
MIT OpenCourseWare
http://ocw.mit.edu

16.323 Principles of Optimal Control
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

16.323 Lecture 3

Dynamic Programming

• Principle of Optimality

• Dynamic Programming

• Discrete LQR

Figure by MIT OpenCourseWare.

Spr 2008 16.323 3–1
Dynamic Programming

• DP is a central idea of control theory that is based on the

Principle of Optimality: Suppose the optimal solution for a
problem passes through some intermediate point (x1, t1), then
the optimal solution to the same problem starting at (x1, t1)
must be the continuation of the same path.

• Proof? What would the implications be if it was false?

• This principle leads to:

– Numerical solution procedure called Dynamic Programming for
solving multi-stage decision making problems.

– Theoretical results on the structure of the resulting control law.

Texts: •

– Dynamic Programming (Paperback) by Richard Bellman (Dover)
– Dynamic Programming and Optimal Control (Vol 1 and 2) by D. P.

Bertsekas

June 18, 2008

Spr 2008	 16.323 3–2

Classical Examples

•	 Shortest Path Problems (Bryson figure 4.2.1) – classic robot naviga­

tion and/or aircraft flight path problems

•	 Goal is to travel from A to B in the shortest time possible

– Travel times for each leg are shown in the figure
– There are 20 options to get from A to B – could evaluate each

and compute travel time, but that would be pretty tedious

•	 Alternative approach: Start at B and work backwards, invoking
the principle of optimality along the way.

– First step backward can be either up (10) or down (11)

•	 Consider the travel time from point x

– Can go up and then down 6 + 10 = 16
June 18, 2008

10

6

7

11

x B

Figure by MIT OpenCourseWare.

Figure by MIT OpenCourseWare.

Spr 2008 16.323 3–3

– Or can go down and then up 7 + 11 = 18

– Clearly best option from x is go up, then down, with a time of 16

– From principle of optimality, this is best way to get to B for any
path that passes through x.

• Repeat process for all other points, until finally get to initial point
⇒ shortest path traced by moving in the directions of the arrows.

• Key advantage is that only had to find 15 numbers to solve this
problem this way rather than evaluate the travel time for 20 paths

– Modest difference here, but scales up for larger problems.

– If n = number of segments on side (3 here) then:
� Number of routes scales as ∼ (2n)!/(n!)2

� Number DP computations scales as ∼ (n + 1)2 − 1

June 18, 2008

Figure by MIT OpenCourseWare.

Spr 2008 16.323 3–4
Example 2

• Routing Problem [Kirk, page 56] through a street maze

– Similar problem (minimize cost to travel from c to h) with a slightly
more complex layout

• Once again, start at end (h) and work backwards

– Can get to h from e, g directly, but there are 2 paths to h from e.

– Basics: J� = 2, and gh

J�
gh = 5 fh = Jfg + J�

– Optimal cost from e to h given by

J� = min{Jefgh, Jeh} = min{[Jef + J�
fh], Jeh}eh

= min{2 + 5, 8} = 7 e f g h→ → →

Also J� = J� = 10 • ehdh de + J�

– Principle of optimality tells that, since we already know the best
way to h from e, do not need to reconsider the various options
from e again when starting at d – just use the best.

• Optimal cost from c to h given by

J�
dh], [Jcf + J�

ch = min{Jcdh, Jcfh} = min{[Jcd + J�
fh]}

= min{[5 + 10], [3 + 5]} = 8 c f g h→ → →

June 18, 2008

Figure by MIT OpenCourseWare.

�	 �

Spr 2008	 16.323 3–5

•	 Examples show the basis of dynamic programming and use of principle
of optimality.

– In general, if there are numerous options at location α that next
lead to locations x1, . . . , xn, choose the action that leads to

Jαh
� = min [Jαx1 + Jx

�
1h

], [Jαx2 + Jx
�
2h

], . . . , [Jαxn + Jx
�
nh

]
xi

•	 Can apply the same process to more general control problems. Typi­

cally have to assume something about the system state (and possible
control inputs), e.g., bounded, but also discretized.

Roadmap:

– Grid the time/state and quantized control inputs.

– Time/state grid, evaluate necessary control

– Discrete time problem discrete LQR ⇒

– Continuous time problem calculus of variations cts LQR ⇒	 ⇒

Figure 3.1: Classic picture of discrete time/quantized space grid with the linkages
possible through the control commands. Again, it is hard to evaluate all options
moving forward through the grid, but we can work backwards and use the principle
of optimality to reduce this load.

June 18, 2008

�

Spr 2008	 16.323 3–6
Classic Control Problem

•	 Consider the problem of minimizing:
tf

min J = h(x(tf)) + g(x(t), u(t), t)) dt
t0

subject to

ẋ = a(x, u, t)

x(t0) = fixed

tf = fixed

– Other constraints on x(t) and u(t) can also be included.

•	 Step 1 of solution approach is to develop a grid over space/time.

– Then look at possible final states xi(tf) and evaluate final costs

– For example, can discretize the state into 5 possible cases x1 ,. . . ,x5

Ji
�	 = h(xitf

) , ∀ i

•	 Step 2: back up 1 step in time and consider all possible ways of
completing the problem.

– To evaluate the cost of a control action, must approximate the
integral in the cost.

June 18, 2008

�

�	 �

�	 �

Spr 2008	 16.323 3–7

Consider the scenario where you are at state xi at time tk, and apply •	
control uijk to move to state xj at time tk+1 = tk + Δt.

– Approximate cost is
tk+1

g(x(t), u(t), t)) dt ≈ g(xk
i , uij, tk)Δtk

tk

– Can solve for control inputs directly from system model:
j i

j i i ij i ij xk+1 − xk xk+1 ≈ xk + a(xk, uk , tk)Δt a(xk, uk , tk) = ⇒	
Δt

ijwhich can be solved to find uk .

– Process is especially simple if the control inputs are affine:

ẋ = f(x, t) + q(x, t)u

which gives
j i

uij	 = q(xk
i , tk)

−1 xk+1 − xk − f(xk
i , tk)k Δt

So for any combination of xi and xj can evaluate the incremental •	 k k+1

cost ΔJ(xk
i , xjk+1) of making this state transition

Assuming already know the optimal path from each new terminal •	
point (xjk+1), can establish optimal path to take from xik using

J�(xk
i , tk) = min ΔJ(xk

i , xk
j
+1) + J�(xk

j
+1)j

xk+1

– Then for each xk
i , output is:

�	Best xk
i
+1 to pick, because it gives lowest cost

�	Control input required to achieve this best cost.

•	 Then work backwards in time until you reach xt0, when only one value
of x is allowed because of the given initial condition.

June 18, 2008

�

Spr 2008	 16.323 3–8
Other Considerations

•	 With bounds on the control, then certain state transitions might not
be allowed from 1 time-step to the next.

•	 With constraints on the state, certain values of x(t) might not be
allowed at certain times t.

•	 Extends to free end time problems, where
tf

min J = h(x(tf), tf) + g(x(t), u(t), t)) dt
t0

with some additional constraint on the final state m(x(tf), tf) = 0.

– Gives group of points that (approximately) satisfy the terminal
constraint

– Can evaluate cost for each, and work backwards from there.

June 18, 2008

� �
� �

Spr 2008 16.323 3–9

Process extends to higher dimensional problems where the state is a •
vector.

– Just have to define a grid of points in x and t, which for two
dimensions would look like:

Figure 3.2: At any time tk, have a two dimensional array of grid points.

Previous formulation picked x’s and used those to determine the u’s. •

– For more general problems, might be better off picking the u’s and
using those to determine the propagated x’s

i i ij jJ�(xk, tk) = min ΔJ(xk, uk) + J�(xk+1, tk+1)
ij
uk

i ij j= min g(xk, uk , tk)Δt + J�(xk+1, tk+1)
ij
uk

– To do this, must quantize the control inputs as well.

– But then likely that terminal points from one time step to the next
will not lie on the state discrete points must interpolate the cost ⇒
to go between them.

June 18, 2008

Figure by MIT OpenCourseWare.

Spr 2008	 16.323 3–10

•	 Option 1: find the control that moves the state from a point on
one grid to a point on another.

•	 Option 2: quantize the control inputs, and then evaluate the result­

ing state for all possible inputs

xjk+1 = x ik + a(x ik, u
ij
k , tk)Δt

– Issue at that point is that xjk+1 probably will not agree with the
tk+1 grid points must interpolate the available J� .⇒

– See, for example, R.E.Larson “A survey of dynamic programming
computational procedures”, IEEE TAC Dec 1967 (on web) or sec­
tion 3.6 in Kirk.

Do this for all admissible uij and resulting xj , and then take •	 k k+1

J�(x ik, tk) = min J(x ik, u
ij
k , tk)ij

uk

•	 Main problem with dynamic programming is how badly it scales.

– Given Nt points in time and Nx quantized states of dimension n

– Number of points to consider is N = NtNx
n

⇒ “Curse of Dimensionality” – R. Bellman, Dynamic Pro­

gramming (1957) – now from Dover.

June 18, 2008

�

Spr 2008	 16.323 3–11
DP Example

•	 See Kirk pg.59: �	 T

J = x 2(T) + λ u 2(t) dt
0

with ẋ = ax + u, where 0 ≤ x ≤ 1.5 and −1 ≤ u ≤ 1

•	 Must quantize the state within the allowable values and time within
the range t ∈ [0, 2] using N=2, Δt = T/N = 1.

– Approximate the continuous system as:

ẋ ≈
x(t + Δ

Δ

t)
t
− x(t)

= ax(t) + u(t)

which gives that

xk+1 = (1 + aΔt)xk + (Δt)uk

– Very common discretization process (Euler integration approxima­

tion) that works well if Δt is small

•	 Use approximate calculation from previous section – cost becomes

N−1

J = x 2(T) + λ uk
2Δt

k=0

•	 Take λ = 2 and a = 0 to simplify things a bit.

– With 0 ≤ x(k) ≤ 1.5, take x quantized into four possible values
xk	∈ {0, 0.5, 1.0, 1.5}

– With control bounded |u(k)| ≤ 1, assume it is quantized into five
possible values: uk ∈ {−1, −0.5, 0, 0.5, 1}

June 18, 2008

Spr 2008 16.323 3–12

• Start – evaluate cost associated with all possible terminal states
j J� j j

2)2
= h(x
) = (x
x
2
 2
 2

0 0
0.5 0.25
1 1

1.5 2.25

• Given x1 and possible x2, can evaluate the control effort required to
make that transition:

x
j 2
 = x
i
1
+ u(1)
u(1)

x1 0 0.5 1 1.5
0 0 0.5 1 1.5

0.5 -0.5 0 0.5 1
1 -1 -0.5 0 0.5

1.5 -1.5 -1 -0.5 0

i

which can be used to compute the cost increments:
ij jΔJ
 x
12
 2

x1 0 0.5 1 1.5
0 0 0.5 2 XX

0.5 0.5 0 0.5 2
1 2 0.5 0 0.5

1.5 XX 2 0.5 0

ij
12 + J�

2
j(x2

i

and costs at time t = 1 given by J1 = ΔJ
)

j

2
xJ1

i
 0 0.5 1 1.5
x
1

0
0.5

1
1.5

0
0.5
2

XX

0.75
0.25
0.75
2.25

3
1.5
1

1.5

XX
4.25
2.75
2.25

June 18, 2008

Spr 2008	 16.323 3–13

Take min across each row to determine best action at each possible •	
x1 ⇒ J1

�(xj 1)

i jx1 x2→
0 0→

0.5 0.5→
1 0.5→

1.5 1→

Can repeat the process to find the costs at time t = 0 which are •	
J0 = ΔJij 1 (x

j)01 + J�
1

j
J0 x1

x0 0 0.5 1 1.5
0 0 0.75 2.75 XX

0.5 0.5 0.25 1.25 3.5
1 2 0.75 0.75 2

1.5 XX 2.25 1.25 1.5

i

and again, taking min across the rows gives the best actions:

i jx0 x1→
0 0→

0.5 0.5→
1 0.5→

1.5 1→

•	 So now we have a complete strategy for how to get from any x0
i to

the best x2 to minimize the cost

– This process can be highly automated, and this clumsy presenta­

tion is typically not needed.

June 18, 2008

�

Spr 2008	 16.323 3–14
Discrete LQR

•	 For most cases, dynamic programming must be solved numerically –
often quite challenging.

•	 A few cases can be solved analytically – discrete LQR (linear quadratic
regulator) is one of them

•	 Goal: select control inputs to minimize

1	 1
N−1

J	 = x T [x T T
NHxN + kQkxk + uk Rkuk]

2	 2
k=0

so that
1 � T T

�
gd(xk, uk) = xkQkxk + uk Rkuk

2
subject to the dynamics

xk+1 = Akxk + Bkuk

– Assume that H = HT ≥ 0, Q = QT ≥ 0, and R = RT > 0

– Including any other constraints greatly complicates problem

•	 Clearly JN
� [xN] = 2

1 xT HxN ⇒ now need to find JN
�
−1[xN−1]N

JN
�
−1[xN−1] = min	 N [xN]}

uN−1
{gd(xN−1, uN−1) + J�

1 � �
= min xN

T
−1QN−1xN−1 + uN

T
−1RN−1uN−1 + xN

T HxN]
uN−1 2

•	 Note that xN = AN−1xN−1 + BN−1uN−1, so that

1 �
JN
�
−1[xN−1] = min x T	 T

N−1QN−1xN−1 + uN−1RN−1uN−1
uN −1 2 �

+ {AN−1xN−1 + BN−1uN−1} T H {AN−1xN−1 + BN−1uN−1}

June 18, 2008

� �

�

Spr 2008 16.323 3–15

• Take derivative with respect to the control inputs

∂JN
�
−1[xN−1] T

∂uN−1
= uN−1RN−1 +{AN−1xN−1 + BN−1uN−1} T HBN−1

• Take transpose and set equal to 0, yields

RN−1 + BN
T
−1HBN−1 uN−1 + BN

T
−1HAN−1xN−1 = 0

• Which suggests a couple of key things:

– The best control action at time N − 1, is a linear state feedback
on the state at time N − 1:

u �N−1 = −
�
RN−1 + BN

T
−1HBN−1

�−1
BN
T
−1HAN−1xN−1

≡ −FN−1xN−1

– Furthermore, can show that

∂2J�
N−1[xN−1]

= RN−1 + BN
T
−1HBN−1 > 0

∂u2
N−1

so that the stationary point is a minimum

• With this control decision, take another look at

JN
�
−1[xN−1] =

2

1
xN
T
−1

�
QN−1 + FN

T
−1RN−1FN−1+

{AN−1 − BN−1FN−1} T H {AN−1 − BN−1FN−1} xN−1

1 T
≡
2
xN−1PN−1xN−1

– Note that PN = H, which suggests a convenient form for gain F :

FN−1 =
�
RN−1 + BN

T
−1PNBN−1

�−1
BN
T
−1PNAN−1 (3.20)

June 18, 2008

�

Spr 2008	 16.323 3–16

•	 Now can continue using induction – assume that at time k the control
will be of the form u� = −Fkxk where k

Fk =
�
Rk + Bk

TPk+1Bk
�−1

Bk
TPk+1Ak

and Jk
�[xk] = 1

2x
T
k Pkxk where

Pk = Qk + Fk
TRkFk + {Ak − BkFk} T Pk+1 {Ak − BkFk}

– Recall that both equations are solved backwards from k + 1 to k.

•	 Now consider time k �− 1, with �

Jk
�
−1[xk−1] = min

1
xk
T
−1Qk−1xk−1 + uk

T
−1Rk−1uk−1 + Jk

�[xk]
uk−1 2

•	 Taking derivative with respect to uk−1 gives,

∂Jk
�
−1[xk−1] T T =	u
∂uk−1

k−1Rk−1 + {Ak−1xk−1 + Bk−1uk−1} PkBk−1

so that the best control input is

uk−1	 = −
�
Rk−1 + Bk

T
−1PkBk−1

�−1
Bk
T
−1PkAk−1xk−1

= −Fk−1xk−1

•	 Substitute this control into the expression for Jk
�
−1[xk−1] to show that

Jk
�
−1[xk−1] =

1
x Tk−1Pk−1xk−1

2
and

Pk−1 =	 Qk−1 + Fk
T
−1Rk−1Fk−1 +

{Ak−1 − Bk−1Fk−1} T Pk {Ak−1 − Bk−1Fk−1}

•	 Thus the same properties hold at time k −1 and k, and N and N −1
in particular, so they will always be true.

June 18, 2008

� � � �

� �

� �

Spr 2008 16.323 3–17
Algorithm

• Can summarize the above in the algorithm:

(i) PN = H

(ii) Fk =
�
Rk + Bk

TPk+1Bk
�−1

Bk
TPk+1Ak

(iii) Pk = Qk + Fk
TRkFk + {Ak − BkFk} T Pk+1 {Ak − BkFk}

cycle through steps (ii) and (iii) from N − 1 0.→

Notes:•

– The result is a control schedule that is time varying, even if A, B,
Q, and R are constant.

– Clear that Pk and Fk are independent of the state and can be
computed ahead of time, off-line.

– Possible to eliminate the Fk part of the cycle, and just cycle
through Pk

Pk = Qk+Ak
T Pk+1 − Pk+1Bk Rk + Bk

TPk+1Bk
−1
Bk
TPk+1 Ak

– Initial assumption Rk > 0 ∀ k can be relaxed, but we must ensure
that Rk+1 + Bk

TQk+1Bk > 0. 2

• In the expression:

i i ij jJ�(xk, tk) = min g(xk, uk , tk)Δt + J�(xk+1, tk+1)
ij
uk

the term J�(xk
j
+1, tk+1) plays the role of a “cost-to-go”, which is a

key concept in DP and other control problems.

2Anderson and Moore, Optimal Control: Linear Quadratic Methods, pg. 30

June 18, 2008

�

Spr 2008	 16.323 3–18
Suboptimal Control

The optimal initial cost is J0
�[x0] = 2

1 x0
TP0x0. One question: how •

would the cost of a different controller strategy compare?

uk = −Gkxk

• Can substitute this controller into the cost function and compute

1 T 1
N−1

T TJ	 = xNHxN + [xkQkxk + uk Rkuk]
2	 2

k=0
N−1

1	 1 �
⇒	 JG =

2
xN
T HxN +

2
xk
T [Qk + Gk

TRkGk]xk

k=0

where
xk+1 = Akxk + Bkuk = (Ak − BkGk)xk

Note that: •

1
N�−1 �

T	 T
� 1 � T T

�
xk+1Sk+1xk+1 − xk Skxk	 = xNSN xN − x0 S0x0

2	 2
k=0

•	 So can rearrange the cost function as
N−1

JG =
1
xN
T HxN +

1 ��
xk
T [Qk + GT

kRkGk − Sk]xk
2	 2

k=0 � 1 �	 �
+ x Tk+1Sk+1xk+1 −

2
x TNSN xN − x T

0 S0x0

– Now substitute for xk+1 = (Ak − BkGk)xk, and define Sk so that

SN = H

Sk = Qk + Gk
TRkGk + {Ak − BkGk} T Sk+1 {Ak − BkGk}

which is another recursion, that gives
1 TJG = x0 S0x0
2

•	 So that for a given x0, we can compare P0 and S0 to evaluate the
extent to which the controller is suboptimal.

June 18, 2008

� �	 � �

�	 �

Spr 2008	 16.323 3–19
Steady State

Assume3 •

– Time invariant problem (LTI) – i.e., A,B,Q,R are constant
– System [A,B] stabilizable – uncontrollable modes are stable.

•	 For any H, then as N →∞, the recursion for P tends to a constant
solution with Pss ≥ 0 that is bounded and satisfies (set Pk ≡ Pk+1)

Pss = Q + AT Pss − PssB R + BTPssB
−1
BTPss A (3.21)

– Discrete form of the famous Algebraic Riccati Equation

– Typically hard to solve analytically, but easy to solve numerically.

– Can be many PSD solutions of (3.21), recursive solution will be
one.

•	 Let Q = CTC ≥ 0, which is equivalent to having cost measurements
z = Cx and state penalty zT z = xTCTCx = xTQx. If [A,C]
detectable, then:

– Independent of H, recursion for P has a unique steady state
solution Pss ≥ 0 that is the unique PSD solution of (3.21).

– The associated steady state gain is

Fss = R + BTPssB
−1
BTPssA

and using Fss, the closed-loop system xk+1 = (A − BFss)xk is
asymptotically stable, i.e.,

|λ(A − BFss)| < 1

– Detectability required to ensure that all unstable modes penalized
in state cost.

•	 If, in addition, [A,C] observable4, then there is a unique Pss > 0

3See Lewis and Syrmos, Optimal Control, Thm 2.4-2 and Kwakernaak and Sivan, Linear Optimal Control Systems, Thm 6.31

4Guaranteed if Q > 0

June 18, 2008

Spr 2008	 16.323 3–20 Discrete LQR Example

•	 Integrator scalar system ẋ = u, which gives

xk+1 = xk + ukΔt

so that A = 1, B = Δt = 1 and

N−1

1 1 �
2 2J = x(N)2 + [xk + uk]4 2

k=0

so that N = 10, Q = R = 1, H = 1/2 (numbers in code/figures might differ)

•	 Note that this is a discrete system, and the rules for stability are
different – need |λi(A − BF)| < 1.

– Open loop system is marginally stable, and a gain 1 > F > 0 will
stabilize the system.

Figure 3.3: discrete LQR comparison to constant gain, G = −0.25

•	 Plot shows discrete LQR results: clear that the Pk settles to a con­

stant value very quickly

– Rate of reaching steady state depends on Q/R. For Q/R large
reaches steady state quickly

•	 (Very) Suboptimal F gives an obviously worse cost

June 18, 2008

Spr 2008	 16.323 3–21

•	 But a reasonable choice of a constant F in this case gives nearly
optimal results.

Figure 3.4: discrete LQR comparison to constant gain, G = F (0)

Figure 3.5: State response comparison

•	 State response consistent

June 18, 2008

Spr 2008	 16.323 3–22
Gain Insights

•	 Note that from Eq. 3.20 we know that

FN−1 =
�
RN−1 + BN

T
−1PNBN−1

�−1
BN
T
−1PNAN−1

which for the scalar case reduces to
BN−1PNAN−1

=FN−1
RN−1 + BN

2
−1PN

•	 So if there is a high weighting on the terminal state, then H → ∞
and PN is large. Thus

FN−1 →
BN−1PNAN−1 A
BN

2
−1PN

→
B

and
A

xN = (A − BF)xN−1 = (A − B)xN−1 = 0
B

regardless of the value of xN−1. This is a nilpotent controller.

•	 If control penalty set very small, so that R → 0 (Q/R large), then

FN−1 →
BN

B
−1

2

PNAN−1 A
PN

→
BN−1

and xN = 0 as well.

– State penalized, but control isn’t, so controller will exert as much
effort as necessary to make x small.

– In fact, this will typically make x(1) = 0 regardless of x(0) if there
are no limits on the control effort.

June 18, 2008

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

Spr 2008	 16.323 3–23

Discrete scalar LQR

% 16.323 Spring 2008

% Jonathan How

% integ.m: integrator system

%

clear all

close all

%A=1;B=1;Q=1;R=1;H=0.5;N=5;

A=1;B=1;Q=1;R=2;H=.25;N=10;

P(N+1)=H; % shift indices to avoid index of 0
for	 j=N-1:-1:0

i=j+1; % shift indices to avoid index of 0

F(i)=inv(R+B’*P(i+1)*B)*B’*P(i+1)*A;

P(i)=(A-B*F(i))’*P(i+1)*(A-B*F(i))+F(i)’*R*F(i)+Q;

end

% what if we used a fixed gain of F(0), which stabilizes

S(N+1)=H; % shift indices to avoid index of 0

for j=N-1:-1:0

i=j+1; % shift indices to avoid index of 0

G(i)=F(1);

S(i)=(A-B*G(i))’*S(i+1)*(A-B*G(i))+G(i)’*R*G(i)+Q;

end

time=[0:1:N];

figure(1);clf

plot(time,P,’ks’,’MarkerSize’,12,’MarkerFaceColor’,’k’)

hold on

plot(time,S,’rd’,’MarkerSize’,12,’MarkerFaceColor’,’r’)

plot(time(1:N),F,’bo’,’MarkerSize’,12,’MarkerFaceColor’,’b’)

hold off

legend(’Optimal P’,’Suboptimal S with G=F(0)’,’Optimal F’,’Location’,’SouthWest’)

xlabel(’Time’)

ylabel(’P/S/F’)

text(2,1,[’S(0)-P(0) = ’,num2str(S(1)-P(1))])

axis([-.1 N -1 max(max(P),max(S))+.5])

print -dpng -r300 integ.png

% what if we used a fixed gain of G=0.25, which stabilizes

S(N+1)=H; % shift indices to avoid index of 0

for j=N-1:-1:0

i=j+1; % shift indices to avoid index of 0

G(i)=.25;

S(i)=(A-B*G(i))’*S(i+1)*(A-B*G(i))+G(i)’*R*G(i)+Q;

end

figure(2)

%plot(time,P,’ks’,time,S,’rd’,time(1:N),F,’bo’,’MarkerSize’,12)

plot(time,P,’ks’,’MarkerSize’,12,’MarkerFaceColor’,’k’)

hold on

plot(time,S,’rd’,’MarkerSize’,12,’MarkerFaceColor’,’r’)

plot(time(1:N),F,’bo’,’MarkerSize’,12,’MarkerFaceColor’,’b’)

hold off

legend(’Optimal P’,’Suboptimal S with G=0.25’,’Optimal F’,’Location’,’SouthWest’)

text(2,1,[’S(0)-P(0) = ’,num2str(S(1)-P(1))])

axis([-.1 N -1 max(max(P),max(S))+.5])

ylabel(’P/S/F’)

xlabel(’Time’)

print -dpng -r300 integ2

% state response

x0=1;xo=x0;xs1=x0;xs2=x0;

for j=0:N-1;

k=j+1;

xo(k+1)=(A-B*F(k))*xo(k);

xs1(k+1)=(A-B*F(1))*xs1(k);

June 18, 2008

Spr 2008 16.323 3–24

67 xs2(k+1)=(A-B*G(1))*xs2(k);
68 end
69 figure(3)
70 plot(time,xo,’bo’,’MarkerSize’,12,’MarkerFaceColor’,’b’)
71 hold on
72 plot(time,xs1,’ks’,’MarkerSize’,9,’MarkerFaceColor’,’k’)
73 plot(time,xs2,’rd’,’MarkerSize’,12,’MarkerFaceColor’,’r’)
74 hold off
75 legend(’Optimal’,’Suboptimal with G=F(0)’,’Suboptimal with G=0.25’,’Location’,’North’)
76 %axis([-.1 5 -1 3])
77 ylabel(’x(t)’)
78 xlabel(’Time’)
79 print -dpng -r300 integ3.png;
80

June 18, 2008

�

Spr 2008	 16.323 3–25 Appendix

•	 Def: LTI system is controllable if, for every x�(t) and every finite
T > 0, there exists an input function u(t), 0 < t ≤ T , such that the
system state goes from x(0) = 0 to x(T) = x� .

– Starting at 0 is not a special case – if we can get to any state
in finite time from the origin, then we can get from any initial
condition to that state in finite time as well. 5

•	 Thm: LTI system is controllable iff it has no uncontrollable states.

– Necessary and sufficient condition for controllability is that

rank Mc
 � rank

�
B
 AB A2B An−1B· · · = n

•	 Def: LTI system is observable if the initial state x(0) can be
uniquely deduced from the knowledge of the input u(t) and output
y(t) for all t between 0 and any finite T > 0.

– If x(0) can be deduced, then we can reconstruct x(t) exactly be­

cause we know u(t) � we can find x(t) ∀ t.

•	 Thm: LTI system is observable iff it has no unobservable states.

– We normally just say that the pair (A,C) is observable.

– Necessary and sufficient condition for observability is that ⎤⎡

rank Mo
 � rank

⎢⎢⎢⎢⎢⎣

C

CA

CA2

...
CAn−1

⎥⎥⎥⎥⎥⎦

= n

5This controllability from the origin is often called reachability.

June 18, 2008

	16.323: Principles of Optimal Control
	Lecture 3: Dynamic Programming
	Dynamic Programming
	Classical Examples
	Example 2
	Fig: Classic picture of discrete time/quantized space grid with the linkages possible through the control commands. Again, it is hard to evaluate all options moving forward through the grid, but we can work backwards and use the principle of optimality to reduce this load.

	Classic Control Problem
	Other Considerations
	Fig: At any time tk, have a two dimensional array of grid points.

	DP Example
	Discrete LQR
	Algorithm
	Suboptimal Control
	Steady State
	Discrete LQR Example
	Fig: discrete LQR comparison to constant gain, G=-0.25
	Fig: discrete LQR comparison to constant gain, G=F(0)
	Fig: State response comparison

	Gain Insights
	Code: Discrete scalar LQR
	Appendix

	Lecture 11: Estimators/Observers
	Steady State

