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16.323 Lecture 5

Calculus of Variations

e Calculus of Variations
e Most books cover this material well, but Kirk Chapter 4 does a particularly nice
job.

e See here for online reference.
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Calculus of Variations

e Goal: Develop alternative approach to solve general optimization
problems for continuous systems — variational calculus

— Formal approach will provide new insights for constrained solutions,
and a more direct path to the solution for other problems.

e Main issue — General control problem, the cost is a function of
functions x(t) and u(t).

ty
min J = h(x(ty)) —|—/t g(x(t),u(t),t))dt
subject to
x = f(x,u,t)

x(tg),ty given
m(x(ts),ty) =0
— Call J(x(t),u(t)) a functional.

e Need to investigate how to find the optimal values of a functional.

— For a function, we found the gradient, and set it to zero to find the
stationary points, and then investigated the higher order derivatives
to determine if it is a maximum or minimum.

— Will investigate something similar for functionals.
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e Maximum and Minimum of a Function

— A function f(x) has a local minimum at x* if

f(x) = f(x7)

for all admissible x in |[|x — x*|| < e

— Minimum can occur at (i) stationary point, (ii) at a boundary, or
(iii) a point of discontinuous derivative.

— If only consider stationary points of the differentiable function f(x),
then statement equivalent to requiring that differential of f satisfy:

df = g—idx =0
for all small dx, which gives the same necessary condition from
Lecture 1
oF
ox

e Note that this definition used norms to compare two vectors. Can do
the same thing with functions = distance between two functions

d = ||jxa(t) —xa (1)

where

L ||x(t)|| > 0 for all x(t), and ||x(¢)|| = O only if x(t) = 0 for all ¢
in the interval of definition.

2. ||ax(t)]| = |a|||x(t)|| for all real scalars a.
3. [l (t) +xa(t) ]| < [Pa ()] + [Ix2(t)]

e Common function norm:

POl = </t:f X(t)TX(t)dt> "
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e Maximum and Minimum of a Functional

— A functional J(x(t)) has a local minimum at x*(¢) if
J(x(t)) = J(x'(t))

for all admissible x(¢) in ||x(t) — x*(¢)|| < €

e Now define something equivalent to the differential of a function -
called a variation of a functional.

— An increment of a functional
AJ(x(t),0x(t)) = J(x(t) + dx(t)) — J(x(1))

— A variation of the functional is a linear approximation of this
increment:

AJ(x(t),0x(t)) = §J(x(t),0x(t)) + H.O.T.
i.e. 0J(x(t),0x(t)) is linear in 0x(t).
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Differential df versus increment Af shown for a function. but the same difference holds for a functional.
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Figure 5.1: Differential df versus increment A f shown for a function, but the same
difference holds for a functional.
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— it is a potential

Figure 5.2: Visualization of perturbations to function z(t) by dz(t)
change in the value of x over the entire time period of interest. Typically require

that if z(¢) is in some class (i.e., continuous), that x(t) 4+ dx(¢) is also in that class

e Fundamental Theorem of the Calculus of Variations

— Let x be a function of ¢ in the class €, and J(x) be a differentiable
functional of x. Assume that the functions in € are not constrained

by any boundaries.
— If x* is an extremal function, then the variation of J must vanish

i.e. for all admissible 0x,
0J(x(t),0x(t)) =0

— Proof is in Kirk, page 121, but it is relatively straightforward.

))dt where f has

on X*,

How compute the variation? If J(x ft I f(x
cts first and second derivatives W|th respect to X, then

0J(x(t),0x) = /f {8‘g;)z§§))}5xdt + f(x(ty))oty — f(x(t0))dto

_/ Fu(x(1)oxdt + f(x(t7)6t; — f(x(to))Sto
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Variation Examples: Scalar

e For more general problems, first consider the cost evaluated on a
scalar function x(t) with ¢, ¢ and the curve endpoints fixed.

J(x(t)) = / galt), i(t), t)dt

to

e 5J(x(t), 6x) /t "1 g(@(t), #(0), )07 + g5 (x(t), i(t), £)5] dt

— Note that i
or = —0
T o x

so 0x and 0z are not independent.

e Integrate by parts:

/udvzuv—/vdu

with u = ¢g; and dv = dxdt to get:

t; t
5.7(x(t), 62) / gul(t), (), O)3edt + [ga(x(t), (), D)6a)

to

tf d
— / — g (x(t), (1), t)dxdt
b, At
d

= [ fontoto) 20,0~ astoto) 20,0 ety

+ [ga (1), (1), t)ox],!

e Since x(ty), x(ty) given, then dx(ty) = dz(tf) = 0, yielding
d

ty
5Ge(0).00) = [ [gx<x<t>,a'c<t>,t>—ﬁggc(x(t),r(t),t)] S (1)t
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e Recall need §J = 0 for all admissible dx(t), which are arbitrary within
(to,ts) = the (first order) necessary condition for a maximum or
minimum is called Euler Equation:

dg(z(t),4(t),t) d (8g(x(t),fc(t)>t)) 0

Ox Cdt O

e Example: Find the curve that gives the shortest distance between 2
points in a plane (z¢, yo) and (¢, yy).

— Cost function — sum of differential arc lengths:

J = /x:fds_/gcjf V (dz)? + (dy)?

Ty d 2
= / \/1 + (_y) dx
- dx

— Take y as dependent variable, and = as independent one

dy .

dx

— New form of the cost:

T zf
J:/ vV 1+ y? dx—>/ g(y)dx
0 x0

— Take partials: 0g/0y =0, and
d (dg\  d (dg\ dy
de \0y)  dy \0y) dx

_d Y =9
ay \(+ 72 ) Y T o
which implies that ¢y = 0

— Most general curve with y = 0 is a line y = c1z + ¢
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Vector Functions

e Can generalize the problem by including several (V) functions z;(t)
and possibly free endpoints

J(x(t)) = / ' g(x(t), x(t), t)dt

to

with lf(), tf, X(t()) fixed.

e Then (drop the arguments for brevity)

ty
5T(x(t), 6x) = / [ gox(t) + g% (1)) dt

to

— Integrate by parts to get:

5J(x(t),0x) = /to ! [ gx—%gx] Sx(t)dt + ge(x(t;), x(t7), t1)0x(t;)

e The requirement then is that for ¢ € (¢y,t), x(t) must satisfy
At A
ox dtox

where x(ty) = x( which are the given N boundary conditions, and
the remaining N more BC follow from:

—x(ty) = xy if x; is given as fixed,

—If x(ts) are free, then

e Note that we could also have a mixture, where parts of x(t) are given
as fixed, and other parts are free — just use the rules above on each
component of x;(t¢)
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e Now consider a slight variation: the goal is to minimize

J(x(t)) = / ' g(x(t), x(t), £)dt

to
with £y, x(to) fixed, ¢y free, and various constraints on x(%y)

e Compute variation of the functional considering 2 candidate solutions:

— x(t), which we consider to be a perturbation of the optimal x*(t)
(that we need to find)

0J(x*(t),0x) = / f[gx5X(t)+gx5X(t)} dt + g(x*(ty), X" (t5), t5)0ts

to

— Integrate by parts to get:

5T(x (1), 0x) = /to ! [gx—%gxl Sx(1)dt

+ gx(xX(ty), X (ty), tr)ox(ty)
+ g(x"(tp), x"(ty), ty)oty

e |ooks standard so far, but we have to be careful how we handle the

terminal conditions
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Figure 5.3: Comparison of possible changes to function at end time when ¢; is free.

e By definition, 0x(¢) is the difference between two admissible func-
tions at time t; (in this case the optimal solution x* and another
candidate x).

— But in this case, must also account for possible changes to dty.

— Define 0x¢ as being the difference between the ends of the two
possible functions — total possible change in the final state:

(5Xf I~ 5X(tf) -+ X*(tf)étf

so 0x(ts) # 0x; in general.

e Substitute to get

0J (x*(t),0x) = /tof [ 9x — %gx] ox(t)dt + 9X<X*(tf)v X*(tf>7 tf)5Xf

+ [g(x*(ty), X (ts), ty) — gs(X"(ty), X (tg), ty)X"(ts)] 0t
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e Independent of the terminal constraint, the conditions on the solution
x*(t) to be an extremal for this case are that it satisfy the Euler
equations

d

(K" (1), 5 (1), 1) — Zge (1), 5°(8), 1) = 0

— Now consider the additional constraints on the individual elements
of x*(t¢) and t; to find the other boundary conditions

e Type of terminal constraints determines how we treat dx; and 0t
1. Unrelated

2. Related by a simple function x(t) = O(ty)

3. Specified by a more complex constraint m(x(ts),t¢) =0

o Type 1: If t; and x(¢) are free but unrelated, then dx; and 6t are
independent and arbitrary = their coefficients must both be zero.

— S0 (0), K 6),8) = 0

g(x"(tr), X" (), tr) — gu(x7(t5), X (Ef), tp)x7(t5) = 0O

gx(x"(t), x*(2), )

gx(X"(tp), x"(ty), t¢) = 0

— Which makes it clear that this is a two-point boundary
value problem, as we now have conditions at both ¢y and ¢
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o Type 2: If t; and x(ty) are free but related as x(t5) = O(ts), then

do
oxy = —(tr)0ts

— Substitute and collect terms gives

by d . . d©
0 = / gx = 9% | 0xdt + | gx(X"(8), X"(8), tp)—(ts)
to

+ (X (), X (tr), ty) — gu(XT(tp), X (ty), tp)X"(ts) | Oty

— Set coefficient of 0t to zero (it is arbitrary) = full conditions

B2 K. 1) | G 0) = X )| + 96 e e ty) = 0

— Last equation called the Transversality Condition

e To handle third type of terminal condition, must address solution of
constrained problems.
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Image removed due to copyright restrictions.

Figure 5.4: Summary of possible terminal constraints (Kirk, page 151)

June 18, 2008



Spr 2008 16.323 5-13

Example: 5-1

e Find the shortest curve from the origin to a specified line.

e Goal: minimize the cost functional (See page 5-6)

ty
J:/ 1T 20 dt
to

given that ¢y = 0, 2(0) = 0, and t; and x(ts) are free, but x(ty)
must line on the line
O(t) = =5t + 15

e Since g(x,,t) is only a function of &, Euler equation reduces to
A N,
it [T+ @7

which after differentiating and simplifying, gives ©*(¢) = 0 = answer
is a straight line

r*(t) = c1t + ¢
but since x(0) = 0, then ¢y =0

e Transversality condition gives

[[1 —1—55;((?;))2}1/2] [_5 — j;*(tf)} + [1 + i*(tf)2]1/2 —0

that simplifies to
[ (tg)] [=5 — @ (tp)] + [L+a*(t5)°] = =5a"(tp) + 1 =0
so that #*(t;) = c¢; = 1/5

— Not a surprise, as this gives the slope of a line orthogonal to the
constraint line.

e To find final time: x(t;) = —5t; 4+ 15 = t;/5 which gives ¢; ~ 2.88
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Example: 5-2

e Had the terminal constraint been a bit more challenging, such as

@(t):%([t—5]2—1):>§:t—5

e Then the transversality condition gives

[[1 +Z**((ZJ;))2]1/2] [ty —5—a*(tp)] + [L+ @ (ty)°]'* = 0

[ () [ty — 5 —a*(tp)] + [L+a*(t)T] = 0

clty—5+1 =0

e Now look at z*(¢) and O(t) at ¢;

(ty) =~ g = 5l =5 -

which gives ty =3, ¢; = 1/2 and 2*(ty) = t/2

Figure 5.5: Quadratic terminal constraint.
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Corner Conditions

e Key generalization of the preceding is to allow the possibility that the
solutions not be as smooth

— Assume that x(t) cts, but allow discontinuities in x(t), which occur
at corners.

— Naturally occur when intermediate state constraints imposed, or
with jumps in the control signal.

e Goal: with tg, tf, x(t9), and x(ts) fixed, minimize cost functional
by

J(x(t).1) = /t g(x(t), (1), t)dt

0

— Assume g has cts first/second derivatives wrt all arguments

— Even so, x discontinuity could lead to a discontinuity in g.

e Assume that x has a discontinuity at some time ¢; € (o, s), which
is not fixed (or typically known). Divide cost into 2 regions:

T(x(t), 1) = /t L g(x(), % (1), t)dt + / " o(x(t), x(), £)dt

0 31

e Expand as before — note that ¢; is not fixed

t1
5] = / [@5x+@65<] dt + g(t7)ot
to

0x 0x
tf (99 ag . 4
+/tl [(9_X5X + a_x5X] dt — g(t])ot,
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e Now IBP

t1 d
s = | [gx—%mx)] Sxdt + g(t7 )5t + g5 (410 (1)
to

ty d
+/,5 [gx - (gx)] oxdt — g(t7)dt; — g« (t])ox(t])
1

e As on 5-9, must constrain dx;, which is the total variation in the
solution at time t;

from lefthand side  dx; = dx(t]) + x(t])dt;
from righthand side  dx; = ox(t]) + x(¢])dt;

— Continuity requires that these two expressions for dx; be equal

— Already know that it is possible that x(¢;) # Xx(t]), so possible
that dx(t7) # ox(t]) as well.

e Substitute:

0J = /tol lgx - %(%)] oxdt + [g(ty) — gx(ty)%(t7)] ot1 + gx(ty )%

i /tlf [gx B % (gf‘i)] oxdt — [g(t]) — gu(t7)X(t7)] 6t1 — gx(t7)0%

e Necessary conditions are then:

d

e——(g2) = 0 te (ty,t
g dt<g> € (to,ty)

gx(ty) = gx(t))

g(ty) — gx(t)x(t1) = g(t7) — gx(t7)%(t])

— Last two are the Weierstrass-Erdmann conditions
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e Necessary conditions given for a special set of the terminal conditions,
but the form of the internal conditions unchanged by different terminal
constraints

— With several corners, there are a set of constraints for each

— Can be used to demonstrate that there isn't a corner

e Typical instance that induces corners is intermediate time constraints
of the form x(t;) = 0(ty).

— i.e., the solution must touch a specified curve at some point in time
during the solution.

e Slightly complicated in this case, because the constraint couples the
allowable variations in 0x; and dt since

d@ :
(SXl = Eétl = 05t1

— But can eliminate 0x; in favor of 0ty in the expression for 0./ to
get new corner condition:

glt7)+gx(t7) [0(17) = x(t7)] = g(t7)+gx () |O(t)) = x(¢))

— So now gx(t7) = g«(t7") no longer needed, but have x(t;) = (t)
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Corner Example

e Find shortest length path joining the points + = 0,f = —2 and
x = 0,t = 1 that touches the curve z = t*> + 3 at some point

e In this case, J = f_12 V1 + @?2dt with z(1) = 2(—2) =0
and z(t1) =t + 3

e Note that since g is only a function of &, then solution x(¢) will only
be linear in each segment (see 5-13)

segment 1 x(t) = a + bt
segment 2 x(t) = ¢+ dt

— Terminal conditions: x(—2)=a—2b=0and (1) =c+d=0

e Apply corner condition:
o T(t)) L
\/1+a;t s L 2t — @t
(0 + s 2 )]
Cl2ra(ty) 142t @)
VIdat))? 1+ at])?
1420ty 14 2dty

VI+R? JVi+d&

which gives:

e Solve using fsolve to get:

a = 3.0047,b = 1.5474, c = 2.8362,d = —2.8362, t; = —0.0590

function F=myfunc(x); %
% x=[a b cdtl]l; %
F=[x(1)-2%x(2);
x(3)+x(4);
(1+2%x(2)*x(5) )/ (1+x(2)"2) " (1/2) - (1+2*xx(4)*x(5))/(1+x(4)"2)"(1/2);
x(D)+x(2)*x(8) - (x(5)72+3);
x(3)+x(4)*x(5) - (x(5)"2+3)1;
return %
x = fsolve(’myfunc’,[2 1 2 -2 0]°)
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Constrained Solutions

e Now consider variations of the basic problem that include constraints.

e For example, if the goal is to find the extremal function x* that
minimizes
by
Toxtt). 1) = [ gl x(0) )
to
subject to the constraint that a given set of n differential equations

be satisfied
£(x(t), x(1), ) = 0

where we assume that x € R"™™ (take t; and x(¢s) to be fixed)

e As with the basic optimization problems in Lecture 2, proceed by
augmenting cost with the constraints using Lagrange multipliers

— Since the constraints must be satisfied at all time, these multipliers
are also assumed to be functions of time.
by
Ja(x(t),t) = | {g(x,%,t) + p(t) f(x, %, 1) } dt
to
— Does not change the cost if the constraints are satisfied.
— Time varying Lagrange multipliers give more degrees of freedom in

specifying how the constraints are added.

e Take variation of augmented functional considering perturbations to
both x(t) and p(t)

5J (xt(t), 0x(t), p(t), op(t))
- f { [ gx T prx] 5X<t) + [gic + prX} 5X(t) + fTéP(t)} dt

to
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e As before, integrate by parts to get:
0J(x(t),0x(t), p(t), op(t))
ty d
- / ({ [ox+P'E] — p [9x + p" fx] } ox(t) + fT5p(t)> dt
to

e To simplify things a bit, define

ga(x(8), %(8),1) = g(x(t), %(t),t) + p(t) £(x(1), (), 1)

e On the extremal, the variation must be zero, but since éx(t) and
Op(t) can be arbitrary, can only occur if

0ga(x(t),X(t), 1) _ d (aga(X(t)ax(t)at)>

Ox Cdt ox

£(x(t),%(t),t) = 0

— which are obviously a generalized version of the Euler equations
obtained before.

e Note similarity of the definition of g, here with the Hamiltonian on
page 4-4.

e Will find that this generalization carries over to future optimizations
as well.
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General Terminal Conditions

e Now consider Type 3 constraints on 5-10, which are a very general
form with ¢ free and x(Z¢) given by a condition:

m(x(ly),tf) =0

e Constrained optimization, so as before, augment the cost functional

ty
Jox(t).8) = hl(ty) ) + [ glot) x(0) )

to

with the constraint using Lagrange multipliers:

Ja(X(t)v v, t) = h<X<tf)7 tf>+VTm<X<tf)7 tf>+/ f g(X(t), X(t)v t)dt

to

e Considering changes to x(t), tf, x(t¢) and v, the variation for .J, is

0J, = hx(tf)(SXf + htf(Stf + mT(tf)51/ + vl (mx(tf)5xf + mtf(tf)étf>

ty
—|—/ [QX5X + gx(5x] dt + g(tf)5tf

= [hx(ty) + v my(ty)] 0xs + [htf +vimy,(tf) + g(tf)} ot s

tf d
+m’ (t)ov + / [gx - %gx] oxdt + gx(tr)ox(ty)

to
— Now use that dx; = 6x(ts) + x(t7)dt; as before to get

0o = [hx(ty) + v my(t) + gilty)] 0x;
—ﬂ%+umqm+mm gilL)x(ty)| oty +m(t7)dv

[ e ]
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e Looks like a bit of a mess, but we can clean it up a bit using
w(x(ty),v,ty) = h(x(ty), ty) + v m(x(ty), ty)
to get
0Ja = lwx(ty) + gx(ts)] 0x;
+ |wi, + glts) — galtp)x(ty)] oty +mT(t)ow

+ 9x — 770x% X
" dt

— Given the extra degrees of freedom in the multipliers, can treat all

of the variations as independent = all coefficients must be zero to
achieve 6.J, = 0

e So the necessary conditions are

d 0 (dimn)
x — —(Jx = imn
9 dtg
wx(ts) + gx(t;) =0 (dim n)
we, +9(ty) — gx(tp)x(ty) =0 (dim 1)
— With x(ty) = x¢ (dimn) and m(x(¢y), %) = 0 (dim m) combined
with last 2 conditions = 2n +m + 1 constraints

— Solution of Eulers equation has 2n constants of integration for x(%),
and must find v (dim m) and ¢ty = 2n 4+ m + 1 unknowns

e Some special cases:
—If ¢y is fixed, h = h(x(tf)), m — m(x(t¢)) and we lose the last
condition in box — others remain unchanged

—If ¢4 is fixed, x(ts) free, then there is no m, no v and w reduces
to h.

e Kirk's book also considers several other type of constraints.
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