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16.323 Lecture 13

LQG Robustness

e Stengel Chapter 6

e Question: how well do the large gain and phase margins discussed for LQR (6-29)
map over to LQG?
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e When we use the combination of an optimal estimator and an optimal
regulator to design the controller, the compensator is called

Linear Quadratic Gaussian (LQG)

— Special case of the controllers that can be designed using the sep-
aration principle.

e The great news about an LQG design is that stability of the closed-loop
system is guaranteed.
— The designer is freed from having to perform any detailed mechanics
- the entire process is fast and can be automated.

e 5o the designer can focus on the “performance” related issues, being
confident that the LQG design will produce a controller that stabilizes
the system.

— How to specify the state cost function (i.e. selecting z = C.x) and
what values of R,,, R, to use.

— Determine how the process and sensor noise enter into the system
and what their relative sizes are (i.e. select Ry & Ryy)

e This sounds great — so what is the catch??

e The remaining issue is that sometimes the controllers designed using
these state-space tools are very sensitive to errors in the knowledge of
the model.

— I.e., the compensator might work very well if the plant gain @ = 1,
but be unstable if it is = 0.9 or a = 1.1.

— LQG is also prone to plant—pole/compensator—zero cancelation,
which tends to be sensitive to modeling errors.

— J. Doyle, " Guaranteed Margins for LQG Regulators”, IEEE Trans-
actions on Automatic Control, Vol. 23, No. 4, pp. 756-757, 1978.
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Excerpt from document by John Doyle. Removed due to copyright restrictions.
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e The good news is that the state-space techniques will give you a con-
troller very easily.

— You should use the time saved to verify that the one you
designed is a “good” controller.

e There are, of course, different definitions of what makes a controller
good, but one important criterion is whether there is a reasonable
chance that it would work on the real system as well as it
does in Matlab. = Robustness.

— The controller must be able to tolerate some modeling error, be-
cause our models in Matlab are typically inaccurate.

<& Linearized model
<& Some parameters poorly known

< lgnores some higher frequency dynamics

e Need to develop tools that will give us some insight on how well a
controller can tolerate modeling errors.
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LQG Example

e Consider the “cart on a stick” system, with the dynamics as given in

the following pages. Define

Then with y =«

Ax + B,u
Cyx

For the parameters given in the notes, the system has an unstable pole
at +5.6 and one at s = 0. There are plant zeros at +5.

Very simple LQG design - main result is fairly independent of the choice
of the weighting matrices.

The resulting compensator is unstable (423!1)
— This is somewhat expected. (why?)
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Figure 13.1: Plant and Controller
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Example: cart with an inverted pendulum.

m, |— e Nonlinear equations of motion can be developed for
% large angle motion (see 30-32)
L

e Force actuator, 6 sensor

Figure by MIT OpenCourseWare.

Linearize for small 0 ..
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Cannot say too much more

Let M= 0.5, m=0.2, G=0.1, I=0.006, L=0.3

s'+0.1818s’ —31.185* —4.45s

2
> gives % 4.54s

therefore has an unstable pole (as expected)
s=%5.6,-0.14,0

June 18, 2008



Spr 2008

16.323 136

Near Origin
|
|
|
|

NAAR)
8\

Imag Axis

T I T
-2 0 2
Real Axis

June 18, 2008

Figure by MIT OpenCourseWare.



Spr 2008 16.323 13-7

Mag

2| . L . L .
& 10 10° 10 10
Freq (rad/sec)

-50 _ e e
~100F

-150 -

Phase (deg)

-200 -

-250 -

—300 2 I - 1 0 I -
10 10 10 10 10
Freq (rad/sec)

Figure 13.2: Loop and Margins
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Root Locus
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Figure 13.3: Root Locus with frozen compensator dynamics. Shows sensi-
tivity to overall gain — symbols are a gain of [0.995:.0001:1.005].
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e Looking at both the Loop TF plots and the root locus, it is clear this
system is stable with a gain of 1, but

— Unstable for a gain of 1 4 € and/or a slight change in the system
phase (possibly due to some unmodeled delays)

— Very limited chance that this would work on the real system.

e Of course, this is an extreme example and not all systems are like this,
but you must analyze to determine what robustness margins your
controller really has.

e Question: what analysis tools should we use?

June 18, 2008
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Analysis Tools to Use

e FEigenvalues give a definite answer on the stability (or not) of the
closed-loop system.

— Problem is that it is very hard to predict where the closed-loop poles
will go as a function of errors in the plant model.

e Consider the case were the model of the system is
= Apxr + Bu

— Controller also based on Aj, so nominal closed-loop dynamics:

Ay _BK Ay— BK BK
LC Ay — BK — LC 0 Ay — LC

=

e But what if the actual system has dynamics
= (Ay+ AA)x + Bu

— Then perturbed closed-loop system dynamics are:
Ay + AA —BK Ao+ AA—-— BK  BK

LC Ay— BK — LC AA Ay — LC

=

e Transformed A, not upper-block triangular, so perturbed closed-loop
eigenvalues are NOT the union of regulator & estimator poles.

— Can find the closed-loop poles for a specific AA, but

— Hard to predict change in location of closed-loop poles for a range
of possible modeling errors.

June 18, 2008
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Frequency Domain Tests

e Frequency domain stability tests provide further insights on the sta-
bility margins.

e Recall from the Nyquist Stability Theorem:

— If the loop transfer function L(s) has P poles in the RHP s-plane
(and limg_,» L(s) is a constant), then for closed-loop stability, the
locus of L(jw) for w € (—00,00) must encircle the critical point
(—1,0) P times in the counterclockwise direction [Ogata 528].

— This provides a binary measure of stability, or not.

e Can use “closeness” of L(s) to the critical point as a measure of
“closeness” to changing the number of encirclements.

— Premise is that the system is stable for the nominal system
= has the right number of encirclements.

e Goal of the robustness test is to see if the possible perturbations to
our system model (due to modeling errors) can change the number
of encirclements

— In this case, say that the perturbations can destabilize the system.

June 18, 2008



Spr 2008 16.323 13-12
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Figure 13.4: Plot of Loop TF Ly (jw) = Gn(jw)G.(jw) and perturbation (w; — w»)
that changes the number of encirclements.

e Model error in frequency range w; < w < wy causes a change in the
number of encirclements of the critical point (—1,0)

— Nominal closed-loop system stable Ly(s) = Gn(s)G.(s)
— Actual closed-loop system unstable L4(s) = Ga(s)G.(s)

e Bottom line: Large model errors when L ~ —1 are very dangerous.
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Nichols: Unstable Open-loop System
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Figure 13.5: Nichols Plot (|L((jw))| vs. arg L((jw))) for the cart example
which clearly shows the sensitivity to the overall gain and/or phase lag.
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Frequency Domain Test
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Figure 13.6: Geometric interpretation from Nyquist Plot of Loop TF.

e |d(jw)| measures distance of nominal Nyquist locus to critical point.

e But vector addition gives —1+d(jw) = Ly(jw)

= d(jw) =1+ Ly(jw)

e Actually more convenient to plot
I 1
[d(jw)| [14 Ly(jw)|

the magnitude of the sensitivity transfer function S(s).

= |8 (jw)]
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e So high sensitivity corresponds to Ly(jw) being very close to the
critical point.

Sensitivity Plot
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Figure 13.7: Sensitivity plot of the cart problem.

e Ideally you would want the sensitivity to be much lower than this.
— Same as saying that you want L(jw) to be far from the critical
point.
— Difficulty in this example is that the open-loop system is unstable,
so L(jw) must encircle the critical point = hard for L(jw) to get
too far away from the critical point.
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Summary

e LQG gives you a great way to design a controller for the nominal
system.

e But there are no guarantees about the stability/performance if the
actual system is slightly different.
— Basic analysis tool is the Sensitivity Plot

e No obvious ways to tailor the specification of the LQG controller to
improve any lack of robustness

— Apart from the obvious “lower the controller bandwidth” approach.

— And sometimes you need the bandwidth just to stabilize the system.

e Very hard to include additional robustness constraints into LQG
— See my Ph.D. thesis in 1992,

e Other tools have been developed that allow you to directly shape the
sensitivity plot |.S(jw)|
— Called Hy and u

e Good news: Lack of robustness is something you should look for,
but it is not always an issue.
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