_f -3 3]);grid om; %

43

44 return

45

46  figure(1);clf

a7 y0=2;yd0=3;t_£f=5.8;u_m=1.5;zzz="-’;minu;

48  figure(1);hold on

49 y0=2;yd0=3;t_£f=16;u_m=1.5;zzz="k--’;minu;

50 figure(1);hold on

51 y0=2;yd0=3;t_£f=32;u_m=1.5;zzz=’r:’ ;minu;

52 figure(1);

53 axis([-6 6 -6 6])

54 legend(’5.8’,°167,°327%)

55 print -fl1 -dpng -r300 uoptl.png;

58  figure(1);clf

59  y0=2;yd0=2;t_f=8;u_m=1.5;zzz=’-’;minu

60 figure(1);hold on

61 y0=6;yd0=2;t_f=8;u_m=1.5;zzz="k--’;minu
62 figure(1l);hold on

63 y0=15.3;yd0=2;t_f=8;u_m=1.5;zzz="r:’;minu
64 figure(1l);axis([-2 25 -6 6])

65 print -f1 -dpng -r300 uopt2.png;
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