MIT OpenCourseWare
http://ocw.mit.edu

16.323 Principles of Optimal Control
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

16.323 Lecture 16

Model Predictive Control

Allgower, F., and A. Zheng, Nonlinear Model Predictive Control, Springer-Verlag,
2000.

Camacho, E., and C. Bordons, Model Predictive Control, Springer-Verlag, 1999.

Kouvaritakis, B., and M. Cannon, Non-Linear Predictive Control: Theory &
Practice, IEE Publishing, 2001.

Maciejowski, J., Predictive Control with Constraints, Pearson Education POD,
2002.

Rossiter, J. A., Model-Based Predictive Control: A Practical Approach, CRC
Press, 2003.

Spr 2008 M PC 16.323 16-1

e Planning in Lecture 8 was effectively “open-loop”

— Designed the control input sequence u(t) using an assumed model
and set of constraints.

— Issue is that with modeling error and/or disturbances, these inputs
will not necessarily generate the desired system response.

e Need a “closed-loop” strategy to compensate for these errors.
— Approach called Model Predictive Control
— Also known as receding horizon control

e Basic strategy:

— At time k, use knowledge of the system model to design an input
sequence

u(k|k), ulk + 1|k), u(k +2|k), u(k +3[k), ..., ulk + N|k)

over a finite horizon N from the current state x(k)
— Implement a fraction of that input sequence, usually just first step.
— Repeat for time k + 1 at state x(k + 1)

h Reference

"Optimal" future outputs
Future outputs, no control

= = e e -

I "Optimal" future inputs
Oldinputs | ~~~~~ 777 [~~~ ~
Future inputs, no control

Past Present Future Time

MPC: basic idea (from Bo Wahlberg)

Figure by MIT OpenCourseWare.

June 18, 2008

Spr 2008 16.323 16-2

e Note that the control algorithm is based on numerically solving an
optimization problem at each step

— Typically a constrained optimization

e Main advantage of MPC:
— Explicitly accounts for system constraints.
< Doesn't just design a controller to keep the system away from
them.
— Can easily handle nonlinear and time-varying plant dynamics, since
the controller is explicitly a function of the model that can be mod-
ified in real-time (and plan time)

e Many commercial applications that date back to the early 1970’s, see
http://www.che.utexas.edu/~qin/cpcv/cpcvi4.html
— Much of this work was in process control - very nonlinear dynamics,
but not particularly fast.

e As computer speed has increased, there has been renewed interest in
applying this approach to applications with faster time-scale: trajec-
tory design for aerospace systems.

A

P
ud Noise - | Plant |—> Output
Trajectory du
Generation xd Noi P
Trajectory 08¢ —»| plant |~ Output
Ref — e~ 1
Feedback u
Compensation r

Implementation architectures for MPC (from Mark Milam)

Ref ——|

Figure by MIT OpenCourseWare.

June 18, 2008

http://www.che.utexas.edu/~qin/cpcv/cpcv14.html

Spr 2008 Basic Formulation 16.323 16-3

e Given a set of plant dynamics (assume linear for now)

x(k+1) = Ax(k)+ Bu(k)

z(k) = Cx(k)
and a cost function
N
J = {llz(k + jlk) g, + luk + jlk) | g} + F(x(k+ N|k))
=0

— ||z(k + 7]k)||r,, is just a short hand for a weighted norm of the
state, and to be consistent with earlier work, would take

|z(k + j1k)||r,, = 2(k + j|k)" R,z (k + j|k)

— F(x(k + N|k)) is a terminal cost function

e Note that if N — 00, and there are no additional constraints on z or
u, then this is just the discrete LQR problem solved on page 3-14.

— Note that the original LQR result could have been written as just
an input control sequence (feedforward), but we choose to write
it as a linear state feedback.

— In the nominal case, there is no difference between these two im-
plementation approaches (feedforward and feedback)

— But with modeling errors and disturbances, the state feedback form
is much less sensitive.

=> This is the main reason for using feedback.

e Issue: When limits on x and u are added, we can no longer find the
general solution in analytic form = must solve it numerically.

June 18, 2008

Spr 2008 16.323 16-4

e However, solving for a very long input sequence:

— Does not make sense if one expects that the model is wrong and /or
there are disturbances, because it is unlikely that the end of the
plan will be implemented (a new one will be made by then)

— Longer plans have more degrees of freedom and take much longer
to compute.

e Typically design using a small N = short plan that does not necessarily
achieve all of the goals.

— Classical hard question is how large should N be?

— If plan doesn't reach the goal, then must develop an estimate of the
remaining cost-to-go

e Typical problem statement: for finite N (F = 0)

N
minJ = Z{\|Z(/€+j|k)||li’zz+”U-(k‘i‘]"k)HRuu}

u

j=0
st x(k+j+1k) = Ax(k+ j|k)+ Bu(k + jlk)
x(k|k) = x(k)

z(k + jlk) = Cx(k+ jlk)

and |Ju(k+jlk)| < up

June 18, 2008

Spr 2008

e Consider converting this into a more standard optimization problem.

z(k|F)

z(k + 1]k)

z(k + 2|k)

2(k + N|k)

Ox(k|k)

16.323 16-5

Ox(k + 1|k) = C(Ax(k|k) + Bu(k|k))

C Ax(k|k) + CBu(k|k)

Cx(k + 2|k)
C(Ax(k + 1|k) + Bu(k + 1|k))
= CA(Ax(k|k)+ Bu(k|k)) + CBu(k + 1|k)

CA*x(k|k) + CABu(k|k) + CBu(k + 1|k)

CAYx(k|k) + CAY ' Bu(klk) + - - -

+CBu(k + (N — 1)|k)

e Combine these equations into the following:

z(k|k)
z(k + 1|k)
z(k + 2|k)

| z(k +:N]/-€) |

0
CB

CAB

June 18, 2008

0
0
CB

C
CA
C A?

C AN

o O O

CAN=IB CAN:B CAN3B ...

x(k[F)

u(k|k)
u(k + 1|k)

u(k+ N —1|k)

Spr 2008 16.323 16-6

e Now define

{ z(k|k)
Z(k) = :
z(k + N|k)

then, with x(k|k) = x(k)
Z(k)=Gx(k)+ HU(k)

(k|k)]
Uk) = :
u(k+ N —1lk)

e Note that

z(k + j|k)' Ryz(k + jlk) = Z(k)' W1 Z(k)

Mz

Jj=0

with an obvious definition of the weighting matrix 1/,

e Thus

Z(KY' W1 Z(k) + U (k)Y WU (k)
— (Gx(k) + HU(E)"W(Gx(k) + HU(k)) + U (k)" W,oU (k)

= x(k) Hix(k)+ H] U(k) + %U(k:)THgU(k)
where

= G'W\G, Hy=2x(k)'G"W,H), Hs=2(H"W,H+ W)

e Then the MPC problem can be written as:

o 1
%r)lj = HIUK) + EU(k)THgU(k)

st [_g] Uk) <

June 18, 2008

Spl‘ 2008 Toolboxes 16.323 16-7
Key point: the MPC problem is now in the form of a standard

quadratic program for which standard and efficient codes exist.

QUADPROG Quadratic programming. %
X=QUADPROG(H,f,A,b) attempts to solve the %
quadratic programming problem:

min O0.5*x’*Hxx + f’*x subject to: A*x <=D

X

X=QUADPROG(H,f,A,b,Aeq,beq) solves the problem 7%
above while additionally satisfying the equality’
constraints Aeg*x = beq.

e Several Matlab toolboxes exist for testing these ideas

— MPC toolbox by Morari and Ricker — extensive analysis and design

tools.

— MPCtools *? enables some MPC simulation and is free
www.control.lth.se/user/johan.akesson/mpctools/

32Johan Akesson: "MPCtools 1.0 - Reference Manual”. Technical report ISRN LUTFD2/TFRT-7613-SE, Department of Auto-

matic Control, Lund Institute of Technology, Sweden, January 2006.

June 18, 2008

www.control.lth.se/user/johan.akesson/mpctools/

Spr 2008 MPC Observations 16:323 16-8

e Current form assumes that full state is available - can hookup with an
estimator

e Current form assumes that we can sense and apply corresponding con-
trol immediately

— With most control systems, that is usually a reasonably safe as-
sumption

— Given that we must re-run the optimization, probably need to ac-
count for this computational delay - different form of the discrete
model - see F&P (chapter 2)

e If the constraints are not active, then the solution to the QP is that
U(K)=—H;'H,
which can be written as:

wklk) = =[10 ... 0] (H'"WiH +W,)""H'W,Gx(k)
= —Kx(k)

which is just a state feedback controller.
— Can apply this gain to the system and check the eigenvalues.

June 18, 2008

Spr 2008 16.323 16-9

e What can we say about the stability of MPC when the constraints are
active? 3

— Depends a lot on the terminal cost and the terminal constraints.?

t:35

e C(lassic resul Consider a MPC algorithm for a linear system with

constraints. Assume that there are terminal constraints:
—x(k + N|k) = 0 for predicted state x
—u(k + N|k) = 0 for computed future control u

Then if the optimization problem is feasible at time k£, x = 0 is stable.

Proof: Can use the performance index J as a Lyapunov function.

— Assume there exists a feasible solution at time k& and cost .J;.

— Can use that solution to develop a feasible candidate at time k + 1,
by simply adding u(k+ N +1)=0and x(k+ N +1) =0.

— Key point: can estimate the candidate controller performance

Tt = Ji = {2kl g, + [alk]k)]|r,.}
< Ji = {llz(kk) 7., }
— This candidate is suboptimal for the MPC algorithm, hence J de-
creases even faster J. 1 < Jpi1

— Which says that J decreases if the state cost is non-zero (observ-
ability assumptions) = but J is lower bounded by zero.

e Mayne et al. [2000] provides excellent review of other strategies for
proving stability — different terminal cost and constraint sets

33 “Tutorial: model predictive control technology,” Rawlings, J.B. American Control Conference, 1999. pp. 662-676

34Mayne, D.Q., J.B. Rawlings, C.V. Rao and P.O.M. Scokaert, ” Constrained Model Predictive Control: Stability and Optimality,”
Automatica, 36, 789-814 (2000).

35A. Bemporad, L. Chisci, E. Mosca: ”On the stabilizing property of SIORHC”, Automatica, vol. 30, n. 12, pp. 2013-2015, 1994.

June 18, 2008

Spr 2008 Example: Helicopter 10-323 16-10

e Consider a system similar to the Quansar helicopter®

Figure by MIT OpenCourseWare.

e There are 2 control inputs — voltage to each fan V¢, V},
e A simple dynamics model is that:

. = Ki(Vi+V,) =T,/ J.
0, = —Ksysin(6,)
0, = K3(V; — 1)
and there are physical limits on the elevation and pitch:

—05<6, <06 —1<6,<1

e Model can be linearized and then discretized T, = 0.2sec.

12

¢
10
*
8 ¢
b ¢ ® State
6 m Control q
¢ ¢ Time
*
O
*
4l
2F]
®
° L4 ° ° ° ° ® ° Py
= u n n] n [u
0 Il Il
0 5 10 15 20 25

Figure 16.3: Response Summary

361SSN 02805316 ISRN LUTFD2/TFRT- -7613- -SE MPCtools 1.0 Reference Manual Johan Akesson Department of Automatic
Control Lund Institute of Technology January 2006

June 18, 2008

16.323 16-11

30

20
t[s]

10

30

20
t[s]

10

Figure 16.6: Response with N = 25

i 8 3 3 8 3
|
|
|
|
|
! & & o & m &
“““““ ! z |l z
|
| N
| o o o o
, 2 : e = :
, = 5
i =
/ > =
< (3] o — o 40 < @ o — o 4 9__0 % < (2] o — o 4 7,_0 e 40 < @ o — o
[peJ] uoneloy 0 g> ;> m [peJ] uoneloy I n> ,_> m [peJ] uoneloy Al g> L>
(@)
o
— - —— & s & 8 g o 3
| (D)
_—] o o
,v N o O o o ; o
— O
[S — = z v
I ——— - g o
F 2 S b S S S S
\|\|\‘|\ g
[—— [L
R —
IL/.
nr N - =] =° - 0 o 0 =° < =2 —] o 0 =° < 1.0 - [t o
=} =] = nw o nw ! =] n_v o n_v ! o S o
[ped] uonens|g [pes] youd [pe] uonens|g [ped] youd [peJ] uonens|3 [ped] yond
(o]
(=
()
(o]
S
Qo
wn

June 18, 2008

	16.323: Principles of Optimal Control
	Lecture 16: Model Predictive Control
	MPC
	Fig: MPC: basic idea (from Bo Wahlberg)
	Fig: Implementation architectures for MPC (from Mark Milam)

	Basic Formulation
	Toolboxes
	MPC Observations
	Example: Helicopter
	Fig: Response Summary
	Fig: Response with N=3
	Fig: Response with N=10
	Fig: Response with N=25

