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16.323 Lecture 3 

Dynamic Programming 

• Principle of Optimality 

• Dynamic Programming 

• Discrete LQR 
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Dynamic Programming


• DP is a central idea of control theory that is based on the 

Principle of Optimality: Suppose the optimal solution for a 
problem passes through some intermediate point (x1, t1), then 
the optimal solution to the same problem starting at (x1, t1) 
must be the continuation of the same path. 

• Proof? What would the implications be if it was false? 

• This principle leads to: 

– Numerical solution procedure called Dynamic Programming for 
solving multi-stage decision making problems. 

– Theoretical results on the structure of the resulting control law. 

Texts: • 

– Dynamic Programming (Paperback) by Richard Bellman (Dover) 
– Dynamic Programming and Optimal Control (Vol 1 and 2) by D. P. 

Bertsekas 
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Classical Examples 

•	 Shortest Path Problems (Bryson figure 4.2.1) – classic robot naviga­

tion and/or aircraft flight path problems 

•	 Goal is to travel from A to B in the shortest time possible 

– Travel times for each leg are shown in the figure 
– There are 20 options to get from A to B – could evaluate each 

and compute travel time, but that would be pretty tedious 

•	 Alternative approach: Start at B and work backwards, invoking 
the principle of optimality along the way. 

– First step backward can be either up (10) or down (11) 

•	 Consider the travel time from point x 

– Can go up and then down 6 + 10 = 16 
June 18, 2008 
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– Or can go down and then up 7 + 11 = 18 

– Clearly best option from x is go up, then down, with a time of 16 

– From principle of optimality, this is best way to get to B for any 
path that passes through x. 

• Repeat process for all other points, until finally get to initial point 
⇒ shortest path traced by moving in the directions of the arrows. 

• Key advantage is that only had to find 15 numbers to solve this 
problem this way rather than evaluate the travel time for 20 paths 

– Modest difference here, but scales up for larger problems. 

– If n = number of segments on side (3 here) then: 
� Number of routes scales as ∼ (2n)!/(n!)2 

� Number DP computations scales as ∼ (n + 1)2 − 1 

June 18, 2008 
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Example 2 

• Routing Problem [Kirk, page 56] through a street maze 

– Similar problem (minimize cost to travel from c to h) with a slightly 
more complex layout 

• Once again, start at end (h) and work backwards 

– Can get to h from e, g directly, but there are 2 paths to h from e. 

– Basics: J� = 2, and gh 

J� 
gh = 5 fh = Jfg + J� 

– Optimal cost from e to h given by 

J� = min{Jefgh, Jeh} = min{[Jef + J� 
fh], Jeh}eh 

= min{2 + 5, 8} = 7 e f g h→ → → 

Also J� = J� = 10 • ehdh de + J� 

– Principle of optimality tells that, since we already know the best 
way to h from e, do not need to reconsider the various options 
from e again when starting at d – just use the best. 

• Optimal cost from c to h given by 

J� 
dh], [Jcf + J� 

ch = min{Jcdh, Jcfh} = min{[Jcd + J� 
fh]} 

= min{[5 + 10], [3 + 5]} = 8 c f g h→ → → 

June 18, 2008 
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•	 Examples show the basis of dynamic programming and use of principle 
of optimality. 

– In general, if there are numerous options at location α that next 
lead to locations x1, . . . , xn, choose the action that leads to 

Jαh 
� = min [Jαx1 + Jx

� 
1h

], [Jαx2 + Jx
� 
2h

], . . . , [Jαxn + Jx
� 
nh

] 
xi 

•	 Can apply the same process to more general control problems. Typi­

cally have to assume something about the system state (and possible 
control inputs), e.g., bounded, but also discretized. 

Roadmap: 

– Grid the time/state and quantized control inputs. 

– Time/state grid, evaluate necessary control 

– Discrete time problem discrete LQR ⇒ 

– Continuous time problem calculus of variations cts LQR ⇒	 ⇒ 

Figure 3.1: Classic picture of discrete time/quantized space grid with the linkages 
possible through the control commands. Again, it is hard to evaluate all options 
moving forward through the grid, but we can work backwards and use the principle 
of optimality to reduce this load. 

June 18, 2008 
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Classic Control Problem 

•	 Consider the problem of minimizing: 
tf 

min J = h(x(tf )) + g(x(t), u(t), t)) dt 
t0 

subject to 

ẋ = a(x, u, t) 

x(t0) = fixed 

tf = fixed 

– Other constraints on x(t) and u(t) can also be included. 

•	 Step 1 of solution approach is to develop a grid over space/time. 

– Then look at possible final states xi(tf ) and evaluate final costs 

– For example, can discretize the state into 5 possible cases x1 ,. . . ,x5 

Ji
�	 = h(xitf 

) , ∀ i 

•	 Step 2: back up 1 step in time and consider all possible ways of 
completing the problem. 

– To evaluate the cost of a control action, must approximate the 
integral in the cost. 

June 18, 2008 
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Consider the scenario where you are at state xi at time tk, and apply •	
control uijk to move to state xj at time tk+1 = tk + Δt. 

– Approximate cost is 
tk+1 

g(x(t), u(t), t)) dt ≈ g(xk
i , uij, tk)Δtk 

tk 

– Can solve for control inputs directly from system model: 
j i 

j i i ij i ij xk+1 − xk xk+1 ≈ xk + a(xk, uk , tk)Δt a(xk, uk , tk) = ⇒	
Δt 

ijwhich can be solved to find uk . 

– Process is especially simple if the control inputs are affine: 

ẋ = f(x, t) + q(x, t)u 

which gives 
j i 

uij	 = q(xk
i , tk)

−1 xk+1 − xk − f(xk
i , tk)k Δt 

So for any combination of xi and xj can evaluate the incremental •	 k k+1


cost ΔJ(xk
i , xjk+1) of making this state transition


Assuming already know the optimal path from each new terminal •	
point (xjk+1), can establish optimal path to take from xik using 

J�(xk
i , tk) = min ΔJ(xk

i , xk
j 
+1) + J�(xk

j 
+1)j

xk+1 

– Then for each xk
i , output is: 

�	Best xk
i 
+1 to pick, because it gives lowest cost 

�	Control input required to achieve this best cost. 

•	 Then work backwards in time until you reach xt0, when only one value 
of x is allowed because of the given initial condition. 

June 18, 2008 
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Other Considerations 

•	 With bounds on the control, then certain state transitions might not 
be allowed from 1 time-step to the next. 

•	 With constraints on the state, certain values of x(t) might not be 
allowed at certain times t. 

•	 Extends to free end time problems, where 
tf 

min J = h(x(tf ), tf ) + g(x(t), u(t), t)) dt 
t0 

with some additional constraint on the final state m(x(tf ), tf ) = 0. 

– Gives group of points that (approximately) satisfy the terminal 
constraint 

– Can evaluate cost for each, and work backwards from there. 

June 18, 2008 
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Process extends to higher dimensional problems where the state is a • 
vector. 

– Just have to define a grid of points in x and t, which for two 
dimensions would look like: 

Figure 3.2: At any time tk, have a two dimensional array of grid points. 

Previous formulation picked x’s and used those to determine the u’s. • 

– For more general problems, might be better off picking the u’s and 
using those to determine the propagated x’s 

i i ij jJ�(xk, tk) = min ΔJ(xk, uk ) + J�(xk+1, tk+1)
ij 
uk 

i ij j= min g(xk, uk , tk)Δt + J�(xk+1, tk+1)
ij 
uk 

– To do this, must quantize the control inputs as well. 

– But then likely that terminal points from one time step to the next 
will not lie on the state discrete points must interpolate the cost ⇒ 
to go between them. 

June 18, 2008 
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•	 Option 1: find the control that moves the state from a point on 
one grid to a point on another. 

•	 Option 2: quantize the control inputs, and then evaluate the result­

ing state for all possible inputs 

xjk+1 = x ik + a(x ik, u
ij
k , tk)Δt 

– Issue at that point is that xjk+1 probably will not agree with the 
tk+1 grid points must interpolate the available J� .⇒ 

– See, for example, R.E.Larson “A survey of dynamic programming 
computational procedures”, IEEE TAC Dec 1967 (on web) or sec­
tion 3.6 in Kirk. 

Do this for all admissible uij and resulting xj , and then take •	 k k+1

J�(x ik, tk) = min J(x ik, u
ij
k , tk)ij 

uk 

•	 Main problem with dynamic programming is how badly it scales. 

– Given Nt points in time and Nx quantized states of dimension n 

– Number of points to consider is N = NtNx
n 

⇒ “Curse of Dimensionality” – R. Bellman, Dynamic Pro­

gramming (1957) – now from Dover. 

June 18, 2008 
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DP Example 

•	 See Kirk pg.59: �	 T 

J = x 2(T ) + λ u 2(t) dt 
0 

with ẋ = ax + u, where 0 ≤ x ≤ 1.5 and −1 ≤ u ≤ 1 

•	 Must quantize the state within the allowable values and time within 
the range t ∈ [0, 2] using N=2, Δt = T/N = 1. 

– Approximate the continuous system as: 

ẋ ≈ 
x(t + Δ

Δ

t) 
t 
− x(t)

= ax(t) + u(t) 

which gives that 

xk+1 = (1 + aΔt)xk + (Δt)uk 

– Very common discretization process (Euler integration approxima­

tion) that works well if Δt is small 

•	 Use approximate calculation from previous section – cost becomes 

N−1

J = x 2(T ) + λ uk
2Δt 

k=0 

•	 Take λ = 2 and a = 0 to simplify things a bit. 

– With 0 ≤ x(k) ≤ 1.5, take x quantized into four possible values 
xk	∈ {0, 0.5, 1.0, 1.5} 

– With control bounded |u(k)| ≤ 1, assume it is quantized into five 
possible values: uk ∈ {−1, −0.5, 0, 0.5, 1} 

June 18, 2008 
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• Start – evaluate cost associated with all possible terminal states 
j J� j j 

2 )2
= h(x
 ) = (x
x
2
 2
 2


0 0 
0.5 0.25 
1 1 

1.5 2.25 

• Given x1 and possible x2, can evaluate the control effort required to 
make that transition: 

x
j 2
 = x
i
1
+ u(1)
u(1)


x1 0 0.5 1 1.5 
0 0 0.5 1 1.5 

0.5 -0.5 0 0.5 1 
1 -1 -0.5 0 0.5 

1.5 -1.5 -1 -0.5 0 

i


which can be used to compute the cost increments: 
ij jΔJ
 x
12
 2


x1 0 0.5 1 1.5 
0 0 0.5 2 XX 

0.5 0.5 0 0.5 2 
1 2 0.5 0 0.5 

1.5 XX 2 0.5 0 

ij 
12 + J� 

2
j(x2

i


and costs at time t = 1 given by J1 = ΔJ
 )


j

2
xJ1 

i
 0 0.5 1 1.5
x
1


0 
0.5 

1 
1.5 

0 
0.5 
2 

XX 

0.75 
0.25 
0.75 
2.25 

3 
1.5 
1 

1.5 

XX 
4.25 
2.75 
2.25 

June 18, 2008 
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Take min across each row to determine best action at each possible •	
x1 ⇒ J1 

�(xj 1) 

i jx1 x2→ 
0 0→ 

0.5 0.5→ 
1 0.5→ 

1.5 1→ 

Can repeat the process to find the costs at time t = 0 which are •	
J0 = ΔJij 1 (x

j )01 + J� 
1


j
J0 x1 

x0 0 0.5 1 1.5 
0 0 0.75 2.75 XX 

0.5 0.5 0.25 1.25 3.5 
1 2 0.75 0.75 2 

1.5 XX 2.25 1.25 1.5 

i


and again, taking min across the rows gives the best actions: 

i jx0 x1→ 
0 0→ 

0.5 0.5→ 
1 0.5→ 

1.5 1→ 

•	 So now we have a complete strategy for how to get from any x0 
i to 

the best x2 to minimize the cost 

– This process can be highly automated, and this clumsy presenta­

tion is typically not needed. 

June 18, 2008 
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Discrete LQR 

•	 For most cases, dynamic programming must be solved numerically – 
often quite challenging. 

•	 A few cases can be solved analytically – discrete LQR (linear quadratic 
regulator) is one of them 

•	 Goal: select control inputs to minimize 

1	 1 
N−1

J	 = x T [x T T 
NHxN + kQkxk + uk Rkuk]

2	 2 
k=0 

so that 
1 � T T 

� 
gd(xk, uk) = xkQkxk + uk Rkuk

2 
subject to the dynamics 

xk+1 = Akxk + Bkuk 

– Assume that H = HT ≥ 0, Q = QT ≥ 0, and R = RT > 0 

– Including any other constraints greatly complicates problem 

•	 Clearly JN
� [xN ] = 2

1 xT HxN ⇒ now need to find JN
� 
−1[xN−1]N 

JN
� 
−1[xN−1] = min	 N [xN ]}

uN−1 
{gd(xN−1, uN−1) + J� 

1 � � 
= min xN

T 
−1QN−1xN−1 + uN

T 
−1RN−1uN−1 + xN

T HxN ] 
uN−1 2 

•	 Note that xN = AN−1xN−1 + BN−1uN−1, so that 

1 � 
JN
� 
−1[xN−1] = min x T	 T 

N−1QN−1xN−1 + uN−1RN−1uN−1 
uN −1 2 � 

+ {AN−1xN−1 + BN−1uN−1} T H {AN−1xN−1 + BN−1uN−1} 

June 18, 2008 
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• Take derivative with respect to the control inputs 

∂JN
� 
−1[xN−1] T 

∂uN−1 
= uN−1RN−1 +{AN−1xN−1 + BN−1uN−1} T HBN−1 

• Take transpose and set equal to 0, yields 

RN−1 + BN
T 
−1HBN−1 uN−1 + BN

T 
−1HAN−1xN−1 = 0 

• Which suggests a couple of key things: 

– The best control action at time N − 1, is a linear state feedback 
on the state at time N − 1: 

u �N−1 = − 
� 
RN−1 + BN

T 
−1HBN−1 

�−1 
BN
T 
−1HAN−1xN−1 

≡ −FN−1xN−1 

– Furthermore, can show that 

∂2J� 
N−1[xN−1]

= RN−1 + BN
T 
−1HBN−1 > 0 

∂u2 
N−1 

so that the stationary point is a minimum 

• With this control decision, take another look at 

JN
� 
−1[xN−1] = 

2

1 
xN
T 
−1 

� 
QN−1 + FN

T 
−1RN−1FN−1+ 

{AN−1 − BN−1FN−1} T H {AN−1 − BN−1FN−1} xN−1 

1 T
≡ 
2 
xN−1PN−1xN−1


– Note that PN = H, which suggests a convenient form for gain F : 

FN−1 = 
� 
RN−1 + BN

T 
−1PNBN−1 

�−1 
BN
T 
−1PNAN−1 (3.20) 

June 18, 2008 
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•	 Now can continue using induction – assume that at time k the control 
will be of the form u� = −Fkxk where k 

Fk = 
� 
Rk + Bk

TPk+1Bk 
�−1 

Bk
TPk+1Ak 

and Jk
�[xk] = 1

2x
T
k Pkxk where 

Pk = Qk + Fk
TRkFk + {Ak − BkFk} T Pk+1 {Ak − BkFk} 

– Recall that both equations are solved backwards from k + 1 to k. 

•	 Now consider time k �− 1, with � 

Jk
� 
−1[xk−1] = min 

1 
xk
T 
−1Qk−1xk−1 + uk

T 
−1Rk−1uk−1 + Jk

�[xk] 
uk−1 2 

•	 Taking derivative with respect to uk−1 gives, 

∂Jk
� 
−1[xk−1] T T =	u 
∂uk−1 

k−1Rk−1 + {Ak−1xk−1 + Bk−1uk−1} PkBk−1 

so that the best control input is 

uk−1	 = − 
� 
Rk−1 + Bk

T 
−1PkBk−1 

�−1 
Bk
T 
−1PkAk−1xk−1 

= −Fk−1xk−1 

•	 Substitute this control into the expression for Jk
� 
−1[xk−1] to show that 

Jk
� 
−1[xk−1] = 

1 
x Tk−1Pk−1xk−1

2 
and 

Pk−1 =	 Qk−1 + Fk
T 
−1Rk−1Fk−1 + 

{Ak−1 − Bk−1Fk−1} T Pk {Ak−1 − Bk−1Fk−1} 

•	 Thus the same properties hold at time k −1 and k, and N and N −1 
in particular, so they will always be true. 

June 18, 2008 
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Algorithm


• Can summarize the above in the algorithm: 

(i) PN = H 

(ii) Fk = 
� 
Rk + Bk

TPk+1Bk 
�−1 

Bk
TPk+1Ak 

(iii) Pk = Qk + Fk
TRkFk + {Ak − BkFk} T Pk+1 {Ak − BkFk} 

cycle through steps (ii) and (iii) from N − 1 0.→ 

Notes:• 

– The result is a control schedule that is time varying, even if A, B, 
Q, and R are constant. 

– Clear that Pk and Fk are independent of the state and can be 
computed ahead of time, off-line. 

– Possible to eliminate the Fk part of the cycle, and just cycle 
through Pk 

Pk = Qk+Ak
T Pk+1 − Pk+1Bk Rk + Bk

TPk+1Bk 
−1 
Bk
TPk+1 Ak 

– Initial assumption Rk > 0 ∀ k can be relaxed, but we must ensure 
that Rk+1 + Bk

TQk+1Bk > 0. 2 

• In the expression: 

i i ij jJ�(xk, tk) = min g(xk, uk , tk)Δt + J�(xk+1, tk+1)
ij
uk 

the term J�(xk
j 
+1, tk+1) plays the role of a “cost-to-go”, which is a 

key concept in DP and other control problems. 

2Anderson and Moore, Optimal Control: Linear Quadratic Methods, pg. 30 

June 18, 2008 



� 

Spr 2008	 16.323 3–18 
Suboptimal Control 

The optimal initial cost is J0 
�[x0] = 2

1 x0 
TP0x0. One question: how • 

would the cost of a different controller strategy compare? 

uk = −Gkxk 

• Can substitute this controller into the cost function and compute 

1 T 1 
N−1

T TJ	 = xNHxN + [xkQkxk + uk Rkuk]
2	 2 

k=0 
N−1

1	 1 � 
⇒	 JG =

2 
xN
T HxN +

2 
xk
T [Qk + Gk

TRkGk]xk 

k=0 

where 
xk+1 = Akxk + Bkuk = (Ak − BkGk)xk 

Note that: • 

1 
N�−1 � 

T	 T 
� 1 � T T 

� 
xk+1Sk+1xk+1 − xk Skxk	 = xNSN xN − x0 S0x0

2	 2 
k=0 

•	 So can rearrange the cost function as 
N−1

JG =
1 
xN
T HxN +

1 �� 
xk
T [Qk + GT

kRkGk − Sk]xk
2	 2 

k=0 � 1 �	 � 
+ x Tk+1Sk+1xk+1 − 

2 
x TNSN xN − x T 

0 S0x0 

– Now substitute for xk+1 = (Ak − BkGk)xk, and define Sk so that 

SN = H 

Sk = Qk + Gk
TRkGk + {Ak − BkGk} T Sk+1 {Ak − BkGk} 

which is another recursion, that gives 
1 TJG = x0 S0x0
2 

•	 So that for a given x0, we can compare P0 and S0 to evaluate the 
extent to which the controller is suboptimal. 

June 18, 2008 
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Steady State 

Assume3 • 

– Time invariant problem (LTI) – i.e., A,B,Q,R are constant 
– System [A,B] stabilizable – uncontrollable modes are stable. 

•	 For any H, then as N →∞, the recursion for P tends to a constant 
solution with Pss ≥ 0 that is bounded and satisfies (set Pk ≡ Pk+1) 

Pss = Q + AT Pss − PssB R + BTPssB 
−1 
BTPss A (3.21) 

– Discrete form of the famous Algebraic Riccati Equation 

– Typically hard to solve analytically, but easy to solve numerically. 

– Can be many PSD solutions of (3.21), recursive solution will be 
one. 

•	 Let Q = CTC ≥ 0, which is equivalent to having cost measurements 
z = Cx and state penalty zT z = xTCTCx = xTQx. If [A,C] 
detectable, then: 

– Independent of H, recursion for P has a unique steady state 
solution Pss ≥ 0 that is the unique PSD solution of (3.21). 

– The associated steady state gain is 

Fss = R + BTPssB 
−1 
BTPssA 

and using Fss, the closed-loop system xk+1 = (A − BFss)xk is 
asymptotically stable, i.e., 

|λ(A − BFss)| < 1 

– Detectability required to ensure that all unstable modes penalized 
in state cost. 

•	 If, in addition, [A,C] observable4, then there is a unique Pss > 0 

3See Lewis and Syrmos, Optimal Control, Thm 2.4-2 and Kwakernaak and Sivan, Linear Optimal Control Systems, Thm 6.31 

4Guaranteed if Q > 0 

June 18, 2008 
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•	 Integrator scalar system ẋ = u, which gives 

xk+1 = xk + ukΔt


so that A = 1, B = Δt = 1 and

N−1

1 1 � 
2 2J = x(N)2 + [xk + uk]4 2 

k=0 

so that N = 10, Q = R = 1, H = 1/2 (numbers in code/figures might differ) 

•	 Note that this is a discrete system, and the rules for stability are 
different – need |λi(A − BF )| < 1. 

– Open loop system is marginally stable, and a gain 1 > F > 0 will 
stabilize the system. 

Figure 3.3: discrete LQR comparison to constant gain, G = −0.25 

•	 Plot shows discrete LQR results: clear that the Pk settles to a con­

stant value very quickly 

– Rate of reaching steady state depends on Q/R. For Q/R large 
reaches steady state quickly 

•	 (Very) Suboptimal F gives an obviously worse cost 

June 18, 2008 
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•	 But a reasonable choice of a constant F in this case gives nearly 
optimal results. 

Figure 3.4: discrete LQR comparison to constant gain, G = F (0)


Figure 3.5: State response comparison 

•	 State response consistent 

June 18, 2008 
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Gain Insights 

•	 Note that from Eq. 3.20 we know that 

FN−1 = 
� 
RN−1 + BN

T 
−1PNBN−1 

�−1 
BN
T 
−1PNAN−1 

which for the scalar case reduces to 
BN−1PNAN−1 

=FN−1 
RN−1 + BN

2 
−1PN 

•	 So if there is a high weighting on the terminal state, then H → ∞ 
and PN is large. Thus 

FN−1 → 
BN−1PNAN−1 A 
BN

2 
−1PN 

→ 
B 

and 
A 

xN = (A − BF )xN−1 = (A − B )xN−1 = 0 
B 

regardless of the value of xN−1. This is a nilpotent controller. 

•	 If control penalty set very small, so that R → 0 (Q/R large), then 

FN−1 → 
BN

B
−1

2 

PNAN−1 A 
PN 

→ 
BN−1


and xN = 0 as well.


– State penalized, but control isn’t, so controller will exert as much 
effort as necessary to make x small. 

– In fact, this will typically make x(1) = 0 regardless of x(0) if there 
are no limits on the control effort. 

June 18, 2008 
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Discrete scalar LQR


% 16.323 Spring 2008

% Jonathan How

% integ.m: integrator system

%

clear all

close all

%A=1;B=1;Q=1;R=1;H=0.5;N=5;

A=1;B=1;Q=1;R=2;H=.25;N=10;


P(N+1)=H; % shift indices to avoid index of 0 
for	 j=N-1:-1:0


i=j+1; % shift indices to avoid index of 0

F(i)=inv(R+B’*P(i+1)*B)*B’*P(i+1)*A;

P(i)=(A-B*F(i))’*P(i+1)*(A-B*F(i))+F(i)’*R*F(i)+Q;


end 

% what if we used a fixed gain of F(0), which stabilizes

S(N+1)=H; % shift indices to avoid index of 0

for j=N-1:-1:0


i=j+1; % shift indices to avoid index of 0

G(i)=F(1);

S(i)=(A-B*G(i))’*S(i+1)*(A-B*G(i))+G(i)’*R*G(i)+Q;


end


time=[0:1:N];

figure(1);clf

plot(time,P,’ks’,’MarkerSize’,12,’MarkerFaceColor’,’k’)

hold on

plot(time,S,’rd’,’MarkerSize’,12,’MarkerFaceColor’,’r’)

plot(time(1:N),F,’bo’,’MarkerSize’,12,’MarkerFaceColor’,’b’)

hold off

legend(’Optimal P’,’Suboptimal S with G=F(0)’,’Optimal F’,’Location’,’SouthWest’)

xlabel(’Time’)

ylabel(’P/S/F’)

text(2,1,[’S(0)-P(0) = ’,num2str(S(1)-P(1))])

axis([-.1 N -1 max(max(P),max(S))+.5] )

print -dpng -r300 integ.png


% what if we used a fixed gain of G=0.25, which stabilizes

S(N+1)=H; % shift indices to avoid index of 0

for j=N-1:-1:0


i=j+1; % shift indices to avoid index of 0

G(i)=.25;

S(i)=(A-B*G(i))’*S(i+1)*(A-B*G(i))+G(i)’*R*G(i)+Q;


end


figure(2)

%plot(time,P,’ks’,time,S,’rd’,time(1:N),F,’bo’,’MarkerSize’,12)

plot(time,P,’ks’,’MarkerSize’,12,’MarkerFaceColor’,’k’)

hold on

plot(time,S,’rd’,’MarkerSize’,12,’MarkerFaceColor’,’r’)

plot(time(1:N),F,’bo’,’MarkerSize’,12,’MarkerFaceColor’,’b’)

hold off

legend(’Optimal P’,’Suboptimal S with G=0.25’,’Optimal F’,’Location’,’SouthWest’)

text(2,1,[’S(0)-P(0) = ’,num2str(S(1)-P(1))])

axis([-.1 N -1 max(max(P),max(S))+.5] )

ylabel(’P/S/F’)

xlabel(’Time’)

print -dpng -r300 integ2


% state response

x0=1;xo=x0;xs1=x0;xs2=x0;

for j=0:N-1;


k=j+1;

xo(k+1)=(A-B*F(k))*xo(k);

xs1(k+1)=(A-B*F(1))*xs1(k);
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67 xs2(k+1)=(A-B*G(1))*xs2(k); 
68 end 
69 figure(3) 
70 plot(time,xo,’bo’,’MarkerSize’,12,’MarkerFaceColor’,’b’) 
71 hold on 
72 plot(time,xs1,’ks’,’MarkerSize’,9,’MarkerFaceColor’,’k’) 
73 plot(time,xs2,’rd’,’MarkerSize’,12,’MarkerFaceColor’,’r’) 
74 hold off 
75 legend(’Optimal’,’Suboptimal with G=F(0)’,’Suboptimal with G=0.25’,’Location’,’North’) 
76 %axis([-.1 5 -1 3] ) 
77 ylabel(’x(t)’) 
78 xlabel(’Time’) 
79 print -dpng -r300 integ3.png; 
80 
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•	 Def: LTI system is controllable if, for every x�(t) and every finite 
T > 0, there exists an input function u(t), 0 < t ≤ T , such that the 
system state goes from x(0) = 0 to x(T ) = x� . 

– Starting at 0 is not a special case – if we can get to any state 
in finite time from the origin, then we can get from any initial 
condition to that state in finite time as well. 5 

•	 Thm: LTI system is controllable iff it has no uncontrollable states. 

– Necessary and sufficient condition for controllability is that 

rank Mc
 � rank

� 
B
 AB A2B An−1B· · · = n


•	 Def: LTI system is observable if the initial state x(0) can be 
uniquely deduced from the knowledge of the input u(t) and output 
y(t) for all t between 0 and any finite T > 0. 

– If x(0) can be deduced, then we can reconstruct x(t) exactly be­

cause we know u(t) � we can find x(t) ∀ t. 

•	 Thm: LTI system is observable iff it has no unobservable states. 

– We normally just say that the pair (A,C) is observable. 

– Necessary and sufficient condition for observability is that ⎤⎡ 

rank Mo
 � rank


⎢⎢⎢⎢⎢⎣


C

CA

CA2


... 
CAn−1 

⎥⎥⎥⎥⎥⎦

= n


5This controllability from the origin is often called reachability. 
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