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16.323 Lecture 6


Calculus of Variations applied to Optimal Control 

ẋ = a(x, u, t) 
ṗ = −HT 

x 
Hu = 0 
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Spr 2008	 16.323 6–1 
Optimal Control Problems


•	 Are now ready to tackle the optimal control problem 

– Start with simple terminal constraints 
tf 

J	= h(x(tf ), tf ) + g(x(t), u(t), t)dt 
t0 

with the system dynamics 

ẋ(t) = a(x(t), u(t), t) 

– t0, x(t0) fixed 

– tf free 

– x(tf ) are fixed or free by element 

•	 Note that this looks a bit different because we have u(t) in the inte­

grand, but consider that with a simple substitution, we get 

ẋ=a(x,u,t) 
g̃(x, ẋ, t) ĝ(x, u, t)→ 

•	 Note that the differential equation of the dynamics acts as a constraint 
that we must adjoin using a Lagrange multiplier, as before: 

tf �	 � 
Ja = h(x(tf ), tf )+ g(x(t), u(t), t) + p T {a(x(t), u(t), t) − ẋ} dt 

t0 

Find the variation:10 

tf � 
δJa = hxδxf + htf δtf + gxδx + guδu + (a − ẋ)Tδp(t) 

t0 

+p T (t){axδx + auδu − δẋ} dt + g + p T (a − ẋ) (tf )δtf 

•	 Clean this up by defining the Hamiltonian: (See 4–4) 

H(x, u, p, t) = g(x(t), u(t), t) + p T (t)a(x(t), u(t), t) 

10Take partials wrt each of the variables that the integrand is a function of. 

June 18, 2008 



•	 � � 
� 

�	 � 

� 

� 

• �	 � 
�	 � 

� � �	 � 
� 

� � 

Spr 2008	 16.323 6–2 

Then 

δJa = hxδxf + htf + g + p T (a − ẋ) (tf )δtf 

tf �	 � 
+ Hxδx + Huδu + (a − ẋ)Tδp(t) − p T (t)δẋ dt 

t0 

• To proceed, note that by integrating by parts 11 we get: 
tf tf


− 
t0 

p T (t)δẋdt = − 
t0 

p T (t)dδx
� � �T 

= −p Tδx�� 
t

t

0 

f + 
tf dp(t) 

δxdt 
dtt0 
tf 

= −p T (tf )δx(tf ) + ṗT (t)δxdt 
t0 

tf 

= −p T (tf ) (δxf − ẋ(tf )δtf ) + ṗT (t)δxdt 
t0 

So now can rewrite the variation as: 

δJa = hxδxf + htf + g + p T (a − ẋ) (tf )δtf 

tf �	 � tf 

+ Hxδx + Huδu + (a − ẋ)Tδp(t) dt − p T (t)δẋdt 
t0	 t0 

= hx − p T (tf ) δxf + htf + g + p T (a − ẋ) + p T ẋ (tf )δtf 

tf �� �	 � 
+	 Hx + ṗT δx + Huδu + (a − ẋ)Tδp(t) dt 

t0 

udv ≡ uv − vdu 

June 18, 2008 
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• So necessary conditions for δJa = 0 are that for t ∈ [t0, tf ] 

ẋ = a(x, u, t) (dim n) 

ṗ = −HT 
x (dim n) 

Hu = 0 (dim m) 

– With the boundary condition (lost if tf is fixed) that


htf + g + p T a = htf + H(tf ) = 0


– Add the boundary constraints that x(t0) = x0 (dim n) 

– If xi(tf ) is fixed, then xi(tf ) = xif


∂h

– If xi(tf ) is free, then pi(tf ) = (tf ) for a total (dim n)

∂xi 

These necessary conditions have 2n differential and m algebraic equa­• 
tions with 2n+1 unknowns (if tf free), found by imposing the (2n+1) 
boundary conditions. 

June 18, 2008 
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• Note the symmetry in the differential equations: � �T
∂H 

ẋ = a(x, u, t) = 
∂p� �T T

∂H ∂(g + pT a) 
ṗ = − 

∂x 
= − 

∂x � �T � �T
∂a ∂g 

= − 
∂x

p − 
∂x 

– So the dynamics of p, called the costate, are linearized system 
dynamics (negative transpose – dual) ⎡ ⎤ � � ∂a1 . . . ∂a1 

∂a ⎢ ∂x1 ∂xn ⎥ 
= ⎣ . . . ⎦ 

∂x ∂an ∂an . . . ∂x1 ∂xn 

• These necessary conditions are extremely important, and we will be 
using them for the rest of the term. 

June 18, 2008 
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Control with General Terminal Conditions 
Can develop similar conditions in the case of more general terminal • 
conditions with tf free and


m(x(tf ), tf ) = 0


Follow the same procedure on 6–1 using the insights provided on 5–21 • 
(using the ga form on 5–20) to form


w(x(tf ), ν, tf ) = h(x(tf ), tf ) + νT m(x(tf ), tf )


Work through the math, and get the necessary conditions are • 

ẋ = a(x, u, t) (dim n) (6.22) 

ṗ = −HT 
x (dim n) (6.23) 

Hu = 0 (dim m) (6.24) 

– With the boundary condition (lost if tf fixed) 

H(tf ) + wtf (tf ) = 0 

– And m(x(tf ), tf ) = 0, with x(t0) and t0 given. 

– With (since x(tf ) is not directly given) � �T
∂w 

p(tf ) = (tf )
∂x 

• Collapses to form on 6–3 if m not present – i.e., does not constrain 
x(tf ) 

June 18, 2008 
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•	 Simple double integrator system starting at y(0) = 10, ẏ(0) = 0, 
must drive to origin y(tf ) = ẏ(tf ) = 0 to minimize the cost (b > 0) 

1 1 tf 

J = αt2 
f + bu2(t)dt 

2 2 0 

•	 Define the dynamics with x1 = y, x2 = ẏ so that 

0	 1 0 
ẋ(t) = Ax(t) + Bu(t) A =	 B = 

0	 0 1 

•	 With p(t) = [p1(t) p2(t)]
T , define the Hamiltonian 

H = g + p T (t)a =
1 
bu2 + p T (t) (Ax(t) + Bu(t))

2 

•	 The necessary conditions are then that: 

ṗ1 
∂H	 = 0 p1(t) = c1 = −∂x1 

→ 
ṗ	 = −HT, → 

∂H 
x 

ṗ2 = −∂x2	
= −p1 → p2(t) = −c1t + c2 

p2 c2 c1
Hu = bu + p2 = 0 u = − = − + t→ 

b b b 

•	 Now impose the boundary conditions: 

1 
H(tf ) + ht(tf ) = bu2(tf ) + p1(tf )x2(tf ) + p2(tf )u(tf ) + αtf = 0 

2

1


= bu2(tf ) + (−bu(tf ))u(tf ) + αtf
2 

1 1 
=	 −

2 
bu2(tf ) + αtf = 0 → tf =

2bα 
(−c2 + c1tf )

2 

June 18, 2008 
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• Now go back to the state equations: 

ẋ2(t) = − 
c2 

+ 
c1 
t x2(t) = c3 − 

c2 
t + 

c1 
t2 

b b 
→ 

b 2b

and since x2(0) = 0, c3 = 0, and


ẋ1(t) = x2(t) x1(t) = c4 − 
c2 
t2 + 

c1 
t3 → 

2b 6b 
and since x1(0) = 10, c4 = 10


Now note that
• 

x2(tf ) = − 
c

b 
2 
tf +

2

c

b 
1 
t2 
f = 0


x1(tf ) = 10 − 
c2 
tf 
2 + 

c1 
tf 
3 = 0


2b 6b 
c2 2 60b 120b 

= 10 − tf = 0 c2 = , c1 = 
6b 

→ 
t2 
f t3 

f 

– But that gives us: � �2 
1 60b 120b (60b)2 

tf = + tf = 
2bα 

− 
tf 
2 tf 

3 2bαtf 
4 

so that t5 = 1800b/α or tf ≈ 4.48(b/α)1/5, which makes sense f


because tf goes down as α goes up.


– Finally, c2 = 2.99b3/5α2/5 and c1 = 1.33b2/5α3/5 

Figure 6.1: Example 6–1 

June 18, 2008 
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Example 6–1


%

% Simple opt example showing impact of weight on t_f

% 16.323 Spring 2008

% Jonathan How

% opt1.m

%

clear all;close all;

set(0, ’DefaultAxesFontSize’, 14, ’DefaultAxesFontWeight’,’demi’)

set(0, ’DefaultTextFontSize’, 14, ’DefaultTextFontWeight’,’demi’)

%

A=[0 1;0 0];B=[0 1]’;C=eye(2);D=zeros(2,1);

G=ss(A,B,C,D);

X0=[10 0]’;

b=0.1;


alp=1;

tf=(1800*b/alp)^0.2;

c1=120*b/tf^3;

c2=60*b/tf^2;

time=[0:1e-2:tf];

u=(-c2+c1*time)/b;

[y1,t1]=lsim(G,u,time,X0);


figure(1);clg

plot(time,u,’k-’,’LineWidth’,2);hold on

alp=10;

tf=(1800*b/alp)^0.2;

c1=120*b/tf^3;

c2=60*b/tf^2;

time=[0:1e-2:tf];

u=(-c2+c1*time)/b;

[y2,t2]=lsim(G,u,time,X0);

plot(time,u,’b--’,’LineWidth’,2);


alp=0.10;

tf=(1800*b/alp)^0.2;

c1=120*b/tf^3;

c2=60*b/tf^2;

time=[0:1e-2:tf];

u=(-c2+c1*time)/b;

[y3,t3]=lsim(G,u,time,X0);

plot(time,u,’g-.’,’LineWidth’,2);hold off


legend(’\alpha=1’,’\alpha=10’,’\alpha=0.1’)

xlabel(’Time (sec)’)

ylabel(’u(t)’)

title([’b= ’,num2str(b)])


figure(2);clg

plot(t1,y1(:,1),’k-’,’LineWidth’,2);

hold on

plot(t2,y2(:,1),’b--’,’LineWidth’,2);

plot(t3,y3(:,1),’g-.’,’LineWidth’,2);

hold off

legend(’\alpha=1’,’\alpha=10’,’\alpha=0.1’)

xlabel(’Time (sec)’)

ylabel(’y(t)’)

title([’b= ’,num2str(b)])


print -dpng -r300 -f1 opt11.png

print -dpng -r300 -f2 opt12.png
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•	 Deterministic Linear Quadratic Regulator 

Plant: 

ẋ(t) = A(t)x(t) + Bu(t)u(t), x(t0) = x0


z(t) = Cz(t)x(t)


Cost:� tf � � 
2JLQR = z T (t)Rzz(t)z(t) + u T (t)Ruu(t)u(t) dt + x(tf )

TPtf x(tf ) 
t0 

– Where Ptf ≥ 0, Rzz(t) > 0 and Ruu(t) > 0 

– Define Rxx = Cz
TRzzCz ≥ 0 

– A(t) is a continuous function of time. 

– Bu(t), Cz(t), Rzz(t), Ruu(t) are piecewise continuous functions of 
time, and all are bounded. 

•	 Problem Statement: Find input u(t) ∀t ∈ [t0, tf ] to min JLQR 

– This is not necessarily specified to be a feedback controller. 

•	 To optimize the cost, we follow the procedure of augmenting the con­

straints in the problem (the system dynamics) to the cost (integrand) 
to form the Hamiltonian: 

1 � � 
H = x T (t)Rxxx(t) + u T (t)Ruuu(t) + p T (t) (Ax(t) + Buu(t))

2 

– p(t) ∈ Rn×1 is called the Adjoint variable or Costate 

– It is the Lagrange multiplier in the problem. 

June 18, 2008 
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• The necessary conditions (see 6–3) for optimality are that: 

1. ẋ(t) = ∂H T 
= Ax(t) + B(t)u(t) with x(t0) = x0 

∂p 

2. ṗ(t) = −∂H T 
= −Rxxx(t) − AT p(t) with p(tf ) = Ptf x(tf )

∂x 

3. ∂H = 0 Ruuu + Bu
T p(t) = 0, so u� = −R−1Bu

T p(t)

∂u 

⇒ uu


4. As before, we can check for a minimum by looking at ∂
2H 

2 ≥ 0 
∂u 

(need to check that Ruu ≥ 0) 

Note that p(t) plays the same role as J�(x(t), t)T in previous solutions • x

to the continuous LQR problem (see 4–8). 

– Main difference is there is no need to guess a solution for J�(x(t), t) 

Now have: • 

ẋ(t) = Ax(t) + Bu �(t) = Ax(t) − BuR
−1Bu

T p(t)uu 

which can be combined with equation for the adjoint variable 

ṗ(t) = −Rxxx(t) − AT p(t) = −CzTRzzCzx(t) − AT p(t) � � � � � �
A R−1BT 

ẋ(t) −Bu uu u x(t) 
= ⇒ 

ṗ(t) −CzTRzzCz −AT p(t) 

H 

where H is called the Hamiltonian Matrix. 

– Matrix describes coupled closed loop dynamics for both x and p. 

– Dynamics of x(t) and p(t) are coupled, but x(t) known initially 
and p(t) known at terminal time, since p(tf ) = Ptf x(tf ) 

– Two point boundary value problem typically hard to solve. ⇒ 

June 18, 2008 
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•	 However, in this case, we can introduce a new matrix variable P (t) 
and show that: 

1.	p(t) = P (t)x(t) 

2. It is relatively easy to find P (t). 

•	 How proceed? 

1. For the 2n system � � �	 � � �
A	 R−1BT 

ẋ(t)	 −Bu uu u x(t) 
= 

ṗ(t) −CzTRzzCz −AT p(t) 

define a transition matrix 

F11(t1, t0) F12(t1, t0) 
F (t1, t0) = 

F21(t1, t0) F22(t1, t0) 

and use this to relate x(t) to x(tf ) and p(tf ) � � �	 � � � 
x(t) F11(t, tf ) F12(t, tf ) x(tf ) = 
p(t) F21(t, tf ) F22(t, tf ) p(tf ) 

so 

x(t) = F11(t, tf )x(tf ) + F12(t, tf )p(tf ) 

= F11(t, tf ) + F12(t, tf )Ptf x(tf ) 

2. Now find p(t) in terms of x(tf ) 

p(t) = F21(t, tf ) + F22(t, tf )Ptf x(tf ) 

3. Eliminate x(tf ) to get: �	 � � �−1 
p(t) = F21(t, tf ) + F22(t, tf )Ptf F11(t, tf ) + F12(t, tf )Ptf x(t) 

�	 P (t)x(t) 

June 18, 2008 
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•	 Now have p(t) = P (t)x(t), must find the equation for P (t) 

ṗ(t) = Ṗ (t)x(t) + P (t)ẋ(t) 

⇒	 − Cz
TRzzCzx(t) − AT p(t) = 

−Ṗ (t)x(t) = Cz
TRzzCzx(t) + AT p(t) + P (t)ẋ(t) 

= CT Czx(t) + AT p(t) + P (t)(Ax(t) − BuR
−1BT p(t))z Rzz	 uu u 

= (CTRzzCz + P (t)A)x(t) + (AT − P (t)BuR
−1BT )p(t)z uu u 

(CT R−1BT = z RzzCz + P (t)A)x(t) + (AT	− P (t)Bu uu u )P (t)x(t) 

= ATP (t) + P (t)A + CT	 R−1BTP (t) x(t)z RzzCz − P (t)Bu uu u 

•	 This must be true for arbitrary x(t), so P (t) must satisfy 

−Ṗ (t) = ATP (t) + P (t)A + Cz
TRzzCz − P (t)Bu uu u P (t)R−1BT 

– Which, of course, is the matrix differential Riccati Equation. 

– Optimal value of P (t) is found by solving this equation backwards 
in time from tf with P (tf ) = Ptf 

June 18, 2008 
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•	 The control gains are then 

= −R−1 p(t) = −R−1 P (t)x(t) = −K(t)x(t)uopt	 uu Bu
T 

uu Bu
T 

•	 Optimal control inputs can in fact be computed using linear 
feedback on the full system state 

– Find optimal steady state feedback gains u(t) = −Kx(t) using 

K	= lqr(A,B,Cz
TRzzCz,Ruu) 

•	 Key point: This controller works equally well for MISO and MIMO 
regulator designs. 

June 18, 2008 
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Alternate Derivation of DRE 
On 6-10 we showed that: • �	 � � �−1 
P (t) = F21(t, tf ) + F22(t, tf )Ptf F11(t, tf ) + F12(t, tf )Ptf 

• To find the Riccati equation, note that 

d 
M−1(t) =	−M−1(t)Ṁ(t)M−1(t)

dt 
which gives 

Ṗ (t) = 
� 
Ḟ21(t, tf ) + Ḟ22(t, tf )Ptf 

� � 
F11(t, tf ) + F12(t, tf )Ptf 

�−1 

�	 � � �−1 
− F21(t, tf ) + F22(t, tf )Ptf F11(t, tf ) + F12(t, tf )Ptf · �	 � � �
Ḟ11(t, tf ) + Ḟ12(t, tf )Ptf F11(t, tf ) + F12(t, tf )Ptf 

−1 

•	 Since F is the transition matrix 12 for the system (see 6–10), then 

d 
F (t, tf ) =	 HF (t, tf )

dt 

˙	 A R−1BTF11 Ḟ 
12 (t, tf ) = 

−Bu uu u (t, tf ) 
F11 F12 (t, tf )

Ḟ21 Ḟ 
22 −Rxx −AT F21 F22 

12Consider homogeneous system ẋ(t) = A(t)x(t) with initial condition x(t0) = x0. The general solution to this differential 
equation is given by x(t) = Φ(t, t0)x(t0) where Φ(t1, t1) = I. Can show the following properties of the state transition matrix Φ: 

1. Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0), regardless of the order of the ti 

2. Φ(t, τ) = Φ(τ, t)−1 

3. d Φ(t, t0) = A(t)Φ(t, t0)
dt 

June 18, 2008 
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• Now substitute and re-arrange: 

Ṗ = [Ḟ21 + Ḟ 
22Ptf ] − P [Ḟ11 + Ḟ 

12Ptf ] [F11 + F12Ptf ]
−1 

˙ R−1BTF11 = AF11 − Bu uu u F21


˙ R−1BT
F12 = AF12 − Bu uu u F22


Ḟ21 = −RxxF11 − ATF21


Ḟ22 = −RxxF12 − ATF22


Ṗ = −RxxF11 − ATF21 + (−RxxF12 − ATF22)Ptf 

AF11 − BuR
−1BTF21 + (AF12 − BuR

−1BT ]−1−P uu u uu u F22)Ptf [F11 + F12Ptf 

There are four terms: • 

−Rxx(F11 + F12Ptf )[F11 + F12Ptf ]
−1 = −Rxx 

−AT (F21 + F22Ptf )[F11 + F12Ptf ]
−1 = −ATP 

−PA(F11 + F12Ptf )[F11 + F12Ptf ]
−1 = −PA 

PBuR
−1BT (F21 + F22Ptf )[F11 + F12Ptf ]

−1 = PBuR
−1BTPuu u uu u 

• Which, as expected, gives that 

−Ṗ = ATP + PA + Rxx − PBuR
−1Bu

TPuu 

June 18, 2008 
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CARE Solution Algorithm 

•	 Recall from (6–10) that � � � 
A	 R−1BT 

� � � 
ẋ(t)	 −Bu uu u x(t) 

= 
ṗ(t) −CzTRzzCz −AT p(t) 

•	 Assuming that the eigenvalues of H are unique, the Hamiltonian can 
be diagonalized into the form: � � � � � � 

ż1(t) −Λ 0 z1(t) = 
ż2(t) 0 Λ z2(t) 

where diagonal matrix Λ is comprised of RHP eigenvalues of H. 

•	 A similarity transformation exists between the states z1, z2 and x, p: 

x(t) 
= Ψ 

z1(t) z1(t) = Ψ−1 x(t) 
p(t) z2(t) 

⇔ 
z2(t)	 p(t) 

where 

(Ψ−1)12Ψ11Ψ = 
Ψ12 and Ψ−1 = 

(Ψ−1)11 

Ψ21 (Ψ−1)22Ψ22	 (Ψ−1)21 

and the columns of Ψ are the eigenvectors of H. 

•	 Solving for z2(t) gives 

z2(t) = e Λt z2(0) = [(Ψ−1)21x(t) + (Ψ−1)22p(t)] 

=	 [(Ψ−1)21 + (Ψ−1)22P (t)]x(t) 

– For the cost to be finite, need limt→∞ x(t) = 0, so can show that 

lim z2(t) = 0 
t→∞ 

– But given that the Λ dynamics in the RHP, this can only be true 
if z2(0) = 0, which means that z2(t) = 0 ∀t 

June 18, 2008 
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• With this fact, note that 

x(t) = Ψ11z1(t) 

p(t) = Ψ21z1(t) 

which can be combined to give: 

p(t) = Ψ21(Ψ11)
−1 x(t) ≡ Pssx(t) 

• Summary of solution algorithm: 

– Find the eigenvalues and eigenvectors of H 

– Select the n eigenvectors associated with the n eigenvalues in the 
LHP. 

– Form Ψ11 and Ψ21. 

– Compute the steady state solution of the Riccati equation using 

Pss = Ψ21(Ψ11)
−1 

% alternative calc of Riccati solution

H=[A -B*inv(Ruu)*B’ ; -Rxx -A’];

[V,D]=eig(H); % check order of eigenvalues

Psi11=V(1:2,1:2);

Psi21=V(3:4,1:2);

Ptest=Psi21*inv(Psi11);


June 18, 2008 
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Optimal Cost


•	 Showed in earlier derivations that the optimal cost-to-go from the 
initial (or any state) is of the form 

1 
J = x T (t0)P (t0)x(t0)

2 
– Relatively clean way to show it for this derivation as well. 

•	 Start with the standard cost and add zero (Ax + Buu − ẋ = 0) 

1 tf � � 
JLQR =

2 
x TRxxx + u TRuuu + p T (Ax + Buu − ẋ) dt 

t0 

1 
+	 x(tf )

TPtf x(tf )
2 

•	 Now use the results of the necessary conditions to get: 

ṗ = −Hx 
T	 ⇒ p TA = −ṗT − x TRxx 

Hu = 0	 ⇒ p TBu = −u TRuu 

with p(tf ) = Ptf x(tf ) 

•	 Substitute these terms to get 

1	 1 tf � � 
JLQR =

2 
x(tf )

TPtf x(tf ) − 
2 t0 

ṗT x + p T ẋ dt 

1	 1 tf d T =	
2 
x(tf )

TPtf x(tf ) − 
2 t0 

dt
(p x) dt 

1 1 �	 � 
= x(tf )

TPtf x(tf ) − p T (tf )x(tf ) − p T (t0)x(t0)
2	 2 

1	 1 
= x(tf )

TPtf x(tf ) − x T (tf )Ptf x(tf ) − x T (t0)P (t0)x(t0)
2	 2 

=	
1 
x T (t0)P (t0)x(t0)

2 
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Pole Locations 
• The closed-loop dynamics couple x(t) and p(t) and are given by
� � � 

A	 R−1BT 
� � � 

ẋ(t)	 −Bu uu u x(t) 
= 

ṗ(t) −CzTRzzCz −AT p(t) 

with the appropriate boundary conditions. 

•	 OK, so where are the closed-loop poles of the system? 

– Answer: must be eigenvalues of Hamiltonian matrix for the system: 

A	 R−1BT 

H �	
−Bu uu u 

−CzTRzzCz −AT


so we must solve det(sI − H) = 0.


•	 Key point: For a SISO system, we can relate the closed-loop poles 
to a Symmetric Root Locus (SRL) for the transfer function 

Gzu(s) = Cz(sI − A)−1Bu = 
N(s) 
D(s) 

– Poles and zeros of Gzu(s) play an integral role in determining SRL 

– Note Gzu(s) is the transfer function from control inputs to perfor­

mance variable. 

•	 In fact, the closed-loop poles are given by the LHP roots of 

Rzz
Δ(s) = D(s)D(−s) + N(s)N(−s) = 0 

Ruu 

– D(s)D(−s) + Rzz N(s)N(−s) is drawn using standard root locus Ruu 

rules - but it is symmetric wrt to both the real and imaginary axes. 

– For a stable system, we clearly just take the poles in the LHP. 
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Derivation of the SRL 
•	 The closed-loop poles are given by the eigenvalues of 

A −BuR
−1Bu

T 
uuH � −CzTRzzCz −AT → det(sI − H) = 0 

Note: if A is invertible: 

A B 
det = det(A) det(D − CA−1B) 

C D 

R−1BTdet(sI − H) = det(sI − A) det (sI + AT ) − Cz
T RzzCz(sI − A)−1Bu uu u⇒ 

= det(sI − A) det(sI + AT ) det I − CT RzzCz(sI − A)−1BuR
−1BT (sI + AT )−1

z	 uu u 

•	 Also: det(I + ABC) = det(I + CAB), and if D(s) = det(sI − A), 
then D(−s) = det(−sI − AT ) = (−1)n det(sI + AT ) 

det(sI−H) = (−1)nD(s)D(−s) det I + Ruu
−1Bu

T (−sI − AT )−1CT RzzCz(sI − A)−1Buz 

• If Gzu(s) = Cz(sI −A)−1Bu, then GT (−s) = BT (−sI −AT )−1CT ,zu u	 z 

so for SISO systems 

det(sI − H) = (−1)nD(s)D(−s) det I + R−1GT (−s)RzzGzu(s)� uu zu � 
Rzz 

= (−1)nD(s)D(−s) I + Gzu(−s)Gzu(s)
Ruu 

Rzz 
= (−1)n D(s)D(−s) + N(s)N(−s) = 0 

Ruu 
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Example 6–2 

Simple example from 4–12: A scalar system with ẋ = ax + bu with 
cost (Rxx > 0 and Ruu > 0) J = 0 

∞
(Rzzx

2(t) + Ruuu
2(t)) dt 

•	 The steady-state P solves 2aP + Rzz − P 2b2/Ruu = 0 which gives 
a+
√
a2+b2Rzz/Ruuthat P = 
R−1 > 0 

uu b2 

a+
√
a2+b2Rzz/Ruu – So that u(t) = −Kx(t) where K = R−1bP = uu	 b 

– and the closed-loop dynamics are 

b � 
ẋ	 = (a − bK)x = a − (a + a2 + b2Rzz/Ruu) x 

b

= a2 + b2Rzz/Ruu x = Aclx(t)− 

•	 In this case, Gzu(s) = b/(s−a) so that N(s) = b and D(s) = (s−a), 
and the SRL is of the form: 

Rzz
(s − a)(−s − a) + b2 = 0 

Ruu 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1
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0.6

0.8

1

Symmetric root locus

Real Axis
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ag

in
ar

y 
A

xi
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•	 SRL is the same whether a < 0 (OL stable) or a > 0 (OL unstable) 

– But the CLP is always the one in the LHP 

– Explains result on 4–12 about why gain K = 0 for OL unstable 
systems, even for expensive control problem (Ruu →∞) 
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SRL Interpretations 

•	 For SISO case, define Rzz/Ruu = 1/r. 

•	 Consider what happens as r � ∞ – high control cost case 

Δ(s) = D(s)D(−s) + r−1N(s)N(−s) = 0 ⇒ D(s)D(-s)=0 

– So the n closed-loop poles are: 
�	Stable roots of the open-loop system (already in the LHP.) 
�	Reflection about the jω-axis of the unstable open-loop poles. 

•	 Consider what happens as r � 0 – low control cost case 

Δ(s) = D(s)D(−s) + r−1N(s)N(−s) = 0 ⇒ N(s)N(-s)=0 

– Assume order of N(s)N(−s) is 2m < 2n 
– So the n closed-loop poles go to: 

� The m finite zeros of the system that are in the LHP (or the 
reflections of the system zeros in the RHP). 

�	The system zeros at infinity (there are n − m of these). 

•	 The poles tending to infinity do so along very specific paths so that 
they form a Butterworth Pattern: 

– At high frequency we can ignore all but the highest powers of s in 
the expression for Δ(s) = 0 

Δ(s) = 0 � (−1)ns 2n + r−1(−1)m(bos
m)2 = 0 

b2 
o ⇒	s2(n−m) = (−1)n−m+1 

r 
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•	 The 2(n − m) solutions of this expression lie on a circle of radius 

(b20/r)
1/2(n−m) 

at the intersection of the radial lines with phase from the negative 
real axis: 

±
n − 
lπ 
m
, l = 0, 1, . . . , 

n − m 
2 
− 1 

, (n-m) odd 

±(l + 1/2)π 
n − m 

, l = 0, 1, . . . , 
n − m 

2 
− 1 , (n-m) even 

n − m 
1 

Phase 
0 

2 
3 

±π/4 
0, ±π/3 

4 ±π/8, ±3π/8 

•	 Note: Plot the SRL using the 180o rules (normal) if n − m is even 
and the 0o rules if n − m is odd. 

(s−2)(s−4)Figure 6.2: G(s) = (s−1)(s−3)(s2+0.8s+4)s2 
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•	 As noted previously, we are free to pick the state weighting matrices 
Cz to penalize the parts of the motion we are most concerned with. 

•	 Simple example – consider oscillator with x = [ p , v ]T 

0 1 0 
A = , B = 

−2 −0.5	 1 

but we choose two cases for z


z = p = 1 0 x and z = v = 0 1 x 
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Figure 6.3: SRL with position (left) and velocity penalties (right) 

•	 Clearly, choosing a different Cz impacts the SRL because it completely 
changes the zero-structure for the system. 
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LQR Stability Margins 

•	 LQR/SRL approach selects closed-loop poles that balance between 
system errors and the control effort. 

– Easy design iteration using r – poles move along the SRL. 

– Sometimes difficult to relate the desired transient response to the 
LQR cost function. 

•	 Particularly nice thing about the LQR approach is that the designer 
is focused on system performance issues 

•	 Turns out that the news is even better than that, because LQR exhibits 
very good stability margins 

– Consider the LQR stability robustness. 

J = 
� ∞ 

z T z + ρu T u dt 
0 

ẋ = Ax + Bu 

z = Czx, Rxx = CT 
z Cz 

B (sI − A)−1 K 

Cz 

� � 
� 

� 

– 

u 

x 

z 

•	 Study robustness in the frequency domain. 

– Loop transfer function L(s) = K(sI − A)−1B 
– Cost transfer function C(s) = Cz(sI − A)−1B 
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•	 Can develop a relationship between the open-loop cost C(s) and the 
closed-loop return difference I +L(s) called the Kalman Frequency 
Domain Equality 

1 
[I + L(−s)]T [I + L(s)] = 1 + CT (−s)C(s)

ρ 

Sketch of Proof • 

– Start with u = −Kx,	K = 1BTP , where ρ

1 
0 = −ATP − PA − Rxx + PBBTP 

ρ 

– Introduce Laplace variable s using ±sP 

1 
0 = (−sI − AT )P + P (sI − A) − Rxx + PBBTP 

ρ 

– Pre-multiply by BT (−sI − AT )−1, post-multiply by (sI − A)−1B 
– Complete the square . . . 

[I + L(−s)]T [I + L(s)] = 1 + 
1 
CT (−s)C(s)
ρ 

•	 Can handle the MIMO case, but look at the SISO case to develop 
further insights (s = jω) 

[I + L(−s)]T [I + L(s)]	 = (I + Lr(ω) − jLi(ω))(I + Lr(ω) + jLi(ω)) 

≡ |1 + L(jω)|2 

and 
CT (−jω)C(jω) = Cr 

2 + Ci 
2 = |C(jω)|2 ≥ 0 

Thus the KFE becomes • 

|1 + L(jω)|2 = 1 + 
ρ

1 |C(jω)|2 ≥ 1 
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•	 Implications: The Nyquist plot of L(jω) will always be outside the 
unit circle centered at (-1,0). 
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•	 Great, but why is this so significant? Recall the SISO form of the 
Nyquist Stability Theorem: 

If the loop transfer function L(s) has P poles in the RHP s-plane (and 
lims→∞ L(s) is a constant), then for closed-loop stability, the locus 
of L(jω) for ω : (−∞, ∞) must encircle the critical point (-1,0) P 
times in the counterclockwise direction (Ogata528) 

•	 So we can directly prove stability from the Nyquist plot of L(s). 
But what if the model is wrong and it turns out that the actual loop 
transfer function LA(s) is given by: 

LA(s) = LN (s)[1 + Δ(s)], |Δ(jω)| ≤ 1, ∀ω 
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•	 We need to determine whether these perturbations to the loop TF 
will change the decision about closed-loop stability 

⇒	 can do this directly by determining if it is possible to change the 
number of encirclements of the critical point 

−2 −1 0 1 2 3 4
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0

1

2

3

Im
ag

 P
ar

t

Real Part

stable OL

ω=0 

|L| 

|1+L| 

ω

Figure 6.4: Example of LTF for an open-loop stable system 

•	 Claim is that “since the LTF L(jω) is guaranteed to be far from the 
critical point for all frequencies, then LQR is VERY robust.” 

– Can study this by introducing a modification to the system, where 
nominally β = 1, but we would like to consider: 

�	The gain β ∈ R 

�	The phase β ∈ ejφ 

K(sI − A)−1B β� � 
�– 
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•	 In fact, can be shown that: 

– If open-loop system is stable, then any β ∈ (0, ∞) yields a stable 
closed-loop system. For an unstable system, any β ∈ (1/2, ∞) 
yields a stable closed-loop system gain margins are (1/2, ∞)⇒ 

– Phase margins of at least ±60◦


which are both huge.
⇒ 

Figure 6.5: Example loop transfer functions for open-loop stable system. 

Figure 6.6: Example loop transfer functions for open-loop unstable system. 

•	 While we have large margins, be careful because changes to some of 
the parameters in A or B can have a very large change to L(s). 

•	 Similar statements hold for the MIMO case, but it requires singular 
value analysis tools. 
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LTF for KDE


% Simple example showing LTF for KDE 
% 16.323 Spring 2007 
% Jonathan How 
% rs2.m 
% 
clear all;close all; 
set(0, ’DefaultAxesFontSize’, 14, ’DefaultAxesFontWeight’,’demi’) 
set(0, ’DefaultTextFontSize’, 14, ’DefaultTextFontWeight’,’demi’) 

a=diag([-.75 -.75 -1 -1])+diag([-2 0 -4],1)+diag([2 0 4],-1); 
b=[ 

0.8180

0.6602

0.3420

0.2897];


cz=[ 0.3412 0.5341 0.7271 0.3093];

r=1e-2;

eig(a)

k=lqr(a,b,cz’*cz,r)

w=logspace(-2,2,200)’;w2=-w(length(w):-1:1);

ww=[w2;0;w];

G=freqresp(a,b,k,0,1,sqrt(-1)*ww);


p=plot(G);

tt=[0:.1:2*pi]’;Z=cos(tt)+sqrt(-1)*sin(tt);

hold on;plot(-1+Z,’r--’);plot(Z,’r:’,’LineWidth’,2);

plot(-1+1e-9*sqrt(-1),’x’)

plot([0 0]’,[-3 3]’,’k-’,’LineWidth’,1.5)

plot([-3 6],[0 0]’,’k-’,’LineWidth’,1.5)

plot([0 -2*cos(pi/3)],[0 -2*sin(pi/3)]’,’g-’,’LineWidth’,2)

plot([0 -2*cos(pi/3)],[0 2*sin(pi/3)]’,’g-’,’LineWidth’,2)

hold off

set(p,’LineWidth’,2);

axis(’square’)

axis([-2 4 -3 3])


ylabel(’Imag Part’);xlabel(’Real Part’);title(’Stable OL’)

text(.25,-.5,’\infty’)

print -dpng -r300 tf.png


%%%%%%%%%%%%%%%%%%%%%%


a=diag([-.75 -.75 1 1])+diag([-2 0 -4],1)+diag([2 0 4],-1);

r=1e-1;

eig(a)

k=lqr(a,b,cz’*cz,r)

G=freqresp(a,b,k,0,1,sqrt(-1)*ww);


p=plot(G);

hold on;plot(-1+Z,’r--’);plot(Z,’r:’,’LineWidth’,2);

plot(-1+1e-9*sqrt(-1),’x’)

plot([0 0]’,[-3 3]’,’k-’,’LineWidth’,1.5)

plot([-3 6],[0 0]’,’k-’,’LineWidth’,1.5)

plot([0 -2*cos(pi/3)],[0 -2*sin(pi/3)]’,’g-’,’LineWidth’,2)

plot([0 -2*cos(pi/3)],[0 2*sin(pi/3)]’,’g-’,’LineWidth’,2)

hold off

set(p,’LineWidth’,2)

axis(’square’)

axis([-3 3 -3 3])


ylabel(’Imag Part’);xlabel(’Real Part’);title(’Unstable OL’)

print -dpng -r300 tf1.png
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