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Signals and System Norms

H~ Synthesis

Different type of optimal controller
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Mathematical Background

e Signal norms we use norms to measure the size of a signal.

— Three key properties of a norm:
L ||ul] >0, and ||ul]| =0 iff u=0

2. ||au|| = |a|||u|| V scalars «

3w+ oll < lull + lv]
e Key signal norms

— 2-norm of u(t) — Energy of the signal

= Um u2<t>dt] )

0

— oo-norm of u(t) — maximum value over time

lu(®)][o = max[u(t)]
— Other useful measures include the Average power
T 1/2
pow(u(t)) = ( lim — u2(t)dt>

u(t) is called a power signal if pow(u(t)) < oo
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e System norms Consider the system with dynamics y = G(s)u
— Assume G(s) stable, LTI transfer function matrix

— ¢g(t) is the associated impulse response matrix (causal).

e H; norm for the system: (LQG problem)

jells = ([ eeaceld)Gti1as) "

—00

_ ( /0 N trace[gT(T)g(T)]dT> .

Two interpretations:
— For SISO: energy in the output y(t) for a unit impulse input wu(t).

— For MIMO ?7: apply an impulsive input separately to each actuator
and measure the response z;, then

IGIE=_ ll=l3
1

— Can also interpret as the expected RMS value of the output in
response to unit-intensity white noise input excitation.

e Key point: Can show that

o 1/2
|G|z = (%/ Zaf[G(jw)}dw)

— Where 0;|G(jw)] is the ith singular value®® * of the system G(s)
evaluated at s = jw

— Hsy norm concerned with overall performance (>, 0?) over all
frequencies

217DG114
28http://mathworld.wolfram.com/SingularValueDecomposition.html

29nttp://en.wikipedia.org/wiki/Singular_value_decomposition
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e H., norm for the system:

1G(s)l[o0 = supa|G(jw)]

w

Interpretation:
— ||G(5)]| is the “energy gain” from the input u to output y

| o outar
|G(5) oo = max
w70 / ol (Hu(t)dt

— Achieve this maximum gain using a worst case input signal that
is essentially a sinusoid at frequency w* with input direction that

yields &[G (jw*)| as the amplification.

c__ [G(jo)] = 0.16683

max

O LG

10° 10'
Freq rad/sec

Figure 15.1: Graphical test for the |G| .

e Note that we now have

1. Signal norm |u(t)|| oo = max |u(t)|
2. Vector norm |0 = max |z
3. System norm |G ()|l = maxa|G(jw)]
W
We use the same symbol || - ||« for all three, but there is typically no

confusion, as the norm to be used is always clear by the context.

June 18, 2008



e So H. is concerned primarily with the peaks in the frequency re-
sponse, and the Hy norm is concerned with the overall response.

e The H,, norm satisfies the submultiplicative property
|GH|loo < ||Glloc - |1 H |0

— Will see that this is an essential property for the robustness tests
— Does not hold in general for ||GH||-

e Reference to H,, control is that we would like to design a stabilizing
controller that ensures that the peaks in the transfer function matrix
of interest are knocked down.

e.g. want maxa|T (jw)] = [|T(8)||ec < 0.75

e Reference to Hs control is that we would like to design a stabilizing
controller that reduces the ||T'(s)||o as much as possible.

— Note that Hs control and LQG are the same thing.
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Computation

e Assume that G(s) = C(sI — A) "' B+ D with RA(A) < 0, i.e. G(s)
stable.

e Hs norm: requires a strictly proper system D = 0

— Define:

Observability Gramian P,

AP+ PA+C'C=0< P, = / ATt OT et gt
0

Controllability Gramian P.

AP.+ PAT + BBT =0 P. = / A BBT A gt
0

then
|G|)5 = trace (B' P,B) = trace (CP.C")

Proof: use the impulse response of the system G(s) and evaluate the
time-domain version of the norm.

e H., norm: Define the Hamiltonian matrix
A+ B(y*I - D'D)"'DTC | B(y*I — DTD)™'BT

H pr—
— CT(I+D(*I — D'D)"'DT)C | —(A+ B(y*I — D"D)~' D" C)"

— Then ||G(s)||l < v iff 7(D) < v and H has no eigenvalues on
the jw-axis.

— Graphical test max, 7[G(jw)] < v replaced with eigenvalue test.
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e Note that it is not easy to find |G|/ directly using the state space
techniques

— It is easy to check if |G|l < 7
— So we just keep changing ~ to find the smallest value for which we
can show that ||G||s < v (called Yiin)

= Bisection search algorithm.

e Bisection search algorithm
1. Select 7y, v so that v, < ||G]|00 < Vu

2. Test (v, —v1)/v < TOL.
Yes = Stop (|Gl ~ 5(7u + 7))
No = go to step 3.

3. With v = 3(v + ), test if |G| < 7 using A;i(H)

4.1f \i(H) € jR, then set v; = 7y (test value too low), otherwise set
Y. = 7y and go to step 2.
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e Note that we can use the state space tests to analyze the weighted
tests that we developed for robust stability

— For example, we have seen the value in ensuring that the sensitivity
remains smaller than a particular value

aW;S(jw)] <1 V w

e We can test this by determining if ||[W;(5)S(s)]|c < 1

— Use state space models of G.(s) and G(s) to develop a state space
model of

= [

— Augment these dynamics with the (stable, min phase) W;(s) to get
a model of W;(s)S(s)

— Now compute the H, norm of the combined system W;(s)S(s).
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e Note that, with D = 0, the 'H,, Hamiltonian matrix becomes
A  4BBT
o
—CT'Cc —AT

H:

— Know that |G| < 7 iff H has no eigenvalues on the jw-axis.
— Equivalent test is if there exists a X > 0 such that

1
A'X+XA+C'"C+5XBB'X =0
g

and A + #BBTX is stable.

— So there is a direction relationship between the Hamiltonian matrix
H and the algebraic Riccati Equation (ARE)

e Aside: Compare this ARE with the one that we would get if we used
this system in an LQR problem:

AP+ PA+CTC - %PBBTP =0

—If (A, B, C) stabilizable/detectable, then will always get a solution
for the LQR ARE.

— Sign difference in quadratic term of the H., ARE makes this equa-
tion harder to satisfy. Consistent with the fact that we could have
|G||so > v = no solution to the H., ARE.

— The two Riccati equations look similar, but with the sign change,
the solutions can behave very differently.
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e For the synthesis problem, we typically define a generalized version of
the system dynamics

w

" [ Pu(s) Pou(s) ]

v oy X

P
@)
A

Signals: Generalized plant:

— 2z Performance output P(s) Poul(s)
P — AY zZua
— w Disturbance/ref inputs (s) [ Pry(s) Pyu(s) ]

— 1y Sensor outputs contains the plant G(s) and all per-

— u Actuator inputs formance and uncertainty weights

e With the loop closed (u = G.y), can show that

< _ _ -1
(=), = Pt PuGl = PuG) ' P
= A(P,G.)

called a (lower) Linear Fractional Transformation (LFT).
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e Design Objective: Find G.(s) to stabilize the closed-loop system
and minimize ||F}(P, G.)|s-

e Hard problem to solve, so we typically consider a suboptimal problem:
— Find G.(s) to satisfy || Fi(P,G¢)|lo0 <7
— Then use bisection (called a ~ iteration) to find the smallest value
(Yopt) for which || F1(P, G¢) o < Yopt

= hopefully get that G. approaches G°*

o Consider the suboptimal H,, synthesis problem: *"

Find G.(s) to satisfy || F}(P, G¢)|lo0 <7

A| B, B,
S — PZW(S) PZH(S> —
P(s) [ Prals) Pyu(s)] . gy D?/W DOzu

where we assume that:

1. (A, By, Cy) is stabilizable/detectable (essential)
2. (A, By, C,) is stabilizable/detectable (essential)
3.DI1C, D,,]=1[0 I] (simplify/essential)

By | .7 [0] .. . .
4. [DyW] Dy, = []] (simplify /essential)

e Note that we will not cover all the details of the solution to this
problem — it is well covered in the texts.

30SP367
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e There exists a stabilizing G(s) such that ||Fj(P, G.)||c < 7 iff
(1) 93X >0 that solves the ARE

A'X + XA+CIC,+ X (v 2*ByBl — B.BHX =0

and R\ [A+ (v °ByB,, — B,B.)X]| <0 Vi

(2) FY >0 that solves the ARE
AY +YA" + BLBy +Y(y°C, C, — CICy)Y =0

and R\ [A+Y(y?C/C,— CyCy)] <0 Vi

(3) p(XY) <+’

p is the spectral radius (p(A) = max; |A\;(A4)]).

e Given these solutions, the central H,, controller is given by

_[A+(?*ByBL - B.BI)X — ZYCIC,| ZYCT
Gels) = ~BIX 0

where Z = (I — vy 2Y X))~

— Central controller has as many states as the generalized plant.

e Note that this design does not decouple as well as the regulator/estimator

for LQG
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Basic assumptions:

[ ]

(A1) (A, By, Cy) is stabilizable/detectable
(A2) (A, By, C’) is stabilizable/detectable
(A3
(

) D! [C, D,,]=[0 I] (scaling and no cross-coupling)

A4) [ B ] D}, = [0] (scaling and no cross-coupling)

D I

YW

e The restrictions that D, = 0 and Dy, = 0 are weak, and can easily
be removed (the codes handle the more general D case).

e (Al) is required to ensure that it is even possible to get a stabilizing
controller.

e Need D,, and Dy, to have full rank to ensure that we penalize control
effort (A3) and include sensor noise (A4)
=> Avoids singular case with infinite bandwidth controllers.
= Often where you will have the most difficulties initially.

e Typically will see two of the assumptions written as:
| A—jwl By
A
W e b,
[ A — jwl By
(Aii) I
Cy Dy
— These ensure that there are no Jw-axis zeros in the P, or Py, TF's

] has full column rank V. w

] has full row rank V w

— cannot have the controller canceling these, because that design
would not internally stabilize the closed-loop system.

— But with assumptions (A3) and (A4) given above, can show that
A(i) and A(ii) are equivalent to our assumption (A2).
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a Simple Design Example
<1 22
> WS — > WU —
r e u Y
F Ge(s) G(s) -
where 200

(0.05s + 1)?(10s + 1)

e Note that we have 1 input (r) and two performance outputs - one
that penalizes the sensitivity S(s) of the system, and the other that
penalizes the control effort used.

e FEasy to show (see next page) that the closed-loop is:

21 o WSS r

29 N WUGCS
where, in this case, the input r acts as the “disturbance input” w to
the generalized system.

e To achieve good low frequency tracking and a crossover frequency of
about 10 rad/sec, pick

s/1.54 10
W = W,=1
s 1 (10) - (0.0001)
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e Generalized system in this case:
P
> 7
e T
1
|
[ Waf === R
u I +y !
- -0 - - - > G [>0-6---- > C }y
G <

Figure by MIT OpenCourseWare.

Figure 15.2: Rearrangement of original picture in the generalized plant format.

e Derive P(s) as

r — Gu)

T P(s)
29 = Wuu
= r—Gu
u = Gee
FPer = F(P,G.)
) Wsl . [—WSG
| 0 W
B W, — W.GG.S
W.G.S

June 18, 2008
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e In state space form, let

r = Az + Bu
Tw = Apzy+ Bye = Ayz, + Byr — ByCx
21 = Cypzxy + Dye=Cupxy+ Dyr — D,Cx

2z = Wyu
e = r—Cx
[ A4 0] o0]|B]
—-B,C A, | By| 0
P(s) .= | =D,C Cy,|D,| 0
0 0 0 |W,
-C 0] 110

e Now use the mu-tools code to solve for the controller. (Could also

have used the robust control toolbox code).

A=[Ag zeros(n1,n2);-Bsw*Cg Asw];
Bw=[zeros(nl,1) ;Bsw];
Bu=[Bg;zeros(n2,1)];

Cz=[-Dsw*xCg Csw;zeros(1,n1+n2)];

Cy=[-Cg zeros(1,n2)];

Dzw=[Dsw;0] ;

Dzu=[0;1];

Dyw=[1];

Dyu=0;

P=pck(A, [Bw Bul, [Cz;Cy], [Dzw Dzu;Dyw Dyul);
% call hinf to find Gc (mu toolbox)
[Gc,G,gamma]=hinfsyn(P,1,1,0.1,20,.001);
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e Results from the ~v-iteration showing whether we pass or fail the various

X, Y, p(XY) tests as we keep searching over ~, starting at the initial
bound of 20.

Resetting value of Gamma min based on D_11, D_12, D_21 terms

Test bounds:

gamma

20.
10

[

>>

>>

>>

PR PR RrRPRrRRP R RPR R

>>

Gamma value

000

.333
.500
.083
.875
.271
.573
.422
.346
.384
.365
.375
.370
.368
.366
.366

0.6667 < gamma <=

hamx_eig
.6e+000
.6e+000
.5e+000
.5e+000
.4e+000
.1e+000
.3e+000
.2e+000
.2e+000
.2e+000
.2e+000
.2e+000
.2e+000
.2e+000
.2e+000
.2e+000

O © © © © © O O © ©W YW O ©W OV O ©

achieved:

xinf_eig hamy_eig
6.2e-008 1.0e-003
6.3e-008 1.0e-003
6.3e-008 1.0e-003
6.5e-008 1.0e-003
6.9e-008 1.0e-003
-1.2e+004# 1.0e-003
7.3e-008 1.0e-003
7.6e-008 1.0e-003
-6.4e+004# 1.0e-003
7.7e-008 1.0e-003
-1.9e+006# 1.0e-003
7.7e-008 1.0e-003
7.7e-008 1.0e-003
7.7e-008 1.0e-003
7.7e-008 1.0e-003
-1.3e+007# 1.0e-003

1.3664

20.0000

yinf_eig
0.0e+000
0.0e+000
0.0e+000
0.0e+000
0.0e+000
-4.5e-010
0.0e+000
0.0e+000
0.0e+000
0.0e+000
0.0e+000
-4.5e-010
0.0e+000
0.0e+000
0.0e+000
0.0e+000

nrho_xy p/f
0.0000
.0000
.0000
.0000
.0000
0.0000 f
0.0000 P
0.0000  p
0.0000 f
0.0000 p
0.0000 f
0.0000
0.0000 P
0.0000  p
0.0000 p
0.0000 f

O O OO
oo oo o

e Since Ypin = 1.3664, this indicates that we did not meet the desired
goal of |S| < 1/|Wj| (can only say that |S| < 1.3664/|W]|).

— Confirmed by the plot, which shows that we just fail the test (blue

line passes above magenta)

e But note that, even though this design fails the sensitivity weight - we

still get pretty good performance

— For performance problems, can think of the objective of getting

Ymin < 1 as a “design goal” ~» it is “not crucial”

— Use W, to tune the control design
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10: T B 'f"."; N ' '.."T"?

Magitude

10 -1 0 1 2

10 10 10 10
Freq (rad/sec)

Figure 15.3: Visualization of the weighted sensitivity tests.
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Figure 15.4: Time response of controller that yields ., = 1.3664.
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e Can also put LQG (H3) design into this generalized framework .

e Define the dynamics

z = Ax + Bu+ wy
y = Cxr+w,

where

E{[wd(t)] i) wg(m}: [Vg 3]5@—7)

wy(t)

e LQG problem is to find controller u = G(s)y that minimizes

1 T
J=E { lim — / (2" Rypx + uTRuuu)dt}
0

T—o0

e To put this problem in the general framework, define

x Wy w2z g
U and Wy, B 0o V12 v

where w is a unit intensity white noise process.

RYZ 0
0 RY?

o With 2 = Fj(P,G.)w, the LQG cost function can be rewritten as

. { i L /0 TZT(t)z(t)dt} — (P, G

T—o00 T

e In this case the generalized plant matrix is

A |WY2 o | B
R o o0 o

0| 0 0 |RY

cC | o VY 0

P(s) =

315P365
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e Given these solutions, the central H., controller is given by

_[A+(?BBL - B.BI)X — ZyCIC,| ZYCY
Cels) = —BIX 0

where Z = (I — Y X)™!

e (Can develop a further interpretation of this controller if we rewrite the
dynamics as:

& = Ai+~y *ByBLXi— BBl X% — ZYC}Cyi+ ZYCly
v = —B' X3
=& = Ai+ By [y ?ByX&| + B, [-BiX&] + ZYC[ [y — Cyi]

=3 = A+ By [y ?BLX&| + Bu+ Ly — Cyd]

looks very similar to Kalman Filter developed for LQG controller.

e The difference is that we have an additional input Wyt = W_QBVTVX:?;
that enters through By;.

— Wyorst 1S an estimate of worst-case disturbance to the system.

e Finally, note that a separation rule does exist for the H ., controller.
But we will not discuss it.
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Code: H, Synthesis

% Hinf example

% 16.323 MIT Spring 2007

% Jon How

%

set (0, ’DefaultAxesFontName’,’arial’)
set (0, ’DefaultAxesFontSize’,16)

set (0, ’DefaultTextFontName’,’arial’)
set (0, ’DefaultTextFontSize’,20)

© 0w N e U A W N e

10 clear all
11 if “exist(’yprev’)

12 yprev=[1 1]°’;
13 tprev=[0 1]’;
14 Sensprev=[1 1];
15 fprev=[.1 100];
16 end

18 %Wu=1/1e9;

19 Wu=1;

20 % define plant

21 [Ag,Bg,Cg,Dgl=tf2ss(200,conv(conv([0.05 1],[0.05 11),[10 11));
22 Gol=ss(Ag,Bg,Cg,Dg);

23 % define sensitivity weight

24 M=1.5;wB=10;A=1e-4;

25  [Asw,Bsw,Csw,Dswl=tf2ss([1/M wB], [1 wB*A]l);
26 Ws=ss(Asw,Bsw,Csw,Dsw);

27 % form augmented P dynamics

28 nl=size(Ag,1);

29 n2=size(Asw,1);

30 A=[Ag zeros(nl,n2);-Bsw*Cg Asw];

31 Bw=[zeros(nl,1);Bsw];

32 Bu=[Bg;zeros(n2,1)];

33 Cz=[-Dsw*Cg Csw;zeros(1,n1+n2)];

34 Cy=[-Cg zeros(1,n2)];

35 Dzw=[Dsw;0];

36 Dzu=[0;Wul;

37 Dyw=[1];

38 Dyu=0;

39 P=pck(A, [Bw Bul, [Cz;Cy], [Dzw Dzu;Dyw Dyul);
40

41 % call hinf to find Gc (mu toolbox)

42 diary hinfl_diary

43 [Gc,G,gamma]=hinfsyn(P,1,1,0.1,20,.001);

44  diary off

45

46 [ac,bc,cc,dc]=unpck(Ge);

47 ev=max(real(eig(ac)/2/pi))

48

49  PP=ss(A, [Bw Bul, [Cz;Cy], [Dzw Dzu;Dyw Dyul);

50 GGc=ss(ac,bc,cc,dc);

51 CLsys = feedback(PP,GGc, [2],[3],1);

52 [acl,bcl,ccl,dcl]=ssdata(CLsys);

53 % reduce closed-loop system so that it only has
54 % 1 input and 2 outputs

55 bcl=bcl(:,1);ccl=ccl([1 2],:);dcl=dcl([1 2],1);
56 CLsys=ss(acl,bcl,ccl,dcl);

58 f=logspace(-1,2,400);

59  Pcl=freqresp(CLsys,f);

60 CLWS=squeeze(Pcl(1,1,:)); % closed loop weighted sens

61 WS=freqresp(Ws,f); % sens weight

62 SensW=squeeze (WS(1,1,:));

63  Sens=CLWS./SensW; % divide out weight to get closed-loop sens
64 figure(1);clf

65 loglog(f,abs(Sens),’b-’,’LineWidth’,2)

66  hold on

67 loglog(f,abs(1l./SensW),’m--’,’LineWidth’,2)
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68 loglog(f,abs(CLWS),’r-.’,’LineWidth’,2)

60 loglog(fprev,abs(Sensprev),’r.’)

70 legend(’S’,’1/W_s’,’W_sS’,’Location’,’SouthEast’)
71 hold off

72 xlabel(’Freq (rad/sec)’)

73 ylabel(’Magitude’)

74 grid

75

76 print -depsc hinfl.eps;jpdf(’hinf1’)

77

78 na=size(Ag,1);

79 nac=size(ac,1);

80  Acl=[Ag Bg*cc;-bc*Cg ac];Bcl=[zeros(na,1);bc];Ccl=[Cg zeros(1l,nac)];Dcl=0;
81 Gcl=ss(Acl,Bcl,Ccl,Dcl);

82 [y,t]l=step(Gcl,1);

83

g4 figure(2);clf

85 plot(t,y,’LineWidth’,2)

86  hold on;plot(tprev,yprev,’r--’,’LineWidth’,2);hold off
87 xlabel(’Time sec’)

88  ylabel(’Step response’)

89

90 print -depsc hinf12.eps;jpdf (*hinf12’)

92  yprev=y;
93 tprev=t;
94 Sensprev=Sens;
95  fprev=f;

16.323 15-21
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